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Abstract

We have addressed two problems in this thesis. In the first one, we have performed Density Func-

tional Theory (DFT) along with K-edge X-ray Absorption Near-Edge Structure (XANES) calculations in

order to probe the local environment of the X-ray absorbing carbon atoms in carbon allotrope systems,

as well as in diamond-like systems. We have found that, in addition to the accordance with experimental

results regarding both the 1s – π∗ and the 1s – σ∗ transition of graphitic systems, as well as the 1s–σ∗

transition of diamond systems, our results show that the diamond-like ones can be characterized through

this technique by observing the X-ray polarized spectra. Moreover, we observed that diamondol changes

from a direct to an indirect bandgap material (0.75 eV at Γ-point to 0.68 eV) when the 1s-electron is

removed from the carbon atom. Also, we have found that in such a case, the valence band maximum

changes from spin-down to spin-up state. Similar results were seen for the fluorinated system. We also

observed that the π transition for both the single-covered materials are spin-down polarized. Regarding

the double-covered systems (bidiamondol and bi-F-diamane), this is not observed, though bidiamondol

does not show π transition, whereas the another one does. Concerning the second problem, the interac-

tion of liquid acetonitrile (ACN) with the surface of Mo-based layered materials, we have approached it

through Molecular Dynamics (MD) simulations followed by DFT-based calculations to assess the charge

transfer in the solid-liquid interface. We were able to notice that the liquid ACN molecules are more

concentrated near the MoS2 surface, but only physisorbed, and also that their molecular density acquires

an ordering due to the solid surface. By DFT, we calculated the charge transfer between the solid surface

and the ACN molecules. Our results did not agree with the experimental evidence, as we have seen that

the solids lost electrons to the region where there are ACN molecules. In spite of this, qualitatively our

results showed that MoS2 induced higher charge transfer compared to the MoO3. This trend may change

when environmental effects are included in this model.

Keywords: DFT, XANES, Molecular Dynamics, diamondization, charge-transfer, liquid-solid

interactions, molybdenum-based solids, hydroxyl, fluorination.



Chapter 1

Introduction

1.1 A Word on Material Science

Since the past centuries, the humankind has been witnessing the arising of new materials, with

which humans were able to make up clothes, inks, all sort of instruments and utensils, as well as elec-

tronic devices. The great leap into the new era took place in the middle of 1950s with the synthesis of

diamond, and its usage as abrasives in industries [1], as well as its characterization via X-ray spectroscopy

from synchrotron-radiation [2]. Its usage finds applicability in machining and cutting tools, thermal con-

ductors, among others. By the way, they can be used as gemstones if they are grown by either High

Pressure-High Temperature (HPHT) [3] or Chemical Vapor Deposition (CVD) [4] methods. Diamonds

synthesized through those techniques also have applicability as optical materials for usage, for instance,

in tools for measuring electric and magnetic properties of materials at ultrahigh pressure [5, 6], and also

as semiconductors [7] when doped, during its synthesis process, with boron or phosphorus, which turns it

into a p- or n-type semiconductor, respectively. Those synthesized diamonds can be used in p-n junctions,

which produces light-emitting diodes (LEDs).

Nonetheless, as diamond has experimental indirect energy gap around 5.6 eV, and a lack of states

within 7.6 eV range at Γ-point between the valence band maximum and a higher state in the conduction

band [8, 9], they have not been used for fabrication of commercial electronic or optoelectronic devices,

but have been used to replace silicon as diffraction grating and window material in high-power radiation

sources, such as synchroton ones [5, 10, 11]. In the middle of 1900s, the first silicon device was the radio

crystal rectifier, and high-purity germanium and silicon crystals were employed in the fabrication of

radar microwave detectors during the period of the World War II. In the 1950s, the thermal oxidation

of semiconductor surfaces was possible, and in the middle of 1960s this was used to fabricate integrated

circuit and devices [12]. In fact, those crystals (and other ones) have been object of studies until current

days.

With the emergence of the Bernal graphite [13], a layered material, and in 2004 the exfoliation

of graphite [14], one of those layers, a myriade of new materials started to be discovered, due to the

remarkable mechanical, optical, and electronic properties of graphene. It would be expected that these
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new materials could possibly present electronic and/or mechanical properties as good as those of graphene

as they were being discovered. Figure 1.1 shows us an overview of those materials, such as hexagonal boron

nitride (h-BN) [15], transition metal dichalcogenides (TMDs) [16–19], layered metal oxides (MO) [20],

layered double hydroxides (LDHs) [21], etc. Conveniently, it is also feasible to combine two (or more)

of those materials, according to their properties, to build a new stacked material by van der Waals

interaction, known as van der Waals heterostructures. They are classified by types, as one can see in figure

1.1(b). The first type (Type I) is related to the vertical growth/deposition of two different materials. The

second type, in turn, is a material forming an in-plane 2D heterostruture. Type III is a heterostructure

formed by a vertical growth of ultrathin nanosheets as a compact array on another 2D material as

substrate. Crystal phase heterostructures, in turn, comprise the fourth type of heterostrustures, which

have the same components (for example, MoW2), but different crystal phases (2H and 1T in the figure).

Lastly, the fifth type is a class in which the heterostructure material can have multiple crystal phases.

With such a variety of materials, many experimental and theoretical techniques have been de-

veloped since the early 1900s. Regarding the last two decades, the number of papers concerning to 2D

materials, comprising a category of bidimensional nanomaterials nanocomposites in the fields of chem-

istry, materials science and condensed matter physics [22], has increased, as the figure 1.2(a) shows. That

search was made in Web of Science’s database server using the keywords as shown in the labels of the

graph. In spite of the oscillations in the number of publications, it increased in the last years. It can be

seen that an exponential trend is observed from 2004, which matches the year of the graphene synthesis.

As the researches on materials science had been increasing since the 1950s, so did the ones on

theoretical methods. In fact, computational simulations started to be exploited as a tool to perform heavy

calculations in the development of nuclear weapons and code breaking in the frame of the World War

II, and only in early 1950s, electronic computers became partially available to non-military use [23]. At

the time, the rush of researches on models to study properties of silicon-, carbon-, and germanium-based

materials drove the development of theoretical tools onwards. Those tools are used to model a problem

one wants to treat. When a model, linked to a theory, is turned into an algorithm, computations can

be performed and its results can be compared directly with experiments. If such results does not match,

then the model is inadequate, and one needs to reckon other ways to improve that result.
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(a) (b)

Figure 1.1: New era of material science: (a) Atomic-thickness material, so-called bidimensional materials, and (b) their later

heterostructures built using them. Figures from [24].

Computational simulations can be performed to model small systems, which can consist of thou-

sand of atoms, up to huge systems composed of million of molecules [25, 26]. An overview of existing

methods for simulating and modelling molecular interaction, as well as solid and liquid state, according

to both the length and time scales, is shown in figure 1.3. Quantum mechanics (QM) methods are suit-

able for systems with a few hundreds of atoms at most, staying on underneath the nanosecond scale.

In the case of Density Functional Theory (DFT) [27, 28] approach, it is typically within the picosecond

scale. When the process on which one is working do not include the formation of covalent chemical bonds

processes, it can be described by Molecular Mechanics (MM) framework, and its temporal evolution can

be addressed by Molecular Dynamics (MD) simulations. In fact, even if chemical bonding actually takes

place, physical absorption is primarily recognized as a long-time scale interaction, being, in principle,

adequate for such approach.

(a) (b)

Figure 1.2: (a) Number of publications in the period of 2000-2018, whose keywords shown as labels were entered on the Web

of Science database. This figure was obtained from [22]. (b) Annual number of publications according to the keywords seen

as labels of the curves [29].

In this work, we have used QM approach, inside the scope of DFT, along with MM simulations,
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specifically in the all-atom Molecular Dynamics (AA-MD)1, where one is able to perform investigation

on dynamic and thermodynamic properties of a system [30]. Ab-initio DFT has been the state-of-the-art

technique used in material science for calculations of ground-state properties of various types of systems.

As one can see in figure 1.2(b), the number of publications that are connected to DFT starts going up

drastically from 1990s. As a matter of fact, Walter Kohn [31] and John Pople [32] shared the Nobel

prize in chemistry in 1998: the former for devising the DFT, and the latter for developing computational

methods in quantum chemistry [33].

Figure 1.3: Existing computer simulation methods. The abbreviations stand for Quantum Mechanics (QM), which encom-

passes Coupled Clusters (CC), Density Functional Theory (DFT) (credits for [34]); Molecular Mechanics (MM) comprising

all-atom Molecular Dynamics (AA-MD), implicit solvent and coarse grained (IS-MD and CG-MD, respectively), and Brow-

nian Dynamics (BD); and, at last, Continuum Mechanics (CM). This figure was obtained in reference [30].

On the other side, regarding the experimental techniques to characterize materials, there are

many complex approaches to synthesize, modify, induce response to electromagnetic fields, among others.

Focusing on this last one, we would like to discuss about the core level spectroscopy. However, some

basics on solid state needs to be reviewed before we dig into this subject. In figure 1.4(a) we have

electron energies of the Mn and O. The core electrons of the former atom are in the orbitals 1s, 2s, 2p, 3s,

and 3p (18 electrons), while the latter has two core electrons in the 1s orbital. The valence electrons, in

turn, are in the orbitals 3d, 4s, and 4p for Mn, and four 2p electrons for O atom. For a molecule formed

by those atoms, MnO, in core electron specroscopy, one of those 18 electrons is excited by incident X-rays

and the electronic state of Mn 3d, and O 2p electrons are analyzed, once the character of core electron

is well-known [35]. The energy required to excite such a core electron is within the X-ray region of the

electromagnetic spectrum, which goes from 2 keV (soft X-rays region) up to 30 keV (hard X-rays region).

Figure 1.4(b) shows a schematic representation of the three main core level spectroscopy tech-

niques. The middle, vertical line represents the Fermi level. The core and valence electrons fully fill up

1From here on, it will be addressed only as Molecular Dynamics (MD).
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the states on the left-hand side of the vertical line, and the conduction band (CB) is empty (right-hand

side of the vertical line). X-ray Photoemission Spectroscopy (XPS), and X-ray Absorption Spectroscopy

(XAS) are first order optical process, which only include one photon. In the first process, a core-electron

is excited to high-energy continuum states, and detected by a photoelectron apparatus. In XAS, this

core-electron is excited to a state with energies (empty states) above the Fermi level. On the other hand,

X-ray Emission Spectroscopy (XES) is a second-order optical process, in which a core-electron is excited

by the incident X-ray, and the excited state of the system decays emitting X-rays. In this case, when

the core-electron is excited to continuum states, one has the Normal XES (NXES). However, if that

electron is excited near the Fermi level, the process is called Resonant XES (RXES). In this work, we

will only address simulations of XAS, specifically the X-ray Absorption Near-Edge Structure (XANES)2

spectroscopy.

(a) (b)

Figure 1.4: (a) Energies of the core level and valence level sates for MnO. (b) Schematic representation of XPS, XAS, and

XES. In the figure, Ω refers to the X-ray incoming frequency, and ω is related to the frequency of the X-ray emitted by a

radiative decay. Figures extracted from the book [35].

A detailed historical perspective on XAS can be found in [36], chapter one, from which we would

like to quote the authors’ words on what followed the first Fourier analysis to the point-scattering theory

of X-ray absorption fine structure in 1971 [37], which stresses the importance of such analysis:

“In the 44 years following that key publication, the field developed exponentially. Nowa-

days it is impossible to imagine frontier research in materials science, solid state physics

and chemistry, catalysis, chemistry, biology, medicine, earth science, environmental science,

cultural heritage, nanoscience, etc., without the contribution of XAS and related techniques.”

From the experimental point of view, silicon crystals were used as monochromator in 1960s, when

the first XANES spectra were used to classify trasition metals compounds according to their atomic

structure and valence of the metal [38]. Since the 1970s, the continuous increasing on availability of

2For more details, please refer to chapter 3.
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synchroton radiation sources established the EXAFS (Extended X-ray Absorption Fine Structure) and

XANES spectroscopies as a reliable tools for understanding structural and electronic configuration of a

wide range of systems [36]. The following two decades would be marked by a wide development and

distribution of codes for XAS-based data analysis. In fact, the quote above has been becoming a reality

because of three factors: existence of a solid theory for XAS spectra; increasing availability of beamlines

in synchrotron facilities; and the development of the mentioned codes. As a consequence, as figure 1.5

portrays, the number of paper published per year has increased vertiginously since 1981, time at which

the codes started to be broadly developed.

Figure 1.5: Papers published per year using as keyword: XAFS OR EXAFS OR XANES OR x ray absorption spectroscopy

OR X-ray absorption spectroscopy OR x ray absorption fine structure OR X-ray fine structure. The Roman numerals

indicated the year when proceedings of XAFS conference were published by ISI Web of Science. In the inset, the keywords

used were XES OR RIXS OR x ray emission spectroscopy OR X-ray emission spectroscopy. Figure was obtained from [36],

figure 1.3.

It is important to mention that nowadays it is possible to perform XANES simulations. Such a

method can be used to probe empty states in solids [39]. Furthermore, the use of polarized X-ray allows to

probe contribution of different atomic orbital [40], so as to study electronic structure of transition-metal

compounds, to probe local environment around an impurity in a crystal, and also to study disordered

matter, such as glass and liquids [41], including amorphous materials. Specifically, it can be used to

characterize bonding environment of a specific atom, for example, taking part in a functionalization

process [42]. We have used, for instance, the code XSpectra from QUANTUM ESPRESSO suite [43].

That fact along with experimentalists working on synchrotron facilities performing XAS spectra is a wide

window for atomic core-level research for structural and electronic description of materials.

Presently, there are more than 60 synchrotrons and free electron lasers (FELs) facilities around
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the world [44], some of them decommissioned. From those, two are located in Brazil: the LNLS and the

Sirius, in Campinas, São Paulo. In figure 1.6, one can see some of the synchrotron facilities’ logos, but

we cannot see the Sirius one, because this figure was generated in 2014.

Figure 1.6: Synchrotron facilities worldwide. Credits to [45].

1.2 The Problems Addressed in this Thesis

Because of the exquisite properties of graphene, it is natural that new bidimensional candidates

arise from layered bulk materials. Many efforts have been employed to obtain carbon allotrope materials,

such as graphite by thermal decomposition on SiC surface [46], graphene by mechanical exfoliation of

the graphite [14], and also the formation of diamond from shock compression of graphite [47], based on a

work back to 1961 [48]. The quest for new 2D materials is a cutting-edge research for, at least, the last

twenty years. Properties of a layered materials can considerably change when they are found in a stacked

form: bilayer, trilayer, or multilayer graphene, for instance [49]. Also, external factors, such as influence

of an external electric field [50, 51], as well as physical-chemical manipulations on graphene [52–55] can

drive significant changes in the properties of 2D and layered materials.

Thus, due to the searching in combining a suitable technique to a desirable material, in 2011

Barboza et al. synthesized a new-diamond like material from a combination of tailoring process, such as

stacking, physical-chemical modifications, and external pressure in the presence of water: a bidimensional

hydroxylated diamond-like layer, the diamondol [56]. Their calculations showed that it is a 2D ferromag-
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netic semiconductor with spin-polarized energy levels, and a bandgap around 0.6 eV. Also, it presents

magnetic momentum of 1.0 Bohr magneton per unit cell. Another diamond-like material was recently

synthesized by fluorinating the AB-stacked bilayer graphene grown in a chemical vapor deposition (CVD)

approach on a CuNi-(111) surface [57]. This resulted in a fluorinated doubly-covered diamond-like mono-

layer, coined as F-diamane. However, for simplicity, as we will also study a system with just one side

fully covered, we are going to refer to that system as bi-F-diamane, and the later one as F-diamane.

The characterization by electric force microscopy (EFM) experiments was performed, where

charge injections into monolayer, bilayer, and mutilayer graphene were monitored through tip-force inter-

action in an environment with water contents on the surface of the mentioned materials [56]. Recently,

a work by L. G. P. Martins et al. [58] provided spectroscopic evidence of the formation of such a ma-

terial by performing Raman spectroscopy on the double-layer graphene under high-pressure conditions

and using water as pressure trasmission medium (PTM). Furthermore, experimental evidences were also

accomplished for the case of fluorinated bilayer graphene (bi-F-diamane) [57]. The EELS characterization

presented the increasing of the carbon K-edge spectrum dominated by 2p(σ∗) transition at 293 eV and

297 eV. Instead, the 2p(π∗) transition is strongly suppressed. Therefore, in this thesis, we would like to

provide more evidence through spectroscopy description based on XANES simulations.

As we have already seen, beyond carbon-layered materials, there also exist materials based on

other elements, such as trasition metal dichalcogenides (TMDs), black phosphorus (BP) or phosphorene,

M-Xanes, among others. Specifically, TMDs [16] present a general chemical formula MX2, where M is

a transition metal (Mo, W, Hf, etc), and X must be one of these chalcogenides: S, Se, or Te. Besides

this material, another Mo-based material is also well-known, molybdenum trioxied (MoO3), a transition

metal oxide (TMO), which also can be exfoliated due to disposition of its layers by van der Waals

interactions [59,60]. Likewise, many approaches for synthesizing MoS2 and MoO3 are also available, such

as hydrothermal [61, 62], chemical vapor deposition [63, 64], decomposition and annealing of precursos

[65,66], reaction between solutions [67], among others.

In spite of that, a method able to yield high-quality materials that can be suitable for large-

scale synthesis is necessary. Liquid exfoliation methods based on solvent-based exfoliation by sonication

generate stable dispertion of mono and few-layers of TMDs and TMOs [68–72]. Such a method is called

Liquid-Liquid Interfacial Route (LLIR), by which the stable, solid dispersion is stabilized and deposited

as a thin-film at a liquid-liquid interface, and then the subtrate is removed. A long list of works using

that technique can be found in the reference [73].

That method was able to accomplish a simple and efficient route to synthesize, disperse, exfoliate,

and process molybdenum-based two-dimensional materials using acetonitrile (ACN) as a tri-functional

agent, which acts as a separator of the molybdenum-based material, exfoliator, and stabilizer of the

mixture of MoS2 and MoO3, which were previously treated in a thermal-controlled inert atmosphere. The

result of the LLIR was the formation of both layered MoS2 and agglomerated MoO3 solids. Electrokinetics

experiments reported that MoS2 gets negatively charged, whereas, apparently, MoO3 does not [73]. The

origin of these charges is still unclear, albeit some works have reported that those charges must be

attibuted to electron tansfer from the solvent itself (ACN), or from byproduct of ACN degradation after
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ultrasonication process [74,75]. More details are given in section 7, but basically we would like to address

that charge-transfer problem using molecular dynamics simulations (chapter 4), followed by ab-initio

quantum mechanics based on ground-state density functional theory (chapter 2).

Having presented the introductory aspects of this thesis, we are going to outline what is to come.

In the next three chapters, it will be discussed the theoretical fundamentals of this work: the next chapter

will address Density Functional Theory (DFT); then, in the chapter 3, we will expose the theory behind

X-ray Absorption Near-Edge Strucuture (XANES) simulations; and in the chapter 4, Molecular Dynamics

simulations will be addressed. Chapter 5 will show us the computational details to perform the required

calculations for this work. Then, both chapters 6 and 7 will disscuss the results addressed in this thesis.

Finally, chapter 8 comprises the conclusions of the obtained results, along with some future outlooks.



Chapter 2

Density Functional Theory (DFT)

The early 20th century was marked by great discoveries in the physics area, such as the emer-

gence of the theory of quantum mechanics in 1900 with the Max Planck’s solution to the black-body

radiation problem. In 1905, Albert Einstein proposed that light is composed by quanta of energy (the

light quantization), unveiling the interpretation of light as constituted of particles with well-defined fre-

quencies, which was followed by Louis de Broglie’s wave-particle duality that makes up matter in 1924.

Being so, quantum mechanics gains fundamental scope to explain natural phenomena. The culmination

occurs in 1926, when Erwin Schrödinger proposed an equation to describe quantum-mechanical systems.

However, understanding molecules, solids, and even more complex systems is not an easy task due to the

many-particles nature of the problem in question. To get a glimpse of that, suppose one wants to study

the benzene molecule, which is composed of six carbon atoms and six hydrogen atoms. Each of these

atoms has a especific number of electrons, which, in turn, interact with one another. That is a many-body

problem impossible to be analytically solved. That’s why we resort to the methodologies exposed next.

2.1 The Crystal Hamiltonian

In our case-studies, we are going to address solids and molecules; in describing such systems,

it is important to consider them quantum-mechanically, which can be addressed by the corresponding

many-body wavefunction Ψ, which can depend on both the electronic and atomic positions, ri and Rj,

of each i-th electron and j-th atom of the system. According to [76], in the absence of external field, the

Hamiltonian is given by1

H = Hel +Hion +Hel−ion (2.1)

The first term of this equation refers to the electronic part, which is composed by the electronic

kinetic energy and the repulsive Coulomb interaction between the electrons:

1It is going to be adopted the Hartree atomic units in all equations, unless otherwise indicated: me = e = } = 1
4πε0

= 1.



11

Hel =
∑
i

p2
i

2
+

1

2

∑
i 6=i′

1

|ri − ri′ |
. (2.2)

The following term represents the ionic part, given by:

Hion =
∑
j

P 2
j

2Mj
+

1

2

∑
j 6=j′

ZjZj′

|Rj −Rj′ |
. (2.3)

And lastly, the last term refers to the attractive electron-ion interaction:

Hel−ion =
∑
ij

Vel−ion(ri −Rj). (2.4)

A general form for the equation (2.4) is adopted, since the Coulomb interaction of the nuclei is

screening by the core electrons. That fact results in a complicated form for that equation, which will be

better understood when pseudopotential methods are addressed. If we restricted ourselves to stationary

properties of a many-body system, a many-body wavefunction, Ψ({ri}, {Rj}), labeled by a set of electrons

and ions coordinates, {r} and {R}, satisfies the time-independent many-body Schrödinger equation:

H Ψ({ri}, {Rj}) = EΨ({ri}, {Rj}). (2.5)

This problem, comprised by the equations (2.1)–(2.5), is impossible to be solved analytically. Fortunately,

it is possible to minimize it out to a simpler problem, allowing one to sort it out numerically. The first

approximation to be done is the well-known Born-Oppenheimer approximation (also known, in this

context, as the adiabatic approximation). Other approximations will be described in the following topics

of this section.

2.1.1 The Born-Oppenheimer Approximation

In any many particles quantum systems, the ions are much heavier than the electrons, since

Mion

me
∼ 104. That way, electrons turn out to be much faster than the ions, so that vion

ve
∼ 10−3 [77].

Therefore, in the case of the mentioned problem, the decoupling between the ionic and electronic degrees of

freedom is done, considering the ions as almost frozen for a give electronic configuration. Thus, the ionic

coordinates work only as fixed parameters, which account for changes in the electronic configuration

in case the ionic one is changed. After solving the electronic problem, one can go back to the ionic

dynamics problem and solve it making use of the current electronic state information. That is the Born-

Oppenheimer approximation.

Following the appendix C of the reference [78], the kinetic energy of equation (2.3) is too small, so

that one can consider it as a perturbation to the steadfast nuclei. Thus, one must define the eigenvalues

and eigenfunctions for the electrons, Enel({Rj}) and ψn({ri}, {Rj}), dependent on nuclei positions {Rj}
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as parameters. From equation (2.5), if the solutions of this equation form a complete set for a given ionic

configuration, then one can expand the many-body wavefunction Ψ({ri}, {Rj}) as:

Ψ({ri}, {Rj}) =
∑
n

χn({Rj})ψn({ri}, {Rj}). (2.6)

That lead us to the electronic problem:

(Hel +Hel−ion + Eion−ion)ψn({ri}, {Rj}) = Enel({Rj})ψn({ri}, {Rj}), (2.7)

where the electronic Hamiltonian terms were defined in the equation (2.2) and (2.4), and also

Eion−ion =
∑
j 6=j′

Vion({Rj −Rj′}) (2.8)

is the classical electrostatic energy, which comes in as a constant owing to the “frozen” nuclei approxima-

tion. For the elelctronic problem, the significance of this term is to preserve the charge neutrality of the

system.

Doing some mathematical manipulations, one finds that

[Tion + Enel({Rj})− E]χn({Rj}) = −
∑
n′

βnn′χn′({Rj}), (2.9)

where Tion =
∑
j −

(∇2
j )

2Mj
is the kinetic energy of the ions. The coeficients βnn′ are given by

βnn′ = Ann′ +Bnn′ ,

Ann′ =
∑
j

1

Mj
〈ψn|∇j |ψn′〉∇j ,

Bnn′ =
∑
j

1

2Mj
〈ψn|∇2

j |ψn′〉. (2.10)

Notice that in Ann′ the last gradient acts onto ψn′ . The equation (2.9) is a Schrödinger equation

for ionic eigenfunctions χn({Rj}) that owns electronic energies of an effective potential for the dynamics

of ions. The diagonal elements, βnn, can be added up to the effective potential, while the off-diagonal

ones, βnn′ (n 6= n′), couple different electronic states. As a matter of fact, the Born-Oppenheimer

approximation arises when one neglects those off-diagonal terms. Hence, this approximation does not

take into account electronic transitions that come from interactions with the ions or, more precisely,

with their vibrations around their equilibrium position (phonons) [79]. They have their importance for

phenomena as Raman scattering and superconductivity.
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Our focus will be on the electronic properties of the ground state of systems whose description will

be given soon. This can be performed by mean of the electronic problem (2.7), for what the adiabatic

approximation is sufficient. Therefore, henceforth, the ionic coordinates of the wavefunctions and the

energies will be omitted, as well as their indexes, and the equation (2.7) is now read as

(Hel +Hel−ion + Eion−ion)ψ({ri}) = Eψ({ri}). (2.11)

Notice that, doing so, the complete many-body problem is represented by a product of ionic and

electronic wavefunctions, Ψ = χψ.

DFT is an ab-initio theory widely used for many-body interacting systems. It is feasible to

calculate a range of properties for a broad number of systems such as isolated atoms, molecules, nanos-

tructures, bulk solids, etc. This makes this method to be the most employed presently. The reason for its

enormous success is that a variety of properties (formation energy, forces, stress, phonon spectra, reponse

functions, among others) of many-body systems that depend on the total energy can be expressed as the

ground state functional density, n0(r). Thereby, at first, only n0(r) determines all the information of a

many-body problem, including excited states and the many-body wavefuntions, making the ground-state

density a central variable for the many-body problem instead of a complicated many-body wavefuntion.

That rather simplifies the problem.

In practice, what one does is replace a set of wavefunctions dependent on the 3N electron coordi-

nates with a simpler tridimensional function. The proves of those functionals are well documented in [27];

they have stamped the modern wording of the density funcional theory, which will be discussed in the

next sections. However, a recipe is not presented for building those functionals. By the way, there is not

even a known functional for systems with more than one electron. The practical advantage of DFT usage

emerged with the work by Walter Kohn and Lu Jeu Sham in 1965 [28], when they formulated an ansatz

that replace the interacting many-body problem with an auxiliary problem of independent electrons, in

which the effects of the many-body interactions (beyond the classical Coulomb repulsion) are included

inside the exchange-correlation functional [78]. This approach leads to the Kohn-Sham equations, which

will be discussed in section 2.3. To instance how DFT works, the next subsection will be shown the

Thomas-Fermi approximation, starting point of the theory. In the following subsections, it will be show

approximations for the exchange-correlation functionals and the way DFT works in practical terms. To

address such subjects, the discussions by [78] (chapters 3, and 6 through 9) and original references cited

therein will be followed.

2.1.2 Thomas-Fermi Approximation

In 1927, Llewellyn H. Thomas [80] and Enrico Fermi [81] put forward an approximated method

able to compute the total energy of quantum systems. That approach shows quite well what would

be the use of DFT to treat many-body systems. They realized that the distribution of electrons could

statistically be taken as a homogeneous electron gas. Thomas claims that:
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“Electrons are distributed uniformly in the hexadimensional phase space for the motion of

an electron at the rate of two for each h3 of (six) volume. The potential V is itself determined

by the nuclear charge and this distribution of electrons.”

The phase space is to be considered as translational and rotational degrees of freedom for each spin of

electrons. Therefore, he gave us an assumption of how the electronic density formula derivation should

be.

In the original Thomas-Fermi method the kinetic energy of electrons is approximated by a density

functional of non-interacting electrons, whose value is equal at all the points of space. Thus, they got the

functional of energy for all electrons:

ETF [n] = c1

∫
drn(r)5/3 +

∫
drVext(r)n(r) + c2

∫
drn(r)4/3 +

1

2

∫
drdr′

n(r)n(r′)

|r− r′|
, (2.12)

where the first term corresponds to the local approximation for the kinetic energy with c1 = 3
10 (3π2)2/3 =

2, 871, the third term is the local exchange (equal spins up and down) with c2 = − 3
4 ( 3
π )1/3, both in atomic

units (section 5.1 by [78]). Lastly, the second term is the Hartree classical electrostatic energy.

The ground-state density and energy can be found by minimizing ETF [n] with respect to n(r),

and subjected to the condition over which
∫
drn(r) = N . Using the Lagrange’s multiplier method, and

minimizing the following functional

ΩTF [n] = ETF [n]− µ

[∫
drn(r)−N

]
, (2.13)

for any variation of the density δn(r), according to appendix A by [78], one gets to the condition for a

stationary point:

∫
dr

[
5

3
c1n(r)2/3 + Veff (r)− µ

]
δn(r) = 0 (2.14)

where Veff = Vext(r) + VH(r) + VX(r) is the total potential, and µ is the Fermi level. If this relations is

valid for any δn(r), then the funcional is stationay if, and only if, the following relation is satisfied:

1

2
(3π)2/3n(r)2/3 + Veff (r)− µ = 0. (2.15)

There are approaches for corrections of non-homogeneity of the density, in which terms that contain

density gradient are included.

It is notorious the enhancement of the handling of systems in terms of density functionals, since

one has replaced the 3N many-body Schrödinger equations. Nonetheless, this approach is not effectively

beneficial, as the method is an oversimplification of the system, not taking into account the correlation

and the exchange effects among the electrons. As a result, it does not provide satisfactory outcomes

for cohesion energies of molecules, length of bonds, among other properties due to the lack of essential

physical components. After all, the method can be considered a rough approximation for an exact theory

proposed by Pierre Hohenberg and Walter Kohn in 1964 [27], the well known density functional theory.
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2.2 The Hohenberg-Kohn Theorems

The idea introduced by Thomas and Fermi prompt to possibilities of the usage of the electronic

density as a fundamental element in calculations of quantum systems. As a result, the schematic sequence

would be as follows:

V → H → Ψ→ n. (2.16)

In other words, one would have to know the potential of the system to solve the Schrödinger equation,

then, from the gotten wavefunctions of this system, compute the electronic density. Despite that, because

our analytical knowledge of the potential is restricted, one must do many approximations in order to

make the computation simpler, fact that leads us to non-physical results. Bearing that in mind, in

1964 Hohenberg and Kohn introduced two theorems, which come to be the DFT basis, that say that

the electronic density, besides to define the external potential of the system, also to define its energy.

Accordingly, it is appropriate to introduce the density operator:

nop(r) =

N∑
i=1

δ(r− ri), (2.17)

where {ri} are the coordinates of the N particles. The particle density, n(r), is given by the expected

value of nop(r) in a many-body state ψ(r1, r2, . . . , rN ) as:

n(r) =
〈ψ|nop|ψ〉
〈ψ|ψ〉

= N

∫
d3r2 . . . d

3rN |ψ(r, r2, . . . , rN )|2∫
d3r1d3r2 . . . d3rN |ψ(r1, r2, . . . , rN )|2

. (2.18)

Here we are supposing that the particle are identicals to cut the summation out, inserting the factor

N in the expression2. The total energy is evaluated from the expected value of the Hamiltonian of the

equation (2.11). All in all, we are especially interested in the total external potential:

〈Vext〉 =

N∑
i=1

〈ψ|Vext(ri)|ψ〉
〈ψ|ψ〉

= N

∫
d3r1Vext(r1)

∫
d3r2 . . . d

3rN |ψ(r1, r2, . . . , rN )|2∫
d3r1d3r2 . . . d3rN |ψ(r1, r2, . . . , rN )|2

=

∫
d3r Vext(r)n(r), (2.19)

where again we are using the assumption that the particles are identical and the equation (2.18). Being

so, the total energy is:

E =
〈ψ|H|ψ〉
〈ψ|ψ〉

= 〈T 〉+ 〈Vint〉+

∫
d3r Vext(r)n(r) + Eion−ion, (2.20)

2We are neglecting the spin variable. It could be included by assuming that the integrals contain a summation for each

spin variable for each coordinate as well. In that case, the equation (2.18) gives the particle density for a spin component.
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with which, submitted to the normalization condition 〈ψ|ψ〉 = 1, the ground-state energy and wave-

function can be obtained. The first two terms of this equation are the expected value of kinetic energy

of the electrons and the energy of electron-electron interaction whose sum is known as Hohenberg-Kohn

universal functional, FHK [n]. Observe that it is independent of the material, that is to say, of the external

potential.

The energy functional given by the equation (2.20) is the starting point for the Hohenberg-Kohn

(HK) theorems. Let’s begin with the first one, such as showed by [78]:

Theorem 1 (The fundamental variable: the density) : Whatever system of interacting particle subjected

to a external potential, Vext(r), it is possible to find it univocally through the ground-state particle density,

n0(r), except for a constant.

This theorem is proved by contradiction. Knowing that the density and the energy of the system are given

by the equations (2.18) and (2.20), let’s suppose there are two external potentials, V 1
ext(r) and V 2

ext(r),

which differ by more than a constant; however, they bring about the same ground-state density n0(r).

The two external potentials bring about two different Hamiltonian as well (H1 e H2) that, in turn, lead

to two different many-body wavefunctions, ψ1 e ψ2. Hypothetically, these wavefunctions correspond to

the same ground-state density n0(r). Therefore,

E1 = 〈ψ1|H1|ψ1〉 < 〈ψ2|H1|ψ2〉, (2.21)

for ψ2 is not ground state of H1. Setting the term after the inquality down as

〈ψ2|H1|ψ2〉 = 〈ψ2|H2|ψ2〉+ 〈ψ2|H1 −H2|ψ2〉 (2.22)

= E2 +

∫
dr[V 1

ext(r)− V 2
ext(r)]n0(r),

so that

E1 < E2 +

∫
dr[V 1

ext(r)− V 2
ext(r)]n0(r). (2.23)

Now in light of E2, and doing the math, we find:

E2 < E1 +

∫
dr[V 2

ext(r)− V 1
ext(r)]n0(r). (2.24)

Summing (2.23) and (2.24) up we get to the absurd inequality E1 +E2 < E2 +E1. We have followed the

HK’s considerations, supposing that the ground state is not degenerated. Nonetheless, the prove might

be extended to degenerated cases [82], in accordance with section 6.1 by [78] and references therein.

As a matter of fact, the external potential is univocally determined by the density, and there is a

consequence that comes up from this theorem, which is if all the Hamiltonian terms are determined (except



17

for a constant), then all many-body wavefunctions are determined, including those excited-state ones.

Therefore, in principle, all of the system properties are completely determined from n0(r). Nevertheless,

one would still have to solve the many-body problem with Vext(r).

Although the inclusion of Vext(r) in the problem seems to be tricky, the second theorem tells us

that there exists an universal energy functional, E[n], dependent only on the density, from which the

ground state could be obtained.

Theorem 2 (Existence of the energy functional and the ground-state obtainment) : An universal func-

tional to energy E[n] in terms of density n(r) can be defined and is valid for any external potential

Vext(r). For any Vext(r), the exact ground-state energy is the global minimum of that functional, and the

density, which minimizes this functional, is the ground-state density n0(r).

HK assumed that the densities n(r) are ground-state densities of the electronic Hamiltonian,

constrained to some external potential Vext(r). Thus, defining the space of possible densities in that we

can build density functionals (which could be extended to a spectrum of functionals), and recognizing

that the system properties are determined if one knows n(r), then we can access the properties using

density functionals, as the total energy, for instance.

We define the HK universal functional as:

F [n] = T [n] + Vint[n] = 〈T 〉+ 〈Vint〉, (2.25)

where the expected values are calculated on the state ψ(n(r)), which corresponds the given density. F [n]

depends only on the system particles and on the interactions among them, which is dependent only on

the density, being applicable for any Vext (so the term universal). With it, the total energy is given by:

E[n] = F [n] +

∫
drVext(r)n(r) + Eion−ion, (2.26)

which is also a density functional. Eion−ion above is a constant at the electronic problem. Following

the considerations aforementioned, we are going to consider the ground-state density, n1(r), matching a

potential V 1
ext(r) and linked to a ground-state wavefunction, ψ1. The ground-state total energy (equation

(2.26)) is given by:

E1 = E[n1] = 〈ψ1|H1|ψ1〉. (2.27)

Looking, however, at a density n2(r), which matches ψ2, that is not a ground-state wavefunction, the

total energy, E2, is:

E1 = 〈ψ1|H1|ψ1〉 < 〈ψ2|H1|ψ2〉 = E2. (2.28)

Hence, the ground-state energy, density functional of the ground state, is less than energy related

to any other density. The gound-state energy is the global minimum of the energy functional, and its
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density is the exact ground-state one. Although the theorem 2 does not convey anything about the

specific form of the HK funcional (F [n]), it tells us about the ground-state density and energy, which

comes from total energy functional, E[n], and about all the properties related to them. F [n] also contains

the kinetic energy of the particles and the effects of the interactions3. The usefulness of DFT comes from

an ansatz thought by Kohn and Sham [28]. It is possible to replace a many-body problem with a set of

problems of independent electrons, which can be exactly solved (numerically, in practice). We will see

how it works in the following subsection.

2.3 Kohn-Sham Equations

The Kohn-Sham (KS) ansatz consists in supposing the ground-state density is the same for both

the interacting system and the auxiliary non-interacting system4. It leads to equations of independent

particles that can be solved by numerical methods. But the trouble lies in the many-body terms, rep-

resented by the exchange-correlation functional of the density. That way, one builds a functional of the

total energy of the interactiong system, using the information of the auxiliary system. By minimizing

it, one obtains both the ground-state energy and density of the original interacting system, but with the

accuracy given by the approximation of the exchange-correlation functionals. The KS ansatz is based in

two assumptions. Firstly, the exact ground-state density can be represented by the ground-state density

of a system of non-interacting particles, whose idea the figure 2.1 below perfectly exemplifies. The second

assumption says that the auxiliary Hamiltonian has both an ordinary kinetic operator and an effective

local potential5, V σeff (r), acting on an electron with spin σ at r, but with Vext(r) spin-independent.

Figure 2.1: Comparison between the problem of an auxiliary system of non-interacting particles (right-hand side) and the

complete many-body system, as addressed by the HK theorems (left-hand side). The double arrow with the superscription

KS above it represents the link between both the appoaches. The arrow marked as HK0 represents the HK theorem

applied to non–interacting system. Figure has been gotten from [78], figure 7.1.

3It does not state anything about the excited states too. This could be done from the ground-state density (theorem 1),

but this is still a challenge.
4There is still no prove for confirming that to any n0(r). However, DFT describes very well the properties of a wide

reange of systems.
5The local form is not important, but it is a quite useful simplification, albeit, on the original article in 1965 [28], KS

suggested a non-local form.
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The Hamiltonian of an auxiliary particle is:

Hσ
aux = −1

2
∇2 + V σ(r), (2.29)

that satisfies the Schrödinger equation for both the orbitals, φσi (r), and eigenvalues, εi. We are now taking

into account the possibility of configurations of spin-polarization, and, of course, the potential V σ(r) is

a general potential that depends on the spin, but, as already said, considering the external potential

spin-independent. In such case, the density of a non-interacting system is given by

n(r) =
∑
σ

n(r, σ) =
∑
σ

Nσ∑
i=1

|φσi (r)|2, (2.30)

where one counts Nσ electrons for each spin. Provided that the orbitals can be seen as density functionals,

so both the kinetic energy and the Hartree energy (classical Coulomb repulsion energy) can be seen as

density functionals as well. So,

Ts[n] = −1

2

∑
σ

Nσ∑
i=1

〈φσi |∇2|φσi 〉 =
1

2

∑
σ

Nσ∑
i=1

|∇φσi (r)|2, (2.31)

EH [n] =
1

2

∫
d3rd3r′

n(r)n(r′)

|r− r′|
(2.32)

and thus, the functional of total energy, equations (2.25) and (2.26), can be written as

EKS [n] = Ts[n] +

∫
d3rVext(r)n(r) + EH [n] + Eion−ion + Exc[n]. (2.33)

The many-body effects are embedded in the exchange-correlation functional, Exc[n]. The exchange ef-

fects arises from Pauli’s exclusion principle, included in the Hartree-Fock theory. What there is beyond

both the classical and exchange effects is known as correlation effects. Basically, it reflects our lack of

knowledge about the most complicated aspects of the interactions. Further, the summation of the terms∫
d3rVext(r)n(r), EH and Eion−ion result in a well-defined group, as already said, however with a caveat

that, now, the external potential is the potential owing to the nuclei ones and to the external fields. So,

we could express Exc[n] as

Exc[n] = 〈T 〉 − Ts[n] + 〈Vint〉 − EH [n], (2.34)

which is a functional, because of the functionals lying in the right-hand side. One sees, therefore, that it

is not the differencing between both the kinetic and the internal energies of the actual interacting system,

and the kinetic and Hartree energies of the auxiliary system.

As one can see from equation (2.33), the kinetic energy of the auxiliary Hamiltonian, Ts[n], is

expressed as a functional of the orbitals, and the other terms are density funtionals. Thus, the problem
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of the minimization of Kohn-Sham energy functional, EKS [n], comes up, in which, by using the chain

rule to vary the wavefunctions, one can derive the variational equation

δEKS
δφσ∗i (r)

=
δTs

δφσ∗i (r)
+

[
δEext
δn(r, σ)

+
δEH

δn(r, σ)
+

δExc
δn(r, σ)

]
δn(r, σ)

δφσ∗i (r)
= 0, (2.35)

whose minimization of the functionals must be under the orthonormalization condition of the orbitals

〈φσi |φσ
′

j 〉 = δi,jδσ,σ′ . (2.36)

After some algebra, and making use of the expression

δTs
δφσ∗i (r)

= −1

2
∇2φσi (r) (2.37)

δn(r, σ)

δφσ∗i (r)
= φσi (r), (2.38)

one gets to the Kohn-Sham eigenvalues equations:

[
− 1

2
∇2 + V σKS(r)

]
φσi (r) = εσi φ

σ
i (r), (2.39)

where the Kohn-Sham potential is given by

V σKS = Vext(r) + VH(r) + V σxc(r). (2.40)

The Hartree potential, in turn, is

VH(r) ≡ δEH [n]

δn(r, σ)
=

∫
dr′

n(r′)

|r− r′|
, (2.41)

and the exchange-correlation potential is defined as

V σxc ≡
δExc[n]

δn(r, σ)
. (2.42)

The KS equations are independent-particle equations, whose potential is found from the density

self-consistently. The density, in turn, is gotten from the orbitals φσi , solution of the equation (2.39).

The orbitals provide the ground-state density of the auxiliary system, which is the same as the one of

the interacting system. Thenceforth, the ground-state energy and all the properties of the systems are

settled. Nonetheless, the potential Vxc does not have an anaytical form. Approximations need to be done.

Such issues will be discussed up next.
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2.3.1 Approximations for the Exchange-Correlation Potential

In view of the recent success of the approximation-by-functionals methods, the exchange-correlation

energy, Exc[n], which is a density functional, has gained a very important role in the calculations of many-

body systems, for they would have been able to become the outcomes as close to the physical reality as

possible. In this work, we have used the GGA approximation (Gradient-Generalized Approximation),

specifically the one of Perdew-Burke-Ernzerhof (1996) [83]. There are other approximations indeed, and

we also will talk about the LDA (Local Density Approximation), a relatively simpler functional, which

was the first one to be developed. In reality, there are countless other approximations, but we will not

discuss about them here. But, it is effortless to mention their relevance in treat non-homogeneous systems

such as transition metal oxides and rare-earths, which are strongly correlated materials. Among other

cases, it is crucial that other functionals are developed, and that is why many researchers have worked

hard in finding them.

Local Density Approximation (LDA)

One of the advantages of the Kohn-Sham theory is that one is able to detach the kinetic energy

and long-range Hartree interaction energy of independent particle from the part that contais the short-

range interaction included in the exchange-corralation functional, Exc[n]. In this sense, this functional

can be approximated as a local density functional, or nearly local, because the electrons in solids could

be considered as a limit case of a homogeneous gas. The most general case would be the inclusion of

the spin degree of freedom (LSDA – Local Spin Density Approximation). The simpler expression has the

form as

ELSDAxc [n↑, n↓] =

∫
d3r n(r)εxc(n

↑(r), n↓(r)), (2.43)

where εxc is the exchange-correlation energy density, and the arrows denote the spin-up and spin-down

labels, respectively, in such a way that n = n↑ + n↓. The exchange-correlation energy density at each

point of the space is given by the density of the homogeneous electron gas, with density in each point as

ELSDAxc [n↑, n↓] =

∫
d3r n(r)εhomxc (n↑(r), n↓(r))

=

∫
d3r n(r)

[
εhomx (n↑(r), n↓(r)) + εhomc (n↑(r), n↓(r))

]
. (2.44)

The exchange energy density of a homogeneous electron gas, εhomx , is analytically known from the Hartree-

Fock theory:

εhomx (n, ζ) = εhomx (n, 0) + [εhomx (n, 1)− εhomx (n, 0)] fx(ζ), (2.45)

where ζ = (n↑ − n↓)/n is the spin polarization, and the function fx(ζ) is given by:



22

fx(ζ) =
1

2

(1 + ζ)4/3 + (1− ζ)4/3 − 2

21/3 − 1
, (2.46)

and the non-polarized exchange energy density (where one has n↑(r) = n↓(r) = n(r)/2) is

εhomx (n, 0) = −3

4

(
6

π
n

)1/3

. (2.47)

There is no analytical form for the correlation energy density, εhomc . Nevertheless, it could be calculated

with fine accuracy through the Quantum Monte Carlo stochastic methods [84]. The final expression for

the exchange-correlation potential can be obtained from Exc by mean of the equation (2.42).

Curiously, this approximation is very useful in describing systems that evade from homogeneity,

such as atoms, molecules and covalent solids, whereby the approximation based on a homogeneous electron

gas would not manage to work properly. The most used approximation is the LDA-PZ [85]. Obviously,

credits must be given since improved functional features were built, as the GGA ones, which will be

considered up next.

Generalized Gradient Approximation (GGA)

The L(S)DA success led to the development of the GGA functionals. In this subsection we will

describe briefly some physical ideas, fundamentals of the building of GGA functionals. As the first step in

the direction of the improvement over the local approximation, including dependence on the magnitude

of the density gradient, |∇nσ|, in εxc, as well as the value of n at each point r, would be a first order

expansion. This expansion is known as GEA (Gradient Expansion Approximation) [86]. Nonetheless, it

does not lead to consistent results when compared the LDA’s ones for these gradients in actual materials

are so large that the expansion explodes. The term GGA denotes a range of possibilities of proposing

functions that modify the behavior of the mentioned gradients. One could, therefore, include derivatives

of higher order so that the equation (2.43) could be generalized as

EGGAxc [n↑, n↓] =

∫
d3r n(r)εxc(n

↑(r), n↓(r), |∇n↑(r)|, |∇n↓(r)|, ...)

=

∫
d3r n(r)εhomx (n(r))Fxc

(
n↑(r), n↓(r), |∇n↑(r)|, |∇n↓(r)|, ...

)
, (2.48)

where εx(n) is the energy density of a non-polarized homogeneous electron-gas, and Fxc is a dimensionless

function of the densities and their derivatives. For exchange term, there is a scale ratio for Ex[n], in which

the density n(r) is non-polarized, so is Fx(n, |∇n|). As defined on the references [83,87], it is convenient

using the reduced density gradient, a dimensionless quantity:

sm =
|∇mn|

(2kF )mn
=

|∇mn|
2m(3π2)m/3(n)(1+m/3)

. (2.49)

where kF = 3(2π/3)1/3 r−1
S is the Fermi momentum, and rS is the mean distance between the electrons,

also known as local Wigner-Seitz radiusThe Wigner-Seitz radius, named after Eugene Wigner and Freder-
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ick Seitz, is the radius of a sphere whose volume is equal to the mean volume per atom in a solid (for first

group metals)., which normalizes the m-th variation of the density. The expression for the firts gradient

is

s1 ≡ s =
|∇n|

(2kF )n
=

∇rS
2(2π/3)1/3 rS

. (2.50)

where n = 3/4πr3
S .

For s1 there are an inifinitude of expressions for Fx, whose three majors are B88 (Becke, [88]),

PW91 (Perdew and Wang, [89]) and PBE (Perdew, Burke and Enzerhof, [83]). It is interesting to know

that for s within the range (0, 3), region whereby the reduced gradient is small and, because of that, useful

for most of the physical applications, distinct Fx have approximately the same form. This betokens that

different GGAs contribute in a similar manner on conventional systems. Compared to LDA, the binding

energy is decreased. This improves the concordance to the experimental data, which is a highly favorable

point of the GGA approximation. Within the range (3,∞), the Fx result depends on the choice of the

physical conditions.

As to the corralation, Fc is more complicated to shape in terms of a functional. However, its

contribution to the total energy is much less than that of the exchange. For large values of s, this

decrease can be qualitatively understood, because large gradients are connected to the strong potentials

of confinement, which increase the spacing and decrease the effects of interactions when compared to the

independent electrons terms [78].

In general, GGA provides better results in terms of binding energies when compared to the LDA.

In this thesis, we have used the GGA-PBE functional [83], which enhances the description of atoms,

molecules and solid compared to the LDA results, even though proposing to mantain their features and

combining them with the non-locality of the gradient correction. Therefore, supporting ourselves on the

appendix B of [78], the exchange functional is chosen in such a way that the local approximation is

recovered (Fx(0) = 1 e Fx → const., whenever s→∞. Thus, we can write

Fx(s) = 1 + κ− κ

(1 + µs2/κ)
, (2.51)

where κ = 0.804 to satisfy the Lieb-Oxford limit6. In addition, one has chosen µ = 0.21951 in order to

recover the linear response form of the local approximation.

The correlation energy, EGGA−PBEc , is the sum of a local correlation term with a term that

depends on the gradients and on the spin polarization of the system:

EGGA−PBEc [n↑, n↓] =

∫
drn

[
εhomc (rS , ζ) +H(rS , ζ, t)

]
, (2.52)

6The Lieb-Oxford inequality has an important role on DFT, in particular regarding the stability of matter. It claims

that the difference between the repulsive Coulomb electrostatic energy for the system (indirect part) and the electrostatic

energy related to the charge density in a semi-classical approximation (direct part) estimates a lower limit for the indirect

part. Details can be found in [90,91].
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where ζ was defined in the equation (2.45), and t = |∇n|/(2φkTFn) is the dimensionless gradiente defined

in [83], but similar to the equation (2.49). Yet we have that φ =
(

(1 + ζ)2/3 + (1 − ζ)2/3
)
/2 is a spin

scale factor (SSF, for short)7. t in turn is scaled by the Thomas-Fermi wavevector kTF insteade of kF .

Therefore, the final form is

H = γφ3ln

(
1 +

β

γ
t2

1 +At2

1 +At2 +A2t4

)
, (2.53)

where the function A is given by

A =
β

γ

[
exp

(
−εhomc

γφ3

)
− 1

]−1

. (2.54)

Other Approximations

Other approximations are made when one is before systems highly non-homogeneous (to which

both the LDA and GGA approximations do not work well), such as transition metal oxides and rare-earths.

Very simple types of approximations are the exact exchange functionals (EXX, for short), which come

from the Hartree-Fock theory, a general theory, not that from the electron gas case. Another example

is the functional LDA+U (the ‘U’ comes from the interaction term of the Hubbard model). Other class

of functionals rather known are those of the hybrid functionals, in which one include a fraction of the

exact exchange (the EXX functional of Hartree-Fock) and fractions of the exchange/corralation of local

functionals (LDA or GGA) on the final exchange-correlation functional. These functionals are built to

work in determined systems of interest, which even solve some DFT problems exactly, such as the energy

gap ones, providing more accurate results for beyond-DFT approaches for spectra of light absorption, for

instance.

2.3.2 DFT in practice: Solving the Kohn-Sham Equations

The potentials of the equations (2.39)–(2.42) depend on the density, which in turn depend on the

one-electron orbitals from the equation (2.30). But the potentials themselves depend on the solutions of

the one-electron orbitals equations. Thence, numerically, the equations must be solved in a self-consistent

way. At first, one starts with a reasonable “guess” on the density, from which the Kohn-Sham potential

is built. Afterward, one solves the KS equations to obtain a new set of one-electron wavefunctions, from

which both a new density and a new KS potential are built. So, the new potential enters as input for

the next step, and the cycle is repeated until the self-consistency is reached as explained below. This

procedure can schematically be represented as

7Wang, et. al [92] found that φ is the spin scale factor for the term |∇n|2/n4/3 of the expansion in terms of the spin

density gradient of the exchange energy. And also they perceived that it was a good approximation to the SSF for the

correlation energy.
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Vi → ni → Vi+1 → ni+1 → . . . (2.55)

where the labels represent iterations in self-consistent cycles. The self-consistency is reached when a

selected convergency parameter (either total energy or density, for instance) varies by less than a certain

threshold, which is the modulus of the difference between two consecutive steps. All the process is

ilustrated on the flowchart of the figure ??. At each step, the KS equations are solved using some based-

methods in standard linear algebra. There are many package available on the intertnet that can perform

such calculations. In our case, we have used a DFT-based package called QUANTUM ESPRESSO [43],

which uses plane-waves basis set and pseudopotential method to make calculations of electronic struture,

simulations, optimizations, among other properties. An important fact is that, to reach self-consistency,

the program makes use of mixtures of both input and output densities in order to build the potential

towards the next step, even using details from more than one previous step. Finally, after self-consistency

has been reached the ground-state energy is obtained, as well as all the other ground-state properties

that depend on it.

As we have seen, the original expression of the Kohn-Sham energy functional is given by the

equation (2.33), which hereby is written in other form to split up the potentials term:

EKS = Ts[n] + Epot[n]

Epot[n] =

∫
drVext(r)n(r) + EH [n] + Eion−ion + Exc[n]. (2.56)

The first three terms of the equation (2.56), added together, correspond the classical Coulomb interaction.

The kinetic energy then could be expressed as

Ts[n] = Es −
∑
σ

∫
drV σ,in(r)nout(r), (2.57)

where the superscripts in and out match to the input and output of both the potential and the density,

respectively, as ilustrated on the flowchart showed in the figure ??; and Es =
∑
σ

∑Nσ

i=1 ε
σ
i is the summation

of the KS eigenvalues that are given as

εσi = 〈φσi |Hσ
KS |φσi 〉. (2.58)
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Initial guess: n↑(r), n↓(r)

Calculate the effective potential V σKS(r)

Solve Kohn-Sham equation

Calculate new electron density: nσ(r)

Self-consistency?

Output quantities: Energy, forces, stress, eigenvalues, ...

yes

no

Figure 2.2: Flowchart for the solution of the self-consistent KS equations (credits for [78], figure 9.1).

The Hartree potential is usually determined by solving the Poisson equation in the either the

real or reciprocal space for a given density n(r) instead of the equation (2.41). Also one does not use

the equation (2.42) to find the solution for exchange-correlation potential. This subject has already been

discussed in the subsection 2.3.1. The remaining external potential, which is commonly obtained by the

pseudopotential method8, which will be discussed in the subsection 2.5. It should also be noted that,

although the KS energy is a density functional, nothing forecloses one could say that it is a functional

of the input potential, since it is it who determines all of the quantities of the equation (2.56), inasmuch

as also it determines the output density, whereas energy does not reach its global minimum. Therefore,

the solution of the KS equations are related to a potential V in = VKS , which minimizes the total energy,

and in turn the density nout = n0, which is the ground-state one.

8The KS equations are modified when treating the system under this external potential with this method. This is true

because this method is, in general, either non-local or semi-local.
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2.4 Numerical Methods

In this section we will discuss some numerical methods employed on the solution of the Kohn-

Sham equations for realistic systems in any one-particle problem according to the equation (2.39). In the

following four subsections, we will discuss both the wavefunction expansion and the one-particle equations

in a plane-waves basis, the usage of special k-points for integrations within the Brillouin Zone (BZ), the

application of the pseudopotential method for the electron-ion interaction, and, at last, we will talk about

the supercell usage to describe defective systems.

2.4.1 The One-Particle Problem in a Plane-Waves Basis

In a problem of crystalline solid, one needs that the wavefunctions are to be reasonably smooth,

so that it is convenient to expand them in a plane-waves basis9, such as

φi(r) =
1√
Ω

∑
q

ci,qe
iq.r ≡

∑
q

ci,q × |q〉, (2.59)

where Ω is the volume of the crystal in the reciprocal space, and ci,q are the coefficients of the expansion of

the wavefunctions on an orthonormal plane-waves basis {|q〉}. The plane waves are represented by their

wave vectors, |q〉. Taking the orthonormality relation into account, which is 〈q′|q〉 = 1
Ω

∫
Ω
dr exp(−iq′ ·

r) exp(iq · r) = δq′,q, and including the expansion (2.59) inside the equation (2.39), then multiplying it by

〈q′|r〉 = exp(−iq′.r)/
√

Ω), and, at last, integrating over all coordinate space, we get

∑
q

〈q′|Heff |q〉 = εi
∑

q

〈q′|q〉ci,q = εici,q′ , (2.60)

which is the Shrödinger equation in reciprocal space, or also in Fourier space. The matrix element of the

kinetic energy operator is

〈q′|T |q〉 =
1

Ω

∫
Ω

dr e−iq
′·r
(
− 1

2
∇2e

iqr)
−→ 1

2
q2δq,q′ , (2.61)

where we have used orthonormalization relation. The effective potential can be as well expressed in terms

of the Fourier components, for they can be periodic:

Veff (r) =
∑

G

Veff (G) eiG·r, (2.62)

wherein G are vectors in reciprocal space, which are defined below and visualized in the figure 2.3. We

still have the Fourier transform of Veff (r), with Ωcell being the volume of the primitive unit cell:

9Making usage the fact that any periodic function can be expanded in a complete set of Fourier components ( [78],

chapter 12).
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Veff (G) =
1

Ωcell

∫
Ωcell

drVeff (r) e−iG·r. (2.63)

Thus, with the orthonormalization relation, the matrix elements are given by

〈q′|Veff |q〉 =
∑

G

Veff (G)δq′−q,G. (2.64)

We have defined that q = k + G and q′ = k + G′, where G and G′ are translation vectors of the

lattice in reciprocal space, as the figure 2.3 illustrates.

Figure 2.3: Points of an arbitrary, square reciprocal lattice of size 2π/a. The grey region indicates the first Brillouin Zone,

in which the vector k is shown. The translation vectors of the reciprocal lattice, both G and G′, determines all the points

q and q′ of the reciprocal space.

In this sense, if the kinetic term is defined for G, then the Hamiltonian couples momentum components

that differ by G. Moreover, one should bear in mind that the difference between vectors q and q′ of

reciprocal lattice is also a vector of reciprocal lattice. Therefore, one obtains that

∑
G′

Hk+G,k+G′cn,k+G′ = εn,kcn,k+G, (2.65)

with

Hk+G,k+G′ = 〈k + G|Heff |k + G′〉 =
1

2
|k + G|2δG,G′ + Veff (G−G′). (2.66)

This is the final form of the one-particle equation in a plane-waves basis. The indexes n and k are

quantum numbers known as band index and crystal momentum, respectively. Concerning the latter,
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a remark ought to be done: it is not a ordinary momentum, for it obeys a discrete set of translation

symmetry of the crystal lattice, instead of the complete symmetry of the vacuum. In addition, it suffers

a less restrictive limitation as to the conservation law, because it is conserved over any addition of vector

of reciprocal lattice G.

Making usage of the coefficients cn,k+G inside the expasion (2.59), we are going to find that the

wavefunctions are labeled by indexes n and k, and the summation will only be limited to the vectors of

reciprocal lattice. Therefore, we have

φn,k(r) =
1√
Ω

∑
G

cn,k+Ge
i(k+G)·r =

1√
Ncell

eik·run,k(r), (2.67)

where Ncell is the number of unit cells in the crystal, and

un,k(r) =
1√
Ncell

∑
G

cn,k+Ge
iG·r. (2.68)

Equation (2.67) represents the famous Blöch’s theorem ( [77], chapter 8), which says that a wave-

function can be written as a product between a phase factor and a function with the lattice periodicity,

both defined by the quantum number k or, equivalently, φn,k(r + R) = exp(ik · R)φn,k(r), for any trans-

lation vector R. We can see, yet, from the equations (2.67) and (2.68) that φn,k+G(r) = φn,k(r). Thus,

both the energies and the Blöch’s wavefunctions are periodic functions in reciprocal space. In this sense,

we can limit ourselves to the analysis of a primitive unit cell of the reciprocal lattice.

An important parameter in numerical calulation is the cutoff energy Ec. Each expansion (2.67)

will have its own cutoff energy to yield efficient computations, as well as to provide wavefunctions as

smooth as possible. That parameter is defined as

Ec =
1

2
G2
max, (2.69)

whereGmax is the maximum magnitude from a family of same-size vectors related by symmetry operations

of the crystal point group. The purpose is to become the computation as smooth as possible, using

appropriate wavefunctions for that, so that to be possible to work with small Ec. This is even the

fundamental motivation for the usage of the pseudopotential method, which will be discussed in the

subsection 2.5.

All in all, the equations (2.65) and (2.66) are the core of the Kohn-Sham formalism in a plane-

waves basis set. There exist other alike expressions for the density, total energy, and related properties,

all of them in the reciprocal space (which are related to the wavefunctions expanded in this basis).

2.4.2 Special k-points for integration within the Brillouin Zone

Electronic structure calculations, including total energy, electronic density, density of states, etc,

occur commonly at provided estimates either on summation or on averages over the k-points within the
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Brillouin Zone (BZ). If it is so, it is essential the choice of wavefunctions that obey the Born-von Karman

conditions inside a large crystal volume made up by Nk cells. Thus, it must have exactly a value from k

for each cell. So, for a general function, fn(k), whose n means discrete set of states for each k, the mean

value per cell is

f̄n =
1

Nk

∑
k

fn(k). (2.70)

In the thermodynamic limit (infinity crystal), the discrete set of k-points turns into a continuum, and so

the summation becomes integrals:

1

Nk

∑
k

fn(k)→ Ωcell
(2π)d

∫
BZ

ddkfn(k), (2.71)

where Nk is the number of k-points within the BZ, and (2π)d/Ωcell is the BZ’s volume of d-dimensions.

If the integrand fn(k) is any periodic function in reciprocal space with vectors k, then we can expand it

in plane waves:

fn(k) =
∑

R

f̃n(R) eik·R, (2.72)

where R is the translation vector in real space, and whose coefficients are given by the Fourier transform

of fn(k):

f̃n(R) =
Ωcell
(2π)d

∫
BZ

ddk fn(k) e−ik·R, (2.73)

from which the equation (2.71) is recovered when R = 0.

In numerical calculations, as periodic functions are smooth, one should approximate the integrals

by summations over a suitable set of k-points appropriately chosen. The most normally used is the

Monkhorst-Pack (MP) special set of points, [93], a uniform set of points defined by10

kn1,n2,n3
=

3∑
i=1

2ni −Ni − 1

2Ni
bi, (2.74)

where {bi} are primitive vectors of the reciprocal lattice, and ni = 1, 2, . . . , Ni. The index i represents

directions in space at hand (either reciprocal or real space). One can glance, then, that that defines a

uniform grid of size NMP = N1×N2×N3, and still that it represents a reduced version of the reciprocal

lattice, with primitive vectors of bi/Ni sized on each direction. Ergo, if the grid size, Ni, on each

direction is large enough, such that the correspondent truncated expansion yields fn(k) to the desired

accuracy, then the integrals of this function within the BZ are precisely reproduced by the summations

over the k-points of the MP grid. In practice, we should test the convergence of the properties one seeks

10We have defined a tridimensional MP grid.
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(total energy, densities, etc) with respect to the grid size until obtaining the ideal size within the desired

accuracy, which varies from system to system.

From equation (2.73), making usage of the MP grid of the equation (2.74), one gets

f̃n(R) =
1

NMP

∑
n1,n2,n3

fn(kn1,n2,n3
)e−ikn1,n2,n3 ·R. (2.75)

Thus, we observe that a periodic function, (2.72), which contains Fourier components up to Niai in real

space, has its coefficients given exactly by the equation (2.75). Besides, the equation (2.74) represents

a reduced-scaled version of the reciprocal lattice, with lattice primitive vectors of size bi/Ni. Therefore,

the more Ni increases on each direction, the more the accuracy of fn(k) enhances, and the integration of

this function over the BZ can precisely be reproduced by summations over the k-points of the MP grid

(in other words, we have the equation (2.75) for R).

The symmetry issue is quite important, for if fn(k) is a scalar, then it is invariant by symmetry

operations of the crystal point group. There exist many terms in equation (2.75) that envelops a set

of k-point that are equivalents by symmetry for f̃n(0). We can gather these terms together, including

only one of those points of each set, ascribing to it only a weight ωk, which corresponds to the number

of distinguishable k-points related by symmetry groups on each set of k-points, normalized by the total

number of k-points. Hence, the integral of equation (2.71) is evaluated as

Ωcell
(2π)3

∫
BZ

d3kfn(k) = f̃n(0) ≈
IBZ∑

kn1,n2,n3

ωkn1,n2,n3
fn(kn1,n2,n3

), (2.76)

where, now, the summation is restricted to a piece of the BZ, which encompasses the k-point of the grid

that are not equivalent to the others by symmetry, lowering too much the computation cost. That piece is

known as Irreducible Brillouin Zone (IBZ). QUANTUM ESPRESSO has routines that are able to obtain

the MP grid within the IBZ for a given size of the grid along with the corresponding weights.

2.5 Pseudopotentials

Electrons and ions interact through the Coulomb potential. Although we can distinct core elec-

trons from valence electrons, only the latter ones matter for the chemical bonds, since the core electrons

have very little significance when it comes to properties of either molecules or solids. Bearing this in

mind, the idea of the pseudopotential method is to create a potential that takes into account both the

effective interaction of the valence electrons and the interactions that exist among the core electrons, and

also the interactions of the latter with the nucleus. That effective potential, or pseudopotential, replaces

the Coulomb potential in the Schrödinger equation, whose wavefunctions, also known as pseudo wave-

functions, are smooth (without nodes) for the valence electrons within the core region. These smooth

solutions for the valence electrons are suitable for numerical computation. The pseudo wavefunctions are
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built in such a way that they maintain the valence properties of all the electrons, which are relevant for

describing the bonding properties between atoms.

Pseudopotential methods make use of an effective pseudopotential that replaces the all-electrons

(AE) potential with a potential such that the core states are crossed off, and the valence ones are

described by nodeless pseudo functions. This is feasible because the core states remain themselves almost

unchanged. Ab-initio pseudopotentials are derived from a certain atomic state, requiring that the valence

eigenstates, both AE and pseudo ones, to be the same outside a chosen cutoff radius. That is illustrated

in the figure 2.4. The larger cutoff radius, rc, the smoother will be the pseudopotential. In other words, it

is going to converge more rapidly [94]. They can be generated from atomic calculations and, then, used to

compute properties of valence electrons in both molecules or solids. Thus, one may build pseudopotentials

that simplify as far as possible both the computation and the interpretation of the outcomes of electronic

structure.

There are a big variety of sofisticated pseudopotentials. In spite of that, in our calculations, we

have mainly resorted to two types: USPP (Ultrasoft Pseudopotential), introduced by Blöchl [95] and

Vanderbilt [96], and also the PAW (Projected Augmented Waves) one [94,97,98]. These methods enable

performing computations more efficiently by transforming the rapidly oscillating wavefunctions close to

the core, computing integrals as combinations of integrals of smooth wavefunctions extending all over the

space, along with localized contributions, which are computed by radial integration. In the following,

we are going to discuss in detail these methods and their relevance to our research, whose fundamentals

originated from the OPW (Orthogonalized Plane Wave) method, [99], and from the conditions hystorically

imposed by norm-conserving pseudopotentials (NCPP) [100]. More on these methods can be found in

the appendices A and B, respectively.

2.5.1 Ultrasoft Pseudopotential (USPP)

As we had ever seen, in addition to the requirement in creating smooth pseudopotentials, they

also needed to be accurate and transferable. As plane-waves-based calculations need Fourier components

to describe valence wavefunctions, the computational cost scales as a power of the number of required

components. Thus, it would be necessary to maximize “smoothness” whereas minimizing the range of

the Fourier space down to a specific accuracy. The latter criterium can be achieved by norm-conserving

pseudopotential [100], which is also the startpoint concerning transferability: a pseudopotential con-

structed in any environment (usually an atom) can faithfully describe the valence properties of atoms,

ions, molecules, and condensed matter in different environment [78]11.

The ultrasoft pseudopotential comes into play in trying to solve the accuracy problem. The aim

is to re-express the problem in terms of a smooth function and an auxiliary function around each ion

core that represents the rapidly varying part of the density ( [78], page 222). This pseudopotentials are

formaly related to both the OPW equations [99] and the PKA approach [101–103], and are focused upon

11Although some errors may occur, this is an excellent approximation for a small, deep core. When it comes to shallow

cores, high accuracy is required otherwise this can be the source of the errors.
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states that represent great difficulties to be created as smooth as accurate by the OPW, namely the 1s,

2p, 3d, and other states for which the OPW transformation has no effect since there is no core state for

the same angular momentum.

An extent of norm-conserving beyond the linear regime is important to be followed, since it

spreads the energy range of the original all-electron potential. This is the basis for further generalizations

over future pseudopotentials generations. At any energy εs, the construction of the projectors can be

done in order to satisfy the Schrödinger equation at more than one energy for a given (l,m) [95, 104].

Matrices Bs,s′ = 〈ψs|χs′〉 can be formed at any energies εs if pseudofunctions ψs are constructed from

all-electrons calculations12. Therefore, a generalized non-local potential operator can be written as

δV̂NL =
∑
lm

∑
s,s′

Bs,s′ |βs〉〈βs′ |


lm

, (2.77)

where χs are defined in (B.22), and βs =
∑
s′ B

−1
s,s′χs′ . And, naturally, ψs is solution of Ĥψs = εsψs.

With such a modification, the non-local separable pseudopotential can be now generalized, so that it will

agree with the all-electron calculations for any accuracy over any energy range.

Then, Blöchl [95] and Vanderbilt [104] rewrote the non-local potential (2.77) in a form involving

a smooth function φ̃ = rψ̃ that is not norm-conserving. From the norm-conserving function, φ = rψ, one

can calculate the difference in the norm equation (B.4) by

∆Qs,s′ =

∫ Rc

0

∆Qs,s′(r), (2.78)

where

∆Qs,s′(r) = φ∗s(r)φs′(r)− φ̃∗s(r)φ̃s′(r), (2.79)

which is a constraint in norm-conserving condition.

To relax this constraint, which means that the equation (2.79) is non-null, means that each

all-electron wavefunction can be made into a smooth pseudo-wavefunction, ψ̃s, with the only constraint

being the matching of ψ̃(Rc) = ψ(Rc) at the cutoff radius Rc [104]. This enables to choose the cutoff far

beyond the radial wavefunction maximum. Thus, a new non-local potential that operates on ψ̃s′ can now

be defined as

δV̂ USNL =
∑
s,s′

Ds,s′ |βs〉〈βs′ |, (2.80)

where

Ds,s′ = Bs,s′ + εs′∆Qs,s′ . (2.81)

12From now on, the superscripts PS and σ, and the subscripts l,m will be omitted for simplicity.
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Thus, for each reference atomic state s, the smooth functions ψ̃s are solution of the generalized eigenvalue

problem:

[
Ĥ − εsŜ

]
ψ̃s = 0, (2.82)

with Ĥ = − 1
2∇

2 + Vlocal + δV̂ USNL , and Ŝ is an overlap operator:

Ŝ = 1̂ +
∑
s,s′

∆Qs,s′ |βs〉〈βs′ |, (2.83)

which is non-unitary except only inside the core region. The eigenvalues εs agree with the all-electron

calculations for each s. Thus, it is possible to choose Rc much large than that of the norm-conserving

pseudopotential to reache the desired accuracy by adding both the functions ∆Qs,s′(r) and overlap

operator Ŝ.

In calculations using ultrasolf pseudopotential, the smooth functions, ψ̃i(r), have the following

orthonormalization condition:

〈ψ̃i|Ŝ|ψ̃i′〉 = δi,i′ . (2.84)

The valence density is defined as

nv(r) =

occ∑
i

ψ̃∗i (r)ψ̃i′(r) +
∑
s,s′

ρs,s′∆Qs,s′(r), (2.85)

where

ρs,s′ =

occ∑
i

〈ψ̃i|βs′〉〈βs|ψ̃i〉, (2.86)

to compensate the charge shortfall, and whose integral gives the number of valence electrons in the unit

cell.

Through the variational theory, the solution is found by minimizing the total energy:

Etotal =

occ∑
i

〈ψ̃i|−
1

2
∇2 +V ionlocal+

∑
s,s′

Dion
s,s′ |βs〉〈βs′ ||ψ̃i〉+EHartree [nv]+Eion−ion+Exc [nv + nc] , (2.87)

with the normalization condition given by (2.84)13, and nc is the frozen-core density included to improve

transferability [104,105].

13Also, a non-linear core correction in Exc can be added, as can be done in other methods
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The generalized eigenvalue problem can be achieved by defining the “unscreening” bare ion pseu-

dopotential as V ionlocal ≡ Vlocal − VHxc, where VHxc = VH + Vxc, and similarly Dion
s,s′ ≡ Ds,s′ − DHxc

s,s′ ,

with

DHxc
s,s′ =

∫
drVHxc(r) ∆Qs,s′(r), (2.88)

whereby we get to

[
−1

2
∇2 + Vlocal + δV̂ USNL − εiŜ

]
ψ̃i = 0, (2.89)

where δV̂ USNL is given by the sum over ions of (2.80).

2.5.2 Projected Augmented Waves (PAW) Method

This method was developed in the 1990’s [94,97,98], but here we will stick together the reference

[94] in order to sketch the basic idea of the PAW method for an atom. Later, we will discuss the

developments for molecules and solids.

The PAW method reformulates the OPW method, using, like the ultrasoft one, projectors and

auxiliary localized functions in order to calculate energy, forces, and stress. It is also an approach to

efficiently solve the generalized eigenvalue problem in (2.89). Since the PAW approach keeps the full all-

electron wavefunction similarly to OPW-like basis functions (refer to equation (A.1)), and that it varies

rapidly near the nucleus, all integrals are evaluated as a combination of integrals of smooth functions

extending thoughout the space, along with localized contributions, evaluated by radial intergation. As

in the OPW formulation, one can define a smooth part of a valence wavefunction, ψ̃vi (r)14, and a linear

transformation, ψv = T ψ̃v, which relates the set of all-electron valence functions, ψvj (r), to the smooth

functions ψ̃vi (r). Henceforward, we will assume the ψ’s are all valence states, omitting the labels v, i, and

j.

The mentioned tranformation is assumed to be unitary, except on a sphere centered on the

nucleus, namely T = 1 + T0. In the Dirac notation, within each sphere called augmentation region ΩR,

the expantion of the smooth function |ψ̃〉 in plane waves m can be written as

|ψ̃〉 =
∑
m

cm|ψ̃m〉, within ΩR, (2.90)

with the corresponding all-electron function

|ψ〉 = T |ψ̃〉 =
∑
m

cm|ψm〉. (2.91)

14It can be a plane wave (equation (A.1)) or an atomic orbital (as in (A.4)).
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Thus, doing the proper substitution, the full wavefunction in all space would be

|ψ〉 = |ψ̃〉+
∑
m

cm

{
|ψm〉 − |ψ̃〉

}
, (2.92)

with the same form as the equations (A.4) and (A.8).

The coefficients must be defined as an inner product on each sphere with projector functions

|p̃m〉. Since T is a linear transformation:

cm = 〈p̃m|ψ̃〉, (2.93)

The core-center expansion
∑
m |ψ̃m〉〈p̃m|ψ̃〉 equals itself if the projection operator satisfy the biorthogo-

nality condition:

〈p̃m|ψ̃m′〉 = δm,m′ . (2.94)

This biorthogonalization means that the projectors and the smooth wavefunctions are laid on different

Hilbert spaces.

Thus, the full all-electron wavefunctions is comprised into the transformation T as

T = 1 +
∑
m

{
|ψm〉 − |ψ̃m〉

}
〈p̃m|, (2.95)

such that it can be equally applied to both the core and the valence states. So, to set things forth properly,

the transformation T is established by three quantities:

1. A set of all-electron partial functions, |ψm〉.

2. A set of partial pseudo-wavefunctions, |ψ̃m〉.

3. A set of projector functions, |p̃m〉.

There are many possible choices for the projectors, but the most important is that the transformation T

involves all-electron wavefunctions. Besides, outside the region ΩR the partial pseudo-wavefuntion are the

same as partial all-electron wavefunction, as one can see in the figure 2.4. Inside the sphere, in turn, they

can be any continuous, smooth function, such as a linear combination of polynomial or Bessel functions.
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Figure 2.4: Schematic comparison between the wavefunction under the Coulomb potential (blue dashed curve) and under

the pseudopotential (red curve). From the chosen cutoff radius, both the full and pseudo wavefunctions, and potentials

match themselves up.

For any all-electron operator Â, the equations in PAW method can work as transformations onto

Â so that the resulted operator Ã operates on the smooth part of the wavefunctions:

Ã = T †ÂT = Â+
∑
mm′

|p̃m〉
{
〈ψm|Â|ψm′〉 − 〈ψ̃m|Â|ψ̃m′〉

}
〈p̃m′ |, (2.96)

which is similar to the separable form (B.19). The total energy, for instance, can be evaluated directly

as a functional of the pseudo-wavefunctions, whose modified Kohn-Sham equation can be read as

T †ĤT |ψ̃i〉 = εiT †T |ψ̃i〉. (2.97)

In addition, there is an additional degree of freedom to add a term of the form:

B̂ −
∑
mm′

|p̃m〉〈ψ̃m|B̂|ψ̃m′〉〈p̃m′ |, (2.98)

to the right side of (2.96) with no change in the expectation value15. This freedom is justified when

the operator Â cannot be easily evaluated in a plane-wave expansion. For example, one can remove the

Coulomb singularity at the nucleus site for the smooth function, leaving a term that can be dealt with the

radial equations about the nucleus, which is less sensitive to a truncation of the number of plane waves.

15B̂ is an arbitrary operator that is localized within the augmentation region.
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Physical quantities in the PAW approach are structured from equations (2.95) and (2.96). The

density, for instance, which is the expectation value of the real-space projector operator |r〉〈r|, is given

by

n(r) = ñ(r) + n1(r)− ñ1(r), (2.99)

which can be written in terms of eigenstates labels i with occupations fi as

ñ(r) =
∑
i

fi|ψ̃i(r)|2, (2.100)

n1(r) =
∑
i

fi
∑
mm′

〈ψ̃i|ψ̃m〉ψ∗m(r)ψm′(r)〈ψ̃m′ |ψ̃i〉, (2.101)

and

ñ1(r) =
∑
i

fi
∑
mm′

〈ψ̃i|ψ̃m〉ψ̃∗m(r)ψ̃m′(r)〈ψ̃m′ |ψ̃i〉. (2.102)

These last two terms are localized around each atom, so that the integrals can be done in spherical

coordinates.

Therefore, we can see that many aspects of the calculations are identical to pseudopotential

calculation. However, since the localized functions keep all the informations on the core states, such as

the OPW method, and are rapidly varying around them, augmentation regions around each nucleus help

the integration within each sphere in spherical coordinates. That linear transfomation of the all-electron

valence functions ψv, defined in the second paragraph of this subsection, is assumed to be a sum of non-

overlapping atom-centered contribution T = 1 +
∑

R TR, each localized on a sphere denoted ΩR. Using

the same definitions for smooth wavefunctions and all-electron wavefunction as the equations (2.90) and

(2.91), respectively, but now with expansions in spherical harmonics inside each sphere, one has:

|ψ〉 = |ψ̃〉+
∑
Rm

cRm

{
|ψRm〉 − |ψ̃Rm〉

}
. (2.103)

The biorthogonal projectors, 〈p̃Rm| in each sphere are the same as in (2.94) since the spheres are non-

overlapped.

Still, it is particularly importate to have the PAW form of the total energy. Following [97], the

exact Kohn-Sham density functional is

Etotal =
∑
i

fi〈ψi| −
1

2
∇|ψi〉+ EH [n+ nZ ] + Exc[n], (2.104)
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where EH [n+ nZ ] is the Hartree energy of the electronic charge density n and the point charge densities

of the nuclei nZ , Exc[n] is the electronic exchange-correlation energy, and fi are the orbital occupation

numbers. Also, now, the index i is a shorthand for the atomic site R and the angular momentum (l,m).

As one can see, the total energy can be split up into three terms:

Etotal = Ẽtotal + E1
total − Ẽ1

total, (2.105)

where, usign the definitions (2.92) and (2.93), and the densities (2.99)–(2.102),

Ẽtotal =
∑
i

fi〈ψ̃i|−
1

2
∇|ψ̃i〉+Exc[ñ+n̂+ñc]+EH [ñ+n̂]+

∫
vH [ñZc ]

[
ñ(r)+n̂(r)

]
dr+U(R, Zion), (2.106)

Ẽ1
total =

∑
m,m′

ρmm′〈ψ̃m| −
1

2
∇|ψ̃m′〉+ Exc[ñ1 + n̂+ ñc] + EH [ñ1 + n̂] +

∫
ΩR

vH [ñZc ]
{
ñ1(r) + ˆn(r)

}
dr,

(2.107)

E1
total =

∑
m,m′

ρmm′ 〈ψm| −
1

2
∇|ψm′〉+ Exc[n1 + nc] + EH [n1] +

∫
ΩR

vH [ñZc ]n
1(r)dr. (2.108)

where ρmm′ are the occupancies of each augmentation channel (m,m′) at each site, and they are calculated

from the pseudo-wavefunctions applying the projector functions:

ρmm′ =
∑
i

fi〈ψ̃i|p̃m〉〈p̃m′ |ψ̃i〉. (2.109)

Also, nZc = nZ + nc, where nZ is the point charge density of the nuclei, and nc is the frozen core

all-electron charge density. The electrostatic potential, vH , which is a density functional, is given by

vH [n](r) =

∫
n(r′)

|r− r′|
dr′, (2.110)

whose electrostatic energy is

EH [n] =
1

2

∫
dr

∫
dr′

n(r)n(r′)

|r− r′|
. (2.111)

2.6 Supercell Approximation

In perfect crystal systems, to construct the unit cell, we need to provide both the Bravais lattice

and the atomic positions (and/or an atomic basis). Respecting the periodic boundary conditions (PBC),
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the crystal is generated by repetitions of the unit cell towards all crystallographic directions. We have

made use of both the free software XCRYSDEN [106], which stands for X-windown CRYstalline Structures

and DENsities, and also the free program Avogadro [107], which are softwares appointed to visualize

crystalline and molecular structures, as well as isosurfaces and contourn on the unit cell, and to edit,

design and modeling systems, respectively.

The question that arises is: How can we describe non-periodic systems? Such systems can be

regarded to “mimic” real, nearly natural systems, for example, defective systems, nanoribbons, problems

between interfaces, oxidation “processes”, among others. In our case, our defective system is a simulation

of a core-hole deep inside an atom. So, to address this system we need to use the supercell approximation,

which means that instead of using a bare, pristine unit cell, we will work on a larger unit cell, so that

the atom with a core-hole stands about 7.6 Å from their images. Thus, this suppercell is replicated in

all other directions so that if the cell size is large enough, then the interactions between defective atoms

from neighboring cells could be neglected.

(a)

(b)

Figure 2.5: (a): Diamondol supercell with core-hole carbon atom hilighted (green sphere). The hydroxyl groups found

themselves bonded to carbon atoms forming dangling bonds. (b): Repetition of the supercell on its in-plane directions,

which must represent a real system fairly enough. Each highlighted carbon atom is about 7.6 Å away from the image of

the first neighbor. Hydrogen, oxygen, and carbon atoms, except for the core-hole one, are colored as blue, red, and yellow

spheres.

Although this is an approximation for studying of both physical and chemical properties of

systems, we can think of it as an idealization of what occurs in nature when a high-energy beam shines

on a material, for instance. Also, if we think of an exfoliation process, the exfoliated material probably

will present a few type of defects in it. Another important consideration concerns the vacuum region.
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This “empty” space avoids charge transfer between the surface and its image, which could generate a

non-physical electric field inside. Figure 2.5(a) shows a diamondol supercell with a core-hole carbon atom

(highlighted) bonded to the hydroxyl group. The figure 2.5(b), in turn, pictures us this supercell repeated

on its in-plane directions. The figure 2.6 pictures the mentioned vacuum region.

Taking into account these considerations, it is worth to make an important remark. Since we are

dealing with larger cells than those pristine ones, it is to be expected that the corresponding Brillouin

Zones are smaller. That leads to the folding process, and it works for any system symmetry. This is

useful, for example, to understand the band structure of a supercell with a particular type of defect in a

simpler BZ.

Figure 2.6: Periodicity of the supercell on the direction perpendicular to the surface of the material. The uppermost hydrogen

atoms are about 20 Å away from the most lower carbon atom in the neighbor image.



Chapter 3

X-Ray Absorption Spectroscopy

When an electromagnetic ray is absorbed by some material, either in solid or in gasoseous states,

or even in liquid state, an energy transfer may occur implying physical, chemical or biological modification.

In fact, this kind of information can be used to probe materials. Depending on the type and the thickness

of the material, and also, surely, both on the ray energy and on its polarization, absorption will (or will

not) be stronger. The photon in the X-ray spectrum can have wavelengths from 0.03 to 3 nanometers,

which corresponds to energy range from 100 eV to 200 keV. More specifically, we can subdivide it into

two categories: the hard X-rays (below 0.2–0.1 nm, and above 5–10 keV), and those with lower energy

and longer wavelengths, which are called soft X-rays [108]. It turns out that when such a photon is

absorbed by an atom, there can be a transition of a core electron up to some level, occupying a free

orbital or, even, a continuum state [36]. This core electron in this process is now called photoelectron.

As this phenomenon is local and centered around an absorbing atom and possibly depending on its close

sorroundings, the corresponding spectroscopy can be applied to any kind of samples, whether ordered or

unordered [36].

The study of X-ray absorption versus X-ray energy is named X-Ray Absorption Spectroscopy

(XAS). A sudden increase in the absorption probability at a given energy value is called absorption edge,

which may chiefly depend on the atomic number of the absorbing atom. Spectra, in general, can cover

thousands of electron volts. Focusing on the part of a spectrum at energies larger than 30–50 eV above

the edge means that one is making an Extended X-Ray Absorption Fine Structure (EXAFS) study. In

this case, the photoelectron has been cast to a free or continuum state. Its analysis depends on the atomic

arrangement and does not rely on the chemical bondings between the absorber and its neighbors, thus

providing information about the coordination number, interatomic distances, and structural information,

being a powerful tool for structural analysis [109]. The region in the lowest part of the spectra, typically

the first 50 electron volts, is known as X-Ray Absorption Near Edge Structure (XANES) or Near-Edge X-

Ray Absorption Fine Structure (NEXAFS). It has a complicated shape as it is sensitive to chemical bonds,

exhibiting, for instance, characteristic features for different oxidation states of the absorbing atom [109],

for the photoelectron is promoted to unoccupied bound states. Often, theoretical analysis are compared

to the experimental ones in order to study different phases of a crystal, for example. The figures 3.1(a)
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and 3.1(b) are a small portrait of this phonomenon.

(a) (b)

Figure 3.1: (a) A representation scheme of the absorption process. The labels E1, E2, etc, on the right-hand side of the

figure are the energy levels the electrons are occupying. The Fermi level is not shown here. (b) Absorption coefficient µ(E)

or absorption probability, as written in the text, as a function of the photon energy E. It is also shown the edge (prominent

peak), followed by the fine structure regions. Figures extracted from [109], chapter 1.

Being so, we would like to concentrate our efforts on understanding the latter of these two

regions of the spectra. As one can notice, the part of the spectrum are very close to the other one, so

that the EXAFS theory can be seen as an approximation of the XANES formulation [36]. Thus, the

next section will explain the X-ray absorption phenomenon. Subsequently, we will go over the basics of

quantum mechanics along with the derivation of the absorption cross-section expression. Thereafter, we

will discuss the implementation in DFT, which encompass some techniques [39, 41, 110], along with the

GIPAW [111] method, Lanczos method [112], and the recursion method [113–115].

3.1 The X-Ray Absorption Phenomena

Consider the figure 3.2(a) below. Let the sample be a homogeneous isotropic material of thickness

t, over which someone launches a X-ray beam of intensity I0 and energy E. The transmitted beam

intensity It obbeys the Beer-Lamber law, ln (I0/It) = µ(E)t, and decrease exponentially as

It = I0e
−µ(E)t, (3.1)

where µ(E) is the energy-dependent absorption coefficient. For a crystalline solid, it is related to the

absorption cross-section, σi, of the n different chemical elements of the unit cell:

µ(E) =
1

V

n∑
i

σi, (3.2)

where V is the volume of the unit cell.

,
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The energy dependence of the photoelectron absorption cross-section for the interaction of X-rays

with a gold foil can be seen in figure 3.2(b). There are three peaks: L1, L2, and L3. These ridges represent

the edges of the element that composes the foil. Each peak has nearby oscillations, which have copious

information on the vicinity of the absorbing atoms. On the label edges, the letter refers to the principal

quantum number n, where the core electron initially is. So, K, L, M, N, O mean n = 1, 2, 3, 4, 5,

respectively. The subscript of each edge reads as follows: the index 1 is for ` = 0; it is 2 or 3 for ` = 1,

and finally, 4 and 5 for ` = 2. The K-edge has energy from 13.6 eV in Hydrogen up to 115.6 keV in

Uranium. For ` > 1, the edges are split into two because of the high spin-orbit effect in core states [36].

Sometimes one can observe shifts in the signature of a chemical specie. This is related to the chemical

environment in which the absorbent is. The more the oxidation increases, the more the edge tends to

shift toward higher energy up to some electron volts. That is important to check the valence state of the

atom.

(a) (b)

Figure 3.2: (a) A rough demonstration of the t-thickness sample shined by an incident X-ray beam of intensity I0. The

transmitted intensity It is also shown. Credits to [109] (found on page 3). (b) Experimental results by [116] of XAS of

Au metallic foil. The huge increase in the absorption cross-section reveals a specific value of the chemical element of the

sample. This is the edge. Note that the L3 edge is about two times higher than the L2 edge. Figure obtained from [36],

chapter 4.

3.2 X-Ray Absorption Cross-Section

In non-relativistic quantum theory in the one-electron framework, a particle with charge q, mass

m, gyromagnetic factor g (≈ 2 for electrons) and spin s under a potential V (r), submitted to an external

electromagnetic field (Φ(r, t),A(r, t)) is described by the Hamiltonian1

H =
1

2m
[−i~∇− qA]

2
+ V (r) + qΦ−

( gq
2m

)
s ·B, (3.3)

1To keep consistence with the reference [40], we will use SI units, differently of the chapter 2.
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H = H0 +

(
i~q
m

)
A ·∇+

(
i~q
2m

)
(∇ ·A) +

(
q2

2m

)
A2 + qΦ−

( gq
2m

)
s ·B, (3.4)

where

H0 = −
(

~2

2m

)
∇2 + V (r). (3.5)

Considering the exciting electromagnetic field as a plane wave in the Coulomb gauge, Φ = 0 and

∇·A = 02. Thus, ∇ and A can be considered as commutating operators. Besides, the term ∝ A2 is too

small for the available X-ray sources [40]. If I0(ω) = (1/2)ε0cA
2ω2 is the intensity of a monochromatic

X-ray coming from the source, then the ratio of the quadratic term over the linear one is

∣∣∣∣ q2A2/2m

~qA ·∇/m

∣∣∣∣ ∼ |qa0A|
2~

=

(√
I0(ω)

ω

)
a0

√
2πα

~
, (3.6)

where the electron momentum, |i~∇| is approximated by ~/a0, where a0 is the Bohr radius. In fact, it

was shown in 1984 [117] that a flux of 108 photons per second at 9 keV within a 6 mm2 beam spot, so

that I0(ω) ' 2.4× 10−2W m−2 and ω ' 1.4× 1019 s−1, yields a ratio of about 10−14. It is rather small

so the quadratic term can be neglected.

Therefore, we are left with

H = H0 +

(
i~q
m

A ·∇− gq

2m
s ·B

)
. (3.7)

The incident plane wave can be written as

A(r, t) = A0ε̂e
[i(k·r−ωt)] +A0ε̂

∗e[−i(k·r−ωt)] (3.8)

where ε̂ is the polarization vector, k is the X-ray wavevector, and
√

2A0 the vector potential ampli-

tute. According to time-dependent perturbation theory, the transition probability per unit of time for a

harmonic perturbation W (t), as that of the equation (3.8), is [118]

w =
2π

~
∑
f

|〈f |W |i〉|2 δ(Ef − Ei − ~ω). (3.9)

Since we have B =∇×A, then

w =

(
2πq2|A0|2

~m2

)∑
f

∣∣∣〈f |ei(k·r) {~ε̂ ·∇− (g/2)s · (k× ε̂)} |i〉
∣∣∣2 × δ(Ef − Ei − ~ω). (3.10)

2You may refer to the appendix C to brush up on this topic.
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The absorption cross-section σ(ω) is defined as the ratio of the rate at which energy is removed

from the photon beam by the the photoelectric effect (w~ω), divided by the rate at which energy in the

photon beam crosses a unit area perpendicular to its propagation direction:

I(ω) = 2ε0c|A0|2ω2. (3.11)

Therefore,

σ(ω) =

(
4π2~α
m2ω

) ∑
f

∣∣∣〈f |ei(k·r) {~ε̂ ·∇− (g/2)s · (k× ε̂)} |i〉
∣∣∣2 × δ(Ef − Ei − ~ω), (3.12)

where α = q2/2ε0hc = 1
137 is the fine structure constant. The sum over electrons coordinates and spins

is tacit since both |i〉 and |f〉 are many-electron wavefunctions.

Since the deepest electronic level is located in the 1s orbital of an atom with effective atomic

number Zeff , the mean radius of this orbital is a0/Zeff . So, as the wavelength of the radiation field

is far longer than the atomic dimension [119], a fair description of core-level absorption is given by the

first terms of the multipole expansion of the term exp [i(k · r)] in equation 3.12. Thus, the transition

amplitude with electric dipole, electric quadrupole, and magnetic dipole contibutions is given through

the Taylor expansion around k · r ∼ 0:

exp [i(k · r)] ' 1 + ik · r + · · · . (3.13)

One can see that, using the equation of motion of p

p = −i~∇ =
m

i~
[r, H0] , (3.14)

by putting the equation (3.13) in the equation (3.12), the electric dipole matrix elements is

〈f |~ε̂ ·∇|i〉 = −
[
m(Ef − Ei)

~

]
〈f |ε̂ ·∇|i〉. (3.15)

Needless to say that both |i〉 and |f〉 have to be exact wavefunctions.

Using the following identity [120]:

~(k · r)(ε̂ ·∇) =
m

2~
[(ε̂ · r)(k · r), H0] +

i

2
(k× ε̂) · L, (3.16)

where L is the angular momentum operator, the transition amplitude for the electric quadrupole term

can be obtained. With those terms, the matrix element in (3.12) becomes
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−
[
m(Ef − Ei)

~

]
〈f |ε̂ · r|i〉 − i

[
m(Ef − Ei)

2~

]
〈f |(ε̂ · r)(k · r)|i〉 − 1

2
〈f |(k× ε̂) · (L + gs)|i〉, (3.17)

where the first, second, and third terms are the electric dipole, electric quadrupole, and the magnetic

dipole transition amplitudes, respectively.

Some aspects of the magnetic dipole term should be accounted for. First of all, it does not have

a radial variable, so that if the radial part of the initial and final states are orthogonal, those matrix

elements vanish. Secondly, the selection rule for one-electron magnetic dipole transitions, within an atom

with spin-orbit (L−S) coupling, are |∆j| 6 0, ∆l = 0, ∆s = 0, and, ∆n = 0. This means that magnetic

dipole absorption occurs at low energies, which means that it would be necessary that the initial and the

final states could have a appreciable L-S interaction. However, even if it occurred, it would be neglected

because of the large energy differences between the initial and the final states (∼ 1 keV ). Taking the

one-electron initial state as centered on the absorbing atom, 〈r|i〉 = 〈r|nlm〉, it does not overlap the states

of alike eigenenergies of the neighboring atoms. Also, because these states corresponding to core-level

states, all the states corresponding to all values of m are occupied, and the final states |f〉 are orthogonal

to |nlm〉 for all m. Then, since L|nlm〉 are a linear combination of |nlm−1〉, |nlm〉, and |nlm+1〉, which

are orthogonal to |f〉, the terms 〈f |(k × ε̂) · L|i〉 = (k × ε̂) · 〈f |L|nlm〉 = 0. At last, magnetic dipole

trasitions can occur for heavy atoms because ∆n = 0 can be broken due to relativistic effects [121,122]. In

case of hafnium (Z=32) [123,124], from the absorption cross-section in the K- and L1-edges, a changing

of the electric dipole density of 5 × 10−4Ryd−1 and 10−3Ryd−1 are obtained, respectively. Also the

ratio between the magnetic and electric dipoles for hafnium K- and L1-edges are 2 × 10−4 and 10−5,

respectively. Therefore, the magnetic dipole contributions can be neglected, even if relativistic effects are

taken into account.

According to foregoing exposed, only the electric and the quadrupole dipoles will contribute to

the X-ray absorption spectra. Hence, the absorption cross-section will be

σ(ω) = 4π2α~ω
∑
f

{
|〈f |ε̂ · r|i〉|2 + (1/4) |〈f |(ε̂ · r)(k · r)|i〉|2

}
δ(Ef − Ei − ~ω). (3.18)

3.3 Ab-initio Calculation of XANES into a Pseudopotential Scheme

Once someone prepares a XAS experiment and obtains its results, they need to theoretically

understand the spectral features of the outcomes. Before we discuss the methodological aspects of the

XANES calculations, we would like to sketch the pratical way someone can perform such calculation.

According to the user guide of the XSpectra [125], a code of the integrated suite Quantum Espresso [43]

we used, to simulate core-effects, a pseudopotential for the photo-absorbing atom (considered as an

impurity) with a hole in the core state needs to be generated. Afterwards, this atom is included in a
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sufficient large supercell. As one can see from equation (3.18), the core states, |i〉, need to be a fully all-

electron wavefunction. For that, the code uses GIPAW reconstruction of the absorbing atom under the

electromagnetic field in order to provide the pseudopotential with those informations. XSpectra program

can calculate electric dipole and quadrupole contribution for the spectra since one gets the charge density

of the system. The spectrum is calculated using the recursion method as a continued fraction by the

Lanczos method.

The choice of the method used to solve the Schrödinger equation for the initial and final states

depends on the localized or delocalized character of the final state [39]. For strong electron-electron

interaction, or that former type of final states, crystal field multiplet theory is needed (L2,3 edges of

transition metals and M4,5 edges of rare earth). On the other side, for the latter type (K and L1 edges),

single-electron approach based on DFT is enough and commonly employed. Regarding single-electron

methods, there are the cluster (real-space) approach and the band-structure (reciprocal-space) approach.

The first one [126] is very time-consuming for clusters with up to 50 atoms, plus it is not a first principle

approach. Considering the band-structure calculations, local projected density of empty states (LDOS)

have been used to interpret XANES spectra [127–129]. Besides this method, there is also another method

by Shirley [130], and Soininen and Shirley [131], which incorporate the core-hole interactions in the

two-particle Bethe-Salpeter equation (BSE), which is a first principle technique. Nonetheless, in our

case (K-edge XANES) the core-hole is frozen at one atomic site, so that the one-particle approach would

suffice [39]. Moreover, that method only gives a description of the pre-edge region of the XAS spectra [41].

Bearing that in mind, the real issue now lives in the diagonalization of the Hamiltonian, which is limited

by the computational cost of the calculation of several empty states for each k-point within the Brillouin

zone. The way-out for that nuisance as pointed in [39] (whose work we will follow up next) is to use

the recursion method devised by Haydock, Heine, and Kelly [113, 114, 132], which causes the XANES

calculation time for large systems (supercell) rather smaller than the self-consistent charge density one.

3.3.1 PAW Formalism for XANES Calculation in the Impurity Model

To begin this discussion, the equation (3.18), and following [39], will be rewritten as

σ(ω) = 4π2α~ω
∑
f

|Mi→f |2 δ(Ef − Ei − ~ω), (3.19)

where ~ω is the incident photon energy, and Mi is the transition amplitude between the initial core state

|ψi〉 with energy Ei at the absorbing atom site R0, and an all-electron final state |ψf 〉 with energy Ef ,

which is

Mi→f = 〈ψf |O|ψi〉, (3.20)

where O = ε̂ · r [1 + (i/2)k · r]. These two terms here are the electric dipole and the electric quadrupole,
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respectively. Also |ψi〉 is a core-state that can be obtained from an all-electron ground-state atomic

calculation. In fact, it is the state where there is no electronic core-hole in any atom of the system. The

|ψf 〉, in turn, is an excited empty state, solution of the Schrödinger equation for a potential that includes

a core-hole on the absorbing atom [39], which is achieved in the framework of the PAW method.

In the section 2.5.2, we elaborated on PAW formalism. Here, we will only remind you about its

essential aspects in order to better express Mi→f . We can recall that the final state all-electron function

|ψf 〉 are related to the final pseudo wave functions |ψ̃f 〉 through

|ψf 〉 = T |ψ̃f 〉, (3.21)

where

T = 1 +
∑
R,n

[
|φR,n〉 − |φ̃R,n〉

]
〈p̃R,n|, (3.22)

and is equal to identity only outside the augmentation region ΩR centered at each atom site R. |φR,n〉

and |φ̃R,n〉 are all-electron and pseudo partial waves, respectively. They are the same outside the re-

gion ΩR. The projector functions 〈p̃R,n| are null outside ΩR and satisfies the orthonormality condition

〈p̃R,n|φ̃R′,n′〉 = δR,R′δn,n′ . Inside ΩR, |φR,n〉 form a complete basis for any all-electron wavefunction, so

do |φ̃R,n〉 also form a complete basis for pseudowave functions |ψ̃〉, that is to say, for any 〈r|χR〉 centered

at R and null outside ΩR:

∑
n

〈ψ̃|p̃R,n〉〈φ̃R,n|χR〉 = 〈ψ̃|χR〉. (3.23)

Putting (3.22) in (3.21), and then (3.21) in (3.20) one gets

Mi→f = 〈ψ̃f |O|ψi〉+
∑
R,n

〈ψ̃f |p̃R,n〉〈φR,n|O|ψi〉 −
∑
R,n

〈ψ̃f |p̃R,n〉〈φ̃R,n|O|ψi〉. (3.24)

It has to be noticed that only the R0 term has to be considered in each sum, because 〈r|ψi〉 is located

at R0. Thus, the 〈r|O|ψi〉 is zero outside ΩR0 . Moreover, using (3.23) for the third term in (3.24), it

cancels with the first one, and Mi→f happens to be an one-term expression. Considering that, we define

|φ̃R0
〉 =

∑
n

|p̃R0,n〉〈φR0,n|O|ψi〉. (3.25)

In fact, there is an infinity number of projectors, nonetheless, in practical calculations, only a few of

them are needed to perform a suitable calculation. Thus, with the support of equation (3.25), the next

expression for the X-ray absorption cross-section is obtained:

σ(ω) = 4π2α~ω
∑
f

∣∣∣〈ψ̃f |φ̃R0
〉
∣∣∣2 δ(Ef − Ei − ~ω). (3.26)
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This expression has a remarkable drawback: many empty states to be determined. The recursion

method is a clever way to circumvent this issue, which permit us to write the absorption cross-section as

a continued fraction. It means that only occupied bands need to be calculated.

3.3.2 The Recursion Method

This method is a powerful recursive algorithm that can be applied to Hermitian matrix to turn

it into a tridiagonal form [113,114]. We will assume that the norm of the all-electron partial waves match

the pseudopartial waves. However, as we will see shortly in the subsection 3.3.3, that is not always true.

A Green operator is required in order to use the recursion method:

∑
f

|ψ̃f 〉δ(Ef − Ei − ~ω)〈ψ̃f | = −
1

π
Im
[
G̃(E)

]
, (3.27)

with

G̃(E) =
(
E − H̃ + iγ

)−1

(3.28)

which is the Green operator associated with the Hermitian pseudo-Hamiltonian H̃ = T †HT (refer to

equation (2.97)), whose energy E is Ei + ~ω, and γ is an infinitesimal positive number3. Thus, the

equation (3.26) becomes

σ(ω) = −4πα~ω Im

[
〈φ̃R0 |

(
E − H̃ + iγ

)−1

|φ̃R0〉
]
. (3.29)

As this equation has a pseudo-Hamiltonian, a new basis is required in order to give to H̃ a tridiagonal

representation. The recursion method of Lanczos [112,134] sets up this basis, which makes the calculation

of the matrix elements in (3.29) very simple. It is obtained by the successive action of H̃ onto the

normalized initial vector |u0〉 = |φ̃R0
〉/
√
〈φ̃R0

|φ̃R0
〉4 through the following recurrence relation

H̃|ui〉 = ai|ui〉+ bi+1|ui+1〉+ bi|ui−1〉, (3.30)

where {ai} and {bi} are a set of real parameters defined as [135]

ai = 〈ui|H̃|ui〉, (3.31)

bi =
∣∣∣H̃|ui〉 − ai|ui〉 − bi−1|ui−1〉

∣∣∣ , (3.32)

|ui+1〉 = b−1
i

(
H̃|ui〉 − ai|ui〉 − bi−1|ui−1〉

)
. (3.33)

3Please, refer to the section 2.3, equations 2.58-59 of [133].
4For tight-binding models, it can be any normalized linear combination of localized orbitals [114].
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Thus, in the new basis {|ui〉}, the matrix elements of (3.29) becomes

〈φ̃R0 |
(
H̃ − E − iγ

)−1

|φ̃R0〉 =

〈
φ̃R0

∣∣∣φ̃R0

〉
a0 − E − iγ − b21

a1−E−iγ−
b22

...

(3.34)

One should be aware that a terminator is required to “stop” the continued fraction [135]. Indeed,

if the calculation converge after N iteractions, then the coefficients (ai, bi) are equal to (aN , bN ) for i > N .

As one can see, N strongly depends on the broadening parameter γ. Therefore, this method becomes

rather advantageous in face of the direct diagonalization of the equation (3.26), saving a great deal of

computational time.

3.3.3 The USPP Scheme

Until now, we have seen a DFT approach using norm-conserving pseudopotentials [39] that

permits the XAS calculation up to the far edge region. It also allows further for structural optimization

around the absorbing atom in systems with defects or impurities in a supercell [41]. However, one knows

that large cutoffs increase the computational time. Although this shortcoming is even more present

in both transition metal and rare earth, ultrasoft pseudopotentials (USPP) may demand low cutoffs

(20 − 40Ry), as contrast to the norm-conserving ones, which would decrease the computational cost of

the supercell calculation by one order of magnitude [41]. Therefore, following the just mentioned reference,

we will remember the ultrasoft approach, followed by the reformulation of the continued fraction and the

corresponding Lanczos approach.

As mentioned in the subsection 2.5.1, in the ultrasoft approach the norm of the pseudopartial

waves is different from the norm of the corresponding all-electron partial waves, so that it is usual to

define the integrated augmentation charges qR,nm as

qR,nm = 〈φR,n|φR,m〉 − 〈φ̃R,n|φ̃R,m〉. (3.35)

We also should remember the Ŝ operator of equation (2.83):

Ŝ = 1 +
∑

R,m,n

|p̃R,n〉qR,nm〈p̃R,m| = 1 +
∑
R

QR. (3.36)

Now, the pseudo-Hamiltonian H̃ and the pseudo eigenfunctions |ψ̃f 〉 satisfy the Schrödinger

equation

H̃|ψ̃f 〉 = Ef Ŝ|ψ̃f 〉, (3.37)
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which by being multiplied by Ŝ−1/2 becomes

Ŝ−1/2H̃Ŝ−1/2Ŝ1/2|ψ̃f 〉 = Ef Ŝ
1/2|ψ̃f 〉. (3.38)

We will use the follow identity in order to obtain a expression for (3.34):

π
∑
f

|ψ̃f 〉δ(Ef − x)〈ψ̃f | = lim
γ→0

Im
[
G̃(x)

]
, (3.39)

where x is a real number5, and

G̃(x) = Ŝ−1/2 1

x− Ŝ−1/2H̃Ŝ−1/2 − iγ
Ŝ−1/2. (3.40)

Therefore, the XAS cross-section can be written using equations (3.34) and (3.39):

σ(ω) = 4πα~ω lim
γ→0

Im
[
〈φ̃R0

|G̃(~ω + Ei)|φ̃R0
〉
]
, (3.41)

where Ei is the energy of the initial state. In practical terms, Ei is chosen to be the Fermi level in case

of metals, or the highest occupied states, in case of an insulator material.

In fact, as we did in the last section, we will also make usage of the Lanczos recursion method

on the matrix elements of equation (3.41):

〈φ̃R0
|G̃(E)|φ̃R0

〉 =
〈φ̃R0 |Ŝ−1|φ̃R0〉

a0 − E − iγ − b21

a1−E−iγ−
b22

...

, (3.42)

where the real numbers {ai} and {bi} are computed resursively by defining the set of normalized vectors

{|ui〉}, such that

|u0〉 =
Ŝ−1/2|φ̃R0

〉√
〈φ̃R0

|Ŝ−1|φ̃R0
〉
,

Ŝ−1/2H̃Ŝ−1/2|ui〉 = ai|ui〉+ bi+1|ui+1〉+ bi|ui−1〉.

The coefficients are determined as

ai = 〈ui|Ŝ−1/2H̃Ŝ−1/2|ui〉, (3.43)

bi = 〈ui|Ŝ−1/2H̃Ŝ−1/2|ui−1〉. (3.44)

5For proof of this equation, please refer to appendix D.
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Indeed, the difference here from the standard Lanczos method of the section 3.3.2 is that the initial vector

|u0〉 and the Hamiltonian H̃ have the operator Ŝ inside of them. Nonetheless, because the dimension

of the matrix Ŝ is of the same order as the Hamiltonian, in which both depend on the number of plane

waves (kinetic energy cutoff), the computational cost of the application of Ŝ−1/2 is as large as the H̃ one.

Therefore, one needs a more efficient way to carry out the Lanczos method, which is obtained by

defining the following auxiliary vectors:

|ti〉 = Ŝ1/2|ui〉. (3.45)

The new basis is, then, obtained by

|t0〉 =
|φ̃R0
〉√

〈φ̃R0
|Ŝ−1|φ̃R0

〉
,

H̃Ŝ−1|ti〉 = ai|ti〉+ bi+1|ti+1〉+ bi|ti−1〉,

where 〈ti|Ŝ−1|tj〉 = δi,j , since {|ti〉} are no longer orthogonal. Thus, new vectors |t̃i〉 = Ŝ−1|ti〉 are

obtained, and the coefficients {ai} and {bi} are calculated in a more feasible way:

ai = 〈t̃i|H̃|t̃i〉, (3.46)

bi = 〈t̃i|H̃|t̃i−1〉, (3.47)

Thus, each iteraction requires only one multiplication by Ŝ−1, one by H̃, and four Lanczos vector |ti−1〉,

|t̃i−1〉, |ti〉, and |t̃i〉.

A last comment needs to be taken. Through the definintion of the Ŝ matrix in terms of Np

ultrasoft projectors, the calculations of Ŝ−1 is effectively computed by the products and inversions of

matrices of the order Np × Np [136, 137]. The main passages of this matrix calculation are outlined in

appendix E.

3.3.4 Practical DFT Calculation

In practical XANES calculations, one needs reconstructing the all-electron wavefunctions for

only the X-ray absorbing atom6. This information should be included in its pseudopotential in order

to perform XANES calculations. In QUANTUM ESPRESSO package [43], the code ld1.x performs this

task, while xspectra.x one computes the XANES. The mentioned reconstruction is performed through

the GIPAW7 method [111], which is essential due to the presence of external electromagnetic field from

6Non-absorbing atoms accept any kind of pseudopotential.
7It stands for Gauge-Included Projector Augmented Waves.
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the X-ray radiation. With these informations, the code also requires the radial core wavefunction of the

initial core state (without the hole, or the electron extracted from the core level), which can be obtained

from a pseudopotential created with GIPAW reconstruction for the atom without core-hole. By the way,

in appendix F, the GIPAW method is shortly described.

The flowchart below, figure 3.3, pictures us the steps to perform XANES calculations. It is

relevant to say that the pseudopotentials built for a specific system can be transfered to another system

that has the same atom, under the same condition. This means that, if the environment in which the

X-ray absorbent atom is included is “compatible” with the pseudopotential that had already been created,

all these information, including the initial core state can be used in this new system.
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PP Generation with core-hole with GIPAW

PP core-hole

PP Generation without core-hole with GIPAW

PP no core-hole

Extract initial core WFC: |i〉

No core-hole |i〉: GIPAW

Build the Supercell Input SCF

Run SCF Output SCFInput XANES

Run XANES

Output of XANES

Fermi level, densities, ...

Figure 3.3: Flowchart shows us the required steps to perform a XANES calculation.



Chapter 4

Dynamical Methods to Atoms and

Molecules

In classical molecular dynamics (MD), one wishes to determine both the time evolution of 3N

atomic coordinates {r} along with the 3N atomic momenta {p} of the N atoms composing the system

under study. To accomplish this task, one can apply the classical movement law upon the N particles

(where N ∼ 1023, from the classical Hamiltonian of the system. A state of the system is defined by a

point in the phase space such that
(
rN ,pN

)
≡ (r1, r2, r3, . . . , rN ; p1,p2,p3, . . . ,pN ), in which ri and pi

are the coordinates and conjugated momenta of the particle i, respectively [138]. The basis of molecular

modeling lays on that, by mean of which general process for describing complex systems in terms of

realistic atomic model. The goal is to predict macroscopic properties based on the acquired knowledge

of the atomic scale (reference manual in [139]).

On the whole, macroscopic properties can be ensemble averages over a representative statistical

ensemble of the system at a given temperature. In fact, once the molecular model and the force field V (r)

is chosen, a search by a suitable low-energy configurational space is required. Such configurations depend

on the type and form of the interaction energy function V (r), on the number of degrees of freedom, and

on the type of those degrees (cartisian coordinates, bond lengths, bond angles, among others) [140]. If

a system has too many degrees of freedom, a weighted collection of configurations (ensembles) has to be

generated. One way to collect those configurations would be through the Monte Carlo method, which is

based on a Markovian process that allows us to sample the most probable macrostates without taking

into account their time evolution [141]. Another way to gather such configurations would be using the

nature’s law of motion, which has the advantage that the temporal information of the system is obtained.

That type of technique has two major simulation methods: Molecular Dynamics (MD), in which the

Newton’s equations of motion are solved over time, and Stochastic Dynamics (SD), in which the time

evolution of the Brownian motion is integrated through the Langevin equation [140].

Those methods are avalable in GROMACS package [142–149], a software to perform atomic

scale simulations. For the representation of those ensembles in equilibrium, two methods are available in

GROMACS: Monte Carlo and Molecular Dynamics simulations. Non-equilibrium ensembles and analysis
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of the dynamics of events are only possible with the second method, which is the one we have used. So,

we will shortly give the fundamentals of both MD and SD along with a brief explanation of the techniques

used in the mentioned code, such as interactions among the particles of the system, propagations of the

atomic coordinates, calculations of both pressure and temperature, energy minimization scheme, and

applied periodic boundary conditions.

4.1 Molecular Dynamics

Molecular dynamics simulations comprise on solving the numerical solutions of the classical equa-

tions of motion. Doing so, a trajectory of the molecular system, i.e., the time evolution of the configura-

tions, is obtained. In other words, one must solve the Newton’s equations of motion for a system with N

interacting atoms:

mi
d2ri
dt2

= Fi, i = 1, . . . , N. (4.1)

where the forces Fi are given by the potential function V (r1, r2, . . . , rN ) :

Fi = − ∂

∂ri
V (r1, r2, . . . , rN ) . (4.2)

Another way to express this equations would be through the Hamilton’s equation [150]:

ṙi =
∂ri
∂t

=
∂H

∂pi
,

ṗi =
∂pi
∂t

= −∂H
∂ri

, i = 1, 2, . . . , N (4.3)

where H = H ({ri}, {pi}, t) is the Hamiltonian of the system. If H is explicitly time-independent, then

Ḣ = 0, where the dot means time derivative of a function. Hence, H, by extension the total energy, is a

conserved quantity. The time-independent Hamiltonian is given by

H
(
rN ,pN

)
=

N∑
i=1

p2

2mi
+ V (ri) ≡ K + V (ri), (4.4)

i.e., it is the sum of the kinetic energy and potential energy of the system. From that equation, the

absolute temperature, T, is obtained from the equipartition theorem, K = 1
2NdfkBT , where Ndf is the

number of degrees of freedom of the system. The pressure, in turn, is defined as
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P =
2

3Ω
[K − Ξ] , with (4.5)

Ξ = −1

2

N∑
i<j

rij · Fij , (4.6)

where rij = ri − rj , Fij is the force on atom i due to atom j, and Ω is the volume of the computational

box.

The mathematical background that allows us, based on the time evolution of the atoms of the

system, to connect the microscopic quantities with the macroscopic physical properties is the statistical

mechanics. Once the forces, or the potential energy, is known, one can compute the microstates of the

system through the equations of motion, using the initial condition
(
rN (0),pN (0)

)
. The integration of

equation (4.1) is performed at small time steps (usually 1 – 10 fs [140]). Thus, both dynamic and static

informations can be extracted by averaging over a sufficient large number of representative ensembles

of the states of the system. As a technique to search configurational space, temperature, and therefore

kinetic energy, plays a key role for the system can be able to surmount energy barries of the order of kBT

per degree of freedom.

However, there is a caveat in such a searching. Even if the energy barries between any two

energy minima is low, the required time to pass them over may be too long for a MD simulation. Thus,

in that case, new methods have to come into the scene, as the stochastic dynamics method, which will

be addressed in section 4.2.

4.1.1 Potential Energy Function (Force Field)

The potential function is a summation of several functions chosen to compose the Force Fields

(FF) used in MD simulations. Those functions (interaction potentials) are subdivided into three cate-

gories: non-bonded interactions, bonded interactions, restraints, and applied forces. We are not going

to address all of the functions belonging to those categories here, but only a few of them. In short,

the potential energy function includes short range interaction, namely long-range interaction such as

Lennard-Jones potential for van der Waals interaction, and Coulomb interaction, and the intermolecular

interaction, such as bond stretching (r), angle deformation (θ), dihedral torsions (ϕ). The general form

of the function is given by

Vtotal =
∑

i,j; i<j

{
4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

+
qiqj
rij

}
+
∑
bond

kb (r − bij)2
+
∑
angle

kθ (θ − θijk)
2

+

+
∑

dihedral

kϕ [1 + cos(nϕ− δ)] ,
(4.7)

where rij is the distance between the atoms i and j, with charges qi and qj , respectively; bij is the

equilibrium distance between atoms i and j, and θijk is the equilibrium bond angle comprising the atoms

i, j, and k. The parameters kb, kθ, and kϕ from the intramolecular potential, as well as a bit more
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detailed description of this harmonic functions will be discussed later. The term in curl brackets in turn

is the intermolecular potential.

4.1.2 Intramolecular Potentials

These terms are not exclusively pair potential, but are described by the interactions of bonded

atoms indeed. Besides, they can also include a three- or four-body potential. The former is related to

the angle deformation, and the latter is given by the dihedral angle torsion. The two-body term is given

by the bond stretching, as we will see soon.

Bond Stretching

The bond stretching between two atoms i and j is modelled by the harmonic potential:

Vb(rij) = kbij (r − bij)2
, (4.8)

which describes the bonding between atoms as a simple spring including a harmonic restoring force, where

kbij is the spring constant, and bij is the equilibrium bond length.

Angle Deformation

The deformation angle amongst the atoms i, j, and k is described through the potential

Vang(θ) = kθijk (θ − θijk)
2
, (4.9)

where θijk is the equilibrium bond angle i− j − k, and kθijk is the angle deformation constant.

Dihedral Torsion Angle

Dihedral (or torsion) angles are defined as the angle between two intersecting planes, where each

plane has at least two atoms bonded together. For example, if four atoms i, j, k, and l are bonded such

that i − j is in a plane that intersects the plane contaning the bond k − l in a angle ϕ, then this angle

comprises the bond j − k and is the dihedral angle. The potential that describes this interaction is given

by

Vdihedral(ϕ) = kϕijkl [1 + cos(nϕ− δ)] , (4.10)

where δ is the equilibrium torsion, and n is an integer.
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4.1.3 Intermolecular Potentials

Intermolecular potential, or non-bonded interaction potential, can be splitted into two types:

long-range and short-range interactions. The dispersion and repulsion terms are combined together into

a Lennard-Jones potential (also known as 6-12 interaction). The (partially) charged atoms of the systems

are included into the Coulomb potential.

Lennard-Jones Interaction

The intensity of this interaction diminishes rapidly with the increasing of the distance between

the atoms, so that beyond a certain radius the interaction does not present any meaningful effect. Such

a distance is called cutoff radius, Rc. The Lennard-Jones potential is given as

VLJ(rij) = 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]
. (4.11)

Actually, in practical term this potential is truncated at Rc, so that, so equation (4.11) becomes

VLJ(rij) =

 4εij

[(
σij
rij

)12

−
(
σij
rij

)6

−
(
σij
Rc

)12

+
(
σij
Rc

)6
]
, rij ≤ Rc

0, rij ≥ Rc.

The terms εij and σij are parameters related to the potential well and the size of the particles, respectively.

In general, they are either determined from ab-initio calculations or empirically. The term rij is defined

by the distance between the particles i and j.

Coulomb Interaction

For charged particles interacting among themselves it is necessary the usage of long-range inter-

action that is the Coulomb interaction. The Coulomb potential is represented by the following equation

V el
(
{rN}

)
=

N∑
i=1

ni∑
a=1

N∑
j=1

nj∑
b=1

qiaqjb
riajb

(4.12)

where we define a system with N molecules i, each one containing n atoms with partial charge qia. We

have omitted the factor 1/4πε0 by making c = e = 1 for simplicity. In practical calculations, one of the

ways to make the computations is to use the Ewald summation, which was first introduced as a method

to calculate long-range interactions of the periodic images in crystals [151]. The equation (4.12) is thus

replaced by an expansion mathematically equivalent, but that converges more quickly, so that using the

Ewald summation method, that equation is given by
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V el
(
{rN}

)
=

N∑
i=1

ni∑
a=1

N∑
j=1

nj∑
b=1

qia qjb erf(αriajb)

rij︸ ︷︷ ︸
real part

−
N∑
i=1

ni∑
a=1

qia

 α

π1/2
qia +

1

2

ni∑
b6=a

qib
erf(αriaib)

iaib


︸ ︷︷ ︸

sefl-term

+

+
2π

V

∞∑
k 6=0

exp
[
−k2/4α2

]
k2

∣∣∣∣∣
N∑
i=1

ni∑
a=1

qiaexp [i(k · ria)]

∣∣∣∣∣
2

︸ ︷︷ ︸
reciprocal term

,

(4.13)

where α is an adjustable parameter on the order of L/5, in which L is the length of the cubic-box side,

and V is its volume L3. The error function, erf(x), is given by erfc(x) = 1− erf(x), where

erfc(x) =
2√
π

∫ ∞
x

e−t
2

dt (4.14)

is the complementary error function. Also, k = 2π/L [kx, ky, kz] is a vector in reciprocal space. One

must tune the parameters α and k up in order to achieve feasible energy values of the system in a MD

simulation. The first term is the real part of the potential, while the last one computes the interactions

in reciprocal space. The energy self-term, in turn, includes the interactions among the charges qia and

its images; also, it has a correction factor. More details on the equation (4.14) can be found in [25,152].

It is important to mention that in large systems the computational cost of the reciprocal part

greatly increases. An alternative method was implemented in order to decrease this simulation time.

An approach on such methods can be found in [23, 25, 153, 154]. In one of these methods, the Coulomb

interactions are computed only in between the particles whose distances rij is to be within the cutoff

radius Rc, being known as a “truncated” or “shifted” Coulomb potential, which is given by

V el
(
{rN}

)
=

1

2

N∑
i=1

ni∑
a=1

N∑
j=1

nj∑
b=1

[
qiaqjb erf(αriajb)

rij
− lim
riajb→Rc

{
qiaqjb erf(αriajb)

rij

}]
−

−1

2

N∑
i=1

ni∑
a=1

qia

(erf(αRc)

Rc
+

2α

π1/2

)
qia +

ni∑
b 6=a

(
erf(αriaib)

riaib
+
erf(αRc)

Rc

)
qib

 , (4.15)

where the forces are computed from equations (4.1) and (4.2).

4.2 Stochastic Dynamics

The system under study evolves according to the potential associated to it. However, due to

practical reasons, this potential is an approximation of the real situation. Thus, stochastic dynamics,

which is an extension of MD, comes in to fill in the gap between the real and the approximated potential,

as the system is subjected to effects of a “noise”. Although SD does not define a real potential, it tries
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to define a general correlation between those situations, which does not depend on the details of the

potential. Therefore, it takes into account the previously neglected degrees of freedom to obtain a more

realistic simulation [141].

According to [140], a trajectory of the molecular system is obtained by integrating the stochastic

or velocity Langeving equation of motion:

d2ri(t)

dt2
=

1

mi
[Fi + Ri]− γi

dr

dt
, (4.16)

where Ri is a stochastic force (or a noise process), and γi is a friction coefficient, on which the frictional

force is proportional to. Those terms are added to equation (4.1). The stochastic term introduces energy,

whereas the frictional term removes kinetic energy from the system, so that the condition for zero energy

loss is

〈R2
i 〉 = 6mi γi kB Tref , (4.17)

where Tref is the reference temperature of the system. When γi is too large, stochastic dynamics reduces

to Brownian dynamics, also known as position Langevin dynamics.

4.3 Energy Minimization

Molecular Dynamics simulations are an essential tool to generate non-equilibrium ensembles and

to investigate dynamic events. To perform that, a starting point for the system configuration is required.

Sometimes, however, such initial configuration is far from equilibrium, which means that the forces acting

on each atom may be excessively large. In such a case, the energy minimization is required. Besides that,

energy minimization can be necessary to remove the kinetic energy from the system, since it reduces

thermal noises in both the structure and potential energy of the system.

The potential energy function, which describes the energy of an interacting system, can be a very

complicated function of the atomic positions. Such a function can have a large number of local minima,

and a deepest point, the global minimum, on which the derivate of the potential energy with respect

to the coordinates (the forces) are null, and its second derivative (Hessian matrix) are non-negative.

For completeness, the Hessian matrix has zero eigenvalues only for a system (an isolated molecule) with

collective coordinates that correspond to translation or rotation. Between any two minima there are saddle

points, on which the Hessian has one only negative values. Therefore, knowing all the local minima, and

possibly the global one, enables us to describe all the system. In practical terms, however, there is no

minimization method that is able to find the global minimum of a system in a realistic execution time

for any purpose. Nonetheless, given a good starting configuration, it is possible to get to a nearest1 local

minimum. In fact, GROMACS can perform energy minimzation using three methods: steepest descent,

conjugate gradients, and the L-BFGS minimizer, which is comparable to the second one. The first two

1“Nearest” here means the minimum that can be reached by descending the steepest local gradient, i.e. the force.



63

are based on the gradient of the potential function, while the last one is based on the Newton-Raphson

method, which, unlike the former ones, is based on the Hessian of the potential.

In this work, we have used the steepest descent method, which simply takes a step into the

direction of the force, not considering the prior history of the system. Its convergence can be very slow in

the vicinity of the local minimum, but it will lead the system close to the nearest local minimum faster

than the other methods. Thus, if a vector of all the 3N coordinates, r, is defined, an initial maximum

displacement h0 has to be given, otherwise new positions will not feel the effect of the forces. After the

calculation of the gradient of the potential energy, V, or negative of the forces, the new positions are

given by [139]

rn+1 = rn +
Fn

max(|Fn|)
hn, (4.18)

where hn is the maximum displacement, Fn is the force, and max(|Fn|) is the largest scalar force on any

atom. Then, the forces and energies are again performed for the new position using the following criteria:

If Vn+1 < Vn, the new positions are accepted, and hn+1 = 1.2hn.

If Vn+1 ≥ Vn, the new positions are rejected, and hn = 0.2hn.

The energy minimization stops when a maximum of the absolute values of the force components is smaller

than a specified value.

4.4 Integration Algorithms

Integration techniques by finite differences are used to generate trajectories of molecular dynamics

simulations. Such integrations methods of the Newton’s equation of motion have to be time-reversal, as

so is the Newton’s equation. To perform such a task onto tiny time steps, one uses integration algorithms.

The most used are the Verlet, Velocity Verlet, Leap-Frog, and Beeman algorithms [23], which assume a

Taylor series expansion of coordinates around the time point t. Hereafter, we will only review the Verlet,

and the leap-frog schemes. The latter one is the default MD integrator in GROMACS.

4.4.1 Verlet Algorithm

In 1967, Loup Verlet developed the algorithm [155] that presently carries his name. His method

is based on both positions and acceleration at a time t, and on positions at a time t −∆t. The Taylor

series expansion for the coordinate r(t), around time t, is given by

r(t+ ∆t) = r(t) + ∆tv(t) +
1

2
(∆t)2 a(t) + · · · , similarly (4.19a)

r(t−∆t) = r(t)−∆tv(t) +
1

2
(∆t)2 a(t) + · · · (4.19b)
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Adding up the equations (4.19a) and (4.19b), and truncating the resulting summation on the

second term, one gets the following result:

r(t+ ∆t) = 2r(t)− r(t−∆t) + (∆t)2a(t). (4.20)

In all the above relations, ∆t is meant to be the numerical integration time step in the MD simulation,

which should be less than the molecular relaxation times (10−16 − 10−13 seconds). Some considerations

about the equation (4.20) are relevant: velocities are not required for the trajectory calculations, however

they are needed for kinetic energy computations, and by extention for the total energy. The velocity are

obtained as

v(t) =
r(t+ ∆t)− r(t−∆t)

2∆t
. (4.21)

This algorithm is a well-established and widely-tested method. Note, also, that the estimate

error on the position is of the order ∆t4, and the corresponding velocity error is of the order ∆t2. In the

early 1980’s, Swope et al. [156] proposed an algorithm based on a modification of the Verlet algorithm, in

which the position, velocity, and acceleration are calculated in the same time t. The following equations

comprise the Velocity Verlet algorithm:

r(t+ ∆t) = r(t) + ∆tv(t) +
1

2
(∆t)2 a(t) (4.22a)

v(t+ ∆t) = v(t) +
1

2
∆t [a(t) + a(t+ ∆t)] . (4.22b)

4.4.2 Leap-Frog Algorithm

There are many alternatives to the Verlet algorithm. The Euler algorithm, for instance, is ob-

tained by truncating the Taylor expansion beyond the term in ∆t2. Nevertheless, the leap-frog algorithm

is the simplest among them [157]. It computes the velocities at ∆t/2 and uses these velocities to compute

the new positions. The leap-frog algorithm comes from the Verlet scheme by defining the velocities as

v(t−∆t/2) ≡ r(t)− r(t−∆t)

∆t
, and

v(t+ ∆t/2) ≡ r(t+ ∆t)− r(t)

∆t
. (4.23)

Using these expressions, we can obtain the expression for the new positions:

r(t+ ∆t) = r(t) + ∆tv(t+ ∆t/2), (4.24)

and from the Verlet algorithm, one can update the velocities:
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v(t+ ∆t/2) = v(t−∆t/2) + ∆ta(t). (4.25)

As one can see, because leap-frog algorithm is derived from the Verlet one, it yields the same

trajectories. However, the velocities are not defined at the same time as the positions, which implies the

kinetic and potential energies cannot be calculated at the same time, and hence the total energy cannot

be directly computed. That is why the velocity Verlet algorithm comes in handy. With no temperature

or pressure coupling, these algorithms give identical trajectories.

4.5 Temperature and Pressure Coupling

Direct evaluation of the Newton’s equation of motion gives rise to an NVE ensemble (microcanon-

ical one), which means that the number of particle, volume, and energy (adiabatic system) of the system

are conserved. However, in real world simulations, one may need to evaluate quantities that require

the imposition of external contraints on the system, in order to avoid energy loss by dissipative process,

for example. In such a case, constant temperature bath (NVT, or canonical ensemble), or temperature

coupling, would be interesting to work with. As one might expect, when temperature or pressure cou-

pling are used the total energy is no longer conserved. Thus, one needs to rescale the equations through

the combination of either temperature or pressure coupling, or even both, so that one would be able to

simulate a system as “real” as possible. The next two subsections will be based on both the GROMACS

user guide [139] and on the review after Van Gunsteren and Barendsen [140].

4.5.1 Temperatute Coupling

There are several ways to perform MD simulations under a constant temperature, which may

be based on either the rescaling of the atomic velocities, which in turn is related to the temperature, or

on the modification of the equation of motion that pushes the system towards the desired temperature

constraint. Different methods that are implemented in GROMACS can perform such a task. The first

one we would like to mention is Berendsen scheme [158], which is known as weak-coupling scheme for

the deviation from the system temperature is gradually restored to the temperature bath T0. There is

also a constraint method called velocity-rescaling thermostat [159], in which the velocities are updated

at each MD time step by a factor [T0/T (t)]
1/2

, where T (t) is defined using the equipartition theorem.

In the stochastic method, in turn, the velocities are stochastically changed. Andersen [160] proposed

that the velocities should be selected through the Maxwell-Boltzmann distribution using an adjustable

parameter that would cause the re-thermalization of the system. At last, there is also an extended system

method in which an extra degree of freedom, the heat bath, is added to the system, which was proposed

by Nosé [161] and Hoover [162].
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In our calculations, we have used the first two methods. In the Berendsen method, the equations

of motion are adapted such that the net results on the system owing temperature changes are a first-

order relaxation of the temperature towards the reference value T0 [158]. Such temperature shifts can be

written as

dT (t)

dt
=

1

τT
[T0 − T (t)], (4.26)

by which the kinetic energy can change, ∆K, across a MD time step ∆t by scaling the atomic velocities

vi with a factor λ. Such a scaling factor affects the heat flow into or out the system as

∆K = (λ2 − 1)
1

2
NdfkB T (t). (4.27)

The quantity that correlates the energy change of a system with its temperature shift is the heat

capacity per degree of freedom of that system. Here, we are going to define τ = T0 − T (t), and write

τ =
1

NdfcV
∆K. (4.28)

Thus, solving equations (4.26), (4.27), and (4.28) for λ, we get

λ =

[
1 + cV (kB/2)−1 ∆t

τT

(
T0

T (t)
− 1

)]1/2

. (4.29)

It can also be written as

λ =

[
1 +

∆t

τ

{
T0

T
(
t− 1

2∆t
) − 1

}]1/2

, (4.30)

where we have redefine τ = τT kBNdf/2cV . This coupling can be sufficiently weak (large τT ), as in a gas

phase, but also can be chosen sufficiently strong (small τT ), as for a damping system like an aquous one.

However, for a system with a huge number of atoms this approach may fail in conserving the desired

quantities, for it is not associated to a well defined ensemble [159].

The way-out to that is given by the velocity-rescaling temperature coupling [159], which is a

Berendsen thermostat with additional stochastic term that ensures a correct kinetic energy distribution

[139]. In this method a random force is added, in order to enforce the correct distribution for the kinetic

energy according to a constant value, which can be defined and works as a guide to verify how much a

generated configuration is close enough to the desired NVT ensemble at each time step.

Roughly, the conventional velocity-rescaling method consist in multiplying the velocities of all

particles by the same factor

α =

√
K̄

K
, (4.31)
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where, K̄ = NdfkBT/2 is the average kinetic energy at a target temperatute. The proposal in this method

is to enforce the canonical distribution for K by modifying the scaling factor α to

α′ =

√
K

Kt
, (4.32)

selecting target values Kt with a stochastic procedure through the canonical equilibrium distribution:

P̄ (Kt) dKt ∝ K
(
Ndf
2 −1

)
t e−Kt/kBT dKt. (4.33)

However, it exhibits fluctuations with relative magnitude
√

1/Ndf . Therefore, this approach is softened by

distributing the rescaling procedure among the number of time steps in the MD run, with the prescription

that the distribution in equation (4.33) has to be left unchanged. Because of the arbitrariness of the

chosen stochastic dynamics, it imposes that K is described by a first-order differential equation, namely,

the Fokker-Planck equation [163], which must exhibit a zero-current solution. Yet, such an equation

refers to the evolution of a probability distribution. In fact, a Maxwell-Boltzmann distribution can be a

solution for that equation [164]. This equation can be written as

dK =

(
D(K)

∂ log P̄

∂K
+
∂D(K)

∂K

)
dt+

√
2D(K) dW, (4.34)

where D(K) is an arbitrary positive definite function of K, and dW , a Wiener noise [163]. By inserting

the equation (4.33) into the last one, one gets

dK =

(
NdfD(K)

2K̄K
(K̄ −K)− D(K)

K
+
∂D(K)

∂K

)
dt+

√
2D(K) dW, (4.35)

where D(K) can be chosen as

D(K) =
2KK̄

Ndf τ
, (4.36)

where τ determines the time-scale of the thermostat as in Berendsen’s formulation. Therefore, we arrive

to the following clear expression:

dK = (K̄ −K)
dt

τ
+ 2

√
KK̄

Ndf

dW√
τ
, (4.37)

which reduces to the standard Berendsen thermostat if one zeroes the stochastic term. Therefore, this

thermostat can produce a correct canonical ensemble and still, as in the Berendsen scheme, is a first-order

decay of temperature deviations with no oscillations.
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4.5.2 Pressure Coupling

The system also can be coupled to a pressure bath. Unlike temperature coupling, pressure

change occurs due to scaling the volume of the simulation box and by changing the virial (equation

(4.7)) through a scaling of the interatomic distances [140], that is to say, now one can get a NPT

ensemble (approximately). As for temperature coupling, pressure coupling also has been implemented in

GROMACS, which supports the Berendsen scheme [158] that scales coordinates and box vector at every

time step, the extended system method of Parrinello-Rahman [165, 166], which adds an extra degree

of freedom, the volume of the box, to the system, and also the velocity-Verlet variante by Martyna-

Tuckerman-Tobias-Klein (MTTK) [167]. We will elaborate on the first one.

The Berendsen barostat rescales the coordinates and the simulation box vectors through the

modification of the equation of motion, which has the effect of a first-order kinetic relaxation of the

pressure towards a reference value P0 by the following equation

dP (t)

dt
=

1

τP
[P0 − P (t)] . (4.38)

A scaling factor, µ, leads to modifications on the coordinates and box vectors by chaging the

volume of the system by

∆V = (µ3 − 1)V, (4.39)

by which the pressure difference is strictly related to the change in volume through the following expression

∆P = − 1

βT V
∆V, (4.40)

where βT is the isothermal compressibility of the system. Thus, solving the equations (4.38), (4.39), and

(4.40) for µ one gets

µ =

[
1− βT

∆t

τP
(P0 − P (t))

]1/3

. (4.41)

Although this scaling formulation is done isotropically, it also can be extended to a general

anisotropic system. In such a case, virial, kinetic energy, pressure, and scaling factor would become

cartesian tensors, and the box volume would become the determinant of a matrix formed by the lattice

vectors of the simulation box. The scaling factor, for instance, would be like

µ =


µxx µxy + µyx µxz + µzx

0 µyy µyz + µzy

0 0 µzz

 . (4.42)

Besides that, the conserved energy quantities need to be modified, since the equation of motion has been

as well. Thus, at every step, the work the barostat applies to the system needs to be subtracted from the
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total energy:

− (µ− I) PV = 2 (µ− I) Ξ, (4.43)

where I is an identity matrix.

4.6 Periodic Boundary Condition and Minimum Image Convention

Periodic Boundary Condition (PBC) is used in order to solve two problems that arise from the

necessity of simulating a system with a high number of particles: the computational unfeasibility that

such a system has to work with, and its surface effects. This technique enables the accomplishment of

simulations using a small relevant number of particles.

In the application of PBC, the particles are contained inside a simulation box that has images of

each particle replicated on every direction. If a particle acquires motion and goes across one of the faces,

and its image goes through an opposite face, the number of total particles inside the box is conserved.

The figure 4.1 shows the PBC scheme.

Figure 4.1: Pictorial representation of a system under PBC. The unit cell is painted as blue, the particles as red. The radius

of the circle is related with the interaction between the particle in its center and the neighbors inside the circle. This figure

was taken from [168].

PBC allows us to choose one region of space inside the simulation box in which the interactions

by dissipative forces among the particles are calculated so as not reproduce interactions that have already
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been performed. This region is determined by cutoff radius as shown in figure 4.1, and this is known as

minimum image convention. By the way, the interactions of the pair of non-bonded atoms are defined

within the cutoff radius, and their interaction force and energies are calculated for distances between the

closest neighbors, which makes the simulation time decreases, for it would be impracticable to describe

all the interactions of the system under investigation. In the Ewald method, a particle interacts with

all the other particles inside the simulation box and their images, in a infinity array of periodic cells.

Therefore, one can generalize the equation (4.12) into

Uel({rN}) =
1

2

∑
n

′

 N∑
i=1

ni∑
a=1

N∑
j=1

nj∑
b=1

qiaqjb
|riajb + n|

 (4.44)

where
∑

n indicates the summation over all the cubic images of the main cell, such that n = (nxL, nyL, nzL),

where nx, ny, and nz are integers. The “′” sign indicates that n = 0, i = j will be omitted.

4.7 Molecular Dynamics Simulation Scheme

The state-of-the-art of MD simulations is rather laborious. The flowchart below in the figure 4.2

shows the summary of the scheme on how the MD algorithm works [139], which is based on GROMACS

package. It also can be used as a general sketch on how to perform such simulations in other programs.
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MD Algorithm

1 – Initial Conditions

Force Field Choice
r(t = ti)

and v(t = ti)

Simulation Protocol

(T, P, others)

Begin Loops

2 – Read Initial Config.

3 – Forces Calculations

Fi = −∂U/∂ri

4 – Propagate Trajectory

Fi/mi = ∂2ri/∂t
2

5 – Compute

Properties

6 – # of MD

steps finished?

Output

Properties

End of MD Algorithm

Repeat steps 3, 4, 5, 6 for all MD steps

yesno

Figure 4.2: Flowchart shows us the required steps to perform a MD simulation.



Chapter 5

Computational Details

To address the proposed problems, we have been using the theoretical methodologies exposed

in the chapters 2, 3, and 4. In this chapter, we would like to address the computational details behind

the scenes. But, before going ahead, we would like to point out that we have employed the Generalized

Gradient Approximation by Perdew, Burke, and Ernzerhof (GGA-PBE) [83] as the exchange-correlation

potential function for it is well known that it better describes the structure of the systems. For the

contributions from electron-ion interactions we have used two methods: ultrasoft pseudopotential (USPP)

method [104] and projector augmented wave (PAW) method [94]. In fact, according to Bunău and

Calandra [110], USPP methods are less computational time consuming compared to the NCPP one. This

is a good choice for large systems, such as those that need to be simulated as supercells due to the required

core-hole model. Also, it requires a smaller representation in terms of plane waves. PAW method, in turn,

is well employed in reconstructing the all-electron wavefunction of the empty valence states to describe

the properties from core states, which are an essential component for XANES simulations.

PAW method is used along with GIPAW method to reconstruct those AE wavefunctions in the

presence an electromagnetic field as is shown in appendix F. Since PAW is a generalization of both the

USPP and the linear augmented-plane-wave (LAPW) method1, it is capable to work directly on the full

valence and core wavefuntions, which is an advantage, as it is more efficient at an optimization level [94].

Besides, according to Kresse and Joubert [97] the total energy functional for USPP can be ap-

proximated by a linearization of two terms in a modified PAW energy functional, so that the Hamiltonian

operator, forces, and stress tensor can be derived from this modified PAW functional. Such methods was

shown to work pretty well in both molecular and bulk systems, and those results are closely related to

the USPP ones, except in case of magnetic systems, such as Fe, Co, and Ni.

Therefore, in the following we will discuss the computational details according to the systems we

have been working with, namely: carbon-based systems, diamond-like systems, and molybdenum-based

1You can refer to the chapter 17 from [78] for more information on this method. By now, the prior augmentation leads

to basis functions that result in non-linear equations, which is more complicated that the linear ones expressed in fixed

energy-denpendent basis, such as plane waves. In a nutshell, the linearization is achieved by defining augmented functions

as linear combination of radial function and its derivative, which form a basis. Thus, any augmentation method can be

written in a linearized form.
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systems along with acetonitrile molecules. This was necessary due to the different parameters used for

each required computational simulation, as will be better explained throughout this chapter.

5.1 Carbon-based Systems

To perform the calculations, we have relied on Density Functional Theory (DFT) as implemented

in QUANTUM ESPRESSO package [43]. In order to get a better description of the unit cell of all the

graphite systems, we have performed the optimization of the unit cells using GGA-PBE along with the

PAW method. In XANES calculations we have used USPP and GIPAW approach.

Based on the recent work by Del Grande, Menezes, and Capaz [169], a systematic analysis of

non-local van der Waals (vdW) exchange-correlation functionals was performed, in order to obtain the

best structural and vibrational properties of multilayer graphene in face of experimental results, we have

used the parameters they employed. They found that the vdW-DF1-optB88 functional [170] has the best

overall performance. Throughout the calculation of graphite systems, we have used energy cutoff of 60

and 480 Ry for plane-wave expansions of wavefunctions and electronic density, respectively. The atomic

and cell optimization were performed within a convergence threshold of 10−6Ry bohr−1 on forces, and

10−5Ry on energies.

Initially the Brillouin zone was defined according to the Monkhorst-Pack (MP) scheme [93] used

in [169], which was 16x16x16 for graphite. However, to minimize the computational cost in supercells, we

did a somewhat different approach. Firstly, for graphite systems, starting from the optimized parameters

from the Del Grande’s work (a0 = 2.47 Å, and c0 = 6.68 Å), we made a variable cell (VC) calculation,

which previded us with the new parameters (a = 2.46 Å and c = 6.68 Å). Then, with these new

parameters, we performed a convergence test of the in-plane k-points. We found 10 k-points. Afterwads,

a convergence test on the perpendicular direction led us to 5 k-points. Then, as the supercell is a 3x3

expanded unit cell, we found ourselves with a MP k-point mesh of 4x4x5 k-points.

Secondly, for cubic diamond, we used the experimental parameter found in 1913 [171, 172] (3.55

Å), obtaining a = 3.57 Å after variable cell optimization. Then, we performed a convergence test on

k-points, which gave us 8x8x8 k-points. Within the 2x2x2 supercell with 64 carbon atoms, it reduced to

4x4x4 k-points. At last but not least, in case of hexagonal diamond, after the VC optimization (getting

a = 2.51 Å and c = 4.18 Å), we found also 8x8x8 k-points after the k-point test. In the 3x3x2 supercell, we

got 3x3x4 k-point mesh. The cutoff energies used in these systems ware 50 and 350 Ry for wavefunctions

and electronic density, respectively.

Concerning XANES simulations, we really need to have those supercells to perform XANES

calculations, since the X-ray absorbing atom, which has core-hole, making the system defective, cannot

interact with its periodic images. Using these supercells, the core-hole atoms stay about 7.6 Å far from

the images, which is a acceptable value. To such calculations we have changed the grid mesh to 10x10x10
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k-points, and used a constant value of 0.5 eV throughout the energy range for the half width at half

maximum of a Lorentzian function for the spectral lineshape.

5.2 Diamond-like Systems

Indeed, it is custumary one makes convergence tests of cutoff energies to fill the space out with a

plane-waves basis set. However, nowadays we have repositories with available ready-to-use pseudopoten-

tials. One of them that is well-known is the PSlibrary [173,174], which is mantained by Andrea dal Corso,

and co-workers, and distributed under GNU licence. He made a detailed description of this repository

that is given in [175], using the code ld1.x from QUANTUM ESPRESSO. A series of tests have been

made as well, for example, by [176], which can be found in Materials Cloud website [177]. As a matter

of fact, we have used the pseudopotentials from PSlibrary version 1.0.0 [178].

The reason why we changed cutoff energies to lower values for diamond systems, as mentioned

in the section 5.1, is to lower the computational cost. Following the notes on pseudopotential generation

by Dal Corso [179], one can find that the minimum cutoff suggested by the generated pseudopotential

can be used, provided that it reproduces well some experiments. Also, we can find a chart contaning

convergence plots for each atom, according to the pseudopotential library version in [177]. Nonetheless,

for diamond-like systems we have used the same values as the ones used for graphite systems.

The relaxed structures were obtained from [56–58,180]. By employing a MP grid mesh of 3x3x1,

as the systems under investigation have a vacuum between the layers of around 20 Å, we also performed

optimization relaxation of the atomic positions on all the structures using QUANTUM ESPRESSO

package.

Regarding XANES calculations, we have used a grid of 6x6x1, and also used a constant value of

0.5 eV throughout the energy range for the half width at half maximum of a Lorentzian function for the

spectral lineshape.

5.3 Molybdenum-Based Systems and Acetonitrile

The systems under discussion in the following is composed by acetonitrile molecules interacting

with Mo-based systems: MoO3 and MoS2. To address such systems, we have treated the huge combined

systems (more than ten thousand atoms) using Molecular Dynamics (MD) to visualize the atomic time

evolution of each system through the solution of the Newton’s motion law, followed by the DFT-based

QM method, on which we take into account the influence of the quantum behavior of the electrons of the

systems. For this latter method, we cannot deal with a system with ∼ 104 atoms. Instead, we narrow

what we want to investigate down, which lead us to a bit more than one-hundred atoms.

For the aforementioned solids, we have used the parameters found in the Aflowlib repository
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[181,182]. We have used energy cutoff of 50 and 330 Ry for plane waves and electronic density, respectively,

and a Monkhorst-Pack mesh of k-point of 13x13x3 (12x7x3) k-points for MoO3 (MoS2) unit cell. We

also used PBE-GGA exchange-correlation functional, employing PAW method for suitable description

between ionic and valence electrons. By treating the composed system during the MD simulations, we

have used the Generalized Amber Force Field (GAFF) [183] for the liquid phase of acetonitrile (ACN)

molecules, which was obtained from [184]. For the force field of the solid, in turn, we have used a Universal

Force Field (UFF) [185] for MoO3, which was obtained from the web-based server OBGMX [186, 187]

that generates topologies using UFF force field. It is based on Open Babel suite [188] and is able to

deal with periodic systems; for the MoS2, we have used the force field employed in the work by Sresht et

al. [189]. All the simulation boxes used to perform MD simulations on systems composed by one of the

solids and by acetonitrile molecules, or just by acetonitrile, were built using PACKMOL package [190].

To study the charge transfer of the composed system, we have used both the localized density

approximation exchange-correlation functional by Perdew and Zunger [85] (PW-LDA) and the PBE-GGA

functional [83]. For atomic relaxation purpose within the scope of the GGA approximation, we have used

the same van der Waall functional [170] used in section 5.1. We also used PAW method to express the

interaction between the valence electrons and the ionic ones. Since the computational cost becomes dense

for such a huge system, we have used small slices of the composed system, as will be explained later in

section 7.2. A MP grid mesh of 2x2x1 was employed for the charge analysis in the cell extracted from

the MD simulations.

5.4 Water and oxygen molecules

We also performed MD simulations on the ACN simulation boxes containing 0.1 mole fraction

of either H2O or O2 (55 molecules), which can be seen as “contaminants” of the ACN, since in the

exfoliation process pointed out by the reference [73] the solid was thermally treated in an inert ambient,

but the dispersion agent (liquid acetonitrile) was not. For the H2O molecules, we have used the force

field (FF) indicated by [191], which was derived from TIP3P parametrization class [192], that was used

to simulate liquid-phase exfoliation of MoS2 using N-methyl-2-pyrrolidone (NMP) as solvent, and also 0.1

mole fraction of H2O. According to that reference, it was found to be crucial for stabilization of MoS2

nanosheets in NMP dispersions. For the O2 molecules, we have employed a force field used to simulate its

absorption on solids, such as silica and zeolites [193]. This FF was constructed as a three sites molecules:

two oxygen atoms connected via a massless point charge (a virtual site).



Chapter 6

XANES simulations in diamond-like

two-dimensional materials

It was asserted that the diamond hexagonal phase (also known as londasleite1) would come from

asteroidal impact due to the huge pressure involved in the process. However, it was never found as a

discrete material, as occurs with cubic diamond [196]. In fact, it was discovered as faulted and twinned

cubic diamond, and, actually, the londasleite meteorite sample would be a disordered stacking of the

hexagonal and cubic phases [197]. However, shock experiments [47,198] have shown that it is feasible to

create a relatively pure londasleite in a high-pressure environment. Thus, we will discuss both the cubic

and the hexagonal phases, the former one being the most stable as shown by theoretical studies [199,200].

Our results have shown that the energy difference per atom between them is around 28 meV.

As XANES simulations can be used to probe empty states in solids [39], such a method along with

DFT calculations can be a powerful tool to probe local environment of an atom (either a bare atom, or

a functionalized one). In fact, that can happen whenever a X-ray photon strikes the atom, which can be

probed by XANES simulations using the steps we have outlined in the section 3.3.4. These simulations

were performed on the materials shown in figure 6.1, and also on the ones shown in figure 6.16. As

a matter of fact, as diamondol (shown in figure 6.16-a) is formed from the pressurization of graphite

layers [56], and bi-F-diamane (figure 6.16-d) from the fluorination of AB-stacked bilayer graphene grown

in a chemical vapor deposition (CVD) experiment on a CuNi-(111) surface [57], we thought it would be

interesting to firstly do an analysis of the precursor layers, namely, hexagonal graphite (HG), also known

as Bernal graphite (figure 6.1-c), and bilayer graphene (BLG), as well as an analysis on both the cubic

and hexagonal diamonds (CD and HD, respectively). Since diamond consists of carbon atoms bonded

by sp3 hybridization, whereas graphite systems are made up by planes of carbon atoms bonded through

sp2 hybridization, which are stacked by van der Waals forces, we would like to compare results of the

diamond-like systems to those mentioned carbon allotropes phases. By doing so, we expect to verify

1Hexagonal diamond is named this way in honor of Dame Kathleen Lonsdale, an Irish crystallographer who was the first

to use Fourier spectral methods for solving the structure of hexachlorobenzene. In addition to it, she also worked on the

synthesis of diamonds, and its study using X-rays [194,195].
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whether such material remains close to which hybridization configuration, the former or the latter ones,

in order to provide a theoretical characterization of these systems.

Figure 6.1: Pictorial representation of (a) and (b), cubic and hexagonal diamonds, respectively, and (c) Bernal graphite.

Yellow sphere represent carbon atoms. The orange ones represent the non-equivalent carbon atoms probed by XANES

simulations.

In the following, the experimental results for the precursor materials are shown. Our simulated

peaks, shown in table 6.1, are in good agreement to the experimental data, which are shown in parenthesis.

These experimental values can be checked out in the figure 6.2, which are the results for the diamonds

(CD and HD) and both Bernal graphite (HG) and bilayer graphene (BLG). Just for completeness, the

theoretical result shown in figure 6.2-(b) was performed based on a cluster model calculation using

DV-Xα method [201], which is based on the first-principle molecular-orbital (MO) calculations [202]

implemented in the package SCAT [203]. All the simulated values are within the energy resolution of

some experiments [204, 205], being the major difference 1.5 eV for HD, whereas the minor one is 0.2 eV

for σ-transition of BLG, with around 0.1% of relative error.

Table 6.1: Comparison between our XANES simulations and the experimental results (in parenthesis) for CD (cubic dia-

mond), HD (hexagonal diamond), HG (hexagonal, or Bernal, graphite), and few-layers graphene (bilayer graphene, BLG).

These values are given in eV. A figure with the C(K)-edge photoabsorption spectra for each of these systems can be seen

in Fig. S1.

System π-transition σ-transition

CD – 289.0 (289.5 [2])

HD – 288.4 (289.9 [206])

HG 284.7 (285.5 [204]) 291.2 (292.5 [204])

BLG 284.8 (285.5 [205]) 291.3 (291.5 [205])
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Figure 6.2: Experimental results for (a) CD [2] (b) HD [207], with experimental result from [206], (c) HG [204], and (d)

few-layers graphene (FLG) [205].

So, the following sections will be presented as follows: in section 6.1 cubic and hexagonal diamonds

will be addressed so that we can understand the spectra of a sp3-hybridized material; in section 6.2, in

turn, we will do a systematic study on the Bernal graphite along with the BLG system under XANES

investigation, performing an angular-dependence analysis of the carbon K-edge spectra; finally, the X-ray

probing of the diamond-like materials will be studied in section 6.3.

6.1 Probing Diamond Materials

6.1.1 Cubic Diamond

Because diamondol seems to present an admixture of sp3- and sp2-hybridization characters on

its carbon atoms, it is important to analyze the XANES spectra of the cubic diamond phase. Electronic

properties was analysed in figure 6.3, which shows the projected density of states (PDOS) for the cubic
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system without core-hole (left-hand side) and with core-hole (right-hand side)2. PDOS for systems with

core-hole mean that one electron has been removed from the atomic core, specifically from the 1s-orbital,

due to the X-ray incidence. Henceforward, as in figure 6.3, the Fermi level is set to 284.2 eV, which is the

1s core-level binding energy of the electron struck by the X-ray photon [208]. Such a value is adopted by

the XSpectra code in the QUANTUM ESPRESSO suite in computing XANES spectra for carbon atoms.

Figure 6.3: Projected density of states (PDOS) for cubic diamond without (left) and with (right) core-hole. The blue arrows

highlight the main differences in comparison to the bare system.

Electronic features of both bare system and core-hole one can be compared through figure 6.3, by

which we can see small differences between them. They are pointed out by blue arrows on the right-hand

side of that figure. Indeed, there appear kinks at 288.6 eV for both s- and p-states. Also, there are new

p-states at 290.6 eV and 293.1 eV, as well as around 295.0 eV. The labels are to be regarded as relevant

states to the equally labeled peak in XANES spectra, as explained below3.

By comparing XANES simulation with experimental results in figures 6.4(a) and 6.4(b), respec-

tively, one can see a general good agreement. Because of the symmetry of the cubic diamond, both the

perpendicularly polarized spectrum and the parallely polarized one are the same. Moreover, features in

the spectra can be attributed to the PDOS in figure 6.3 (right-hand side), as explained in [2], where there

are critical points, which were discussed in the last paragraph and pointed by blue arrows. For example,

the first peak in figure 6.4(a) (labeled with the letter A) is strongly related to the newly-mentioned p-

states at 288.8 eV in figure 6.3. Besides, the less prominent peak, the B one at 290.6 eV can be matched

to the B-labeled states in the PDOS. If we slide down through the spectra up to around 295 eV, we

can see two very tiny ripple, peaks C and D at 293.3 and 295.3 eV, respectively. However, the p-states

related to the D peak can barely be distiguished from the bare system on the left-hand side of the figure

6.3. Finally, the decreasing of the XANES intensity around 300 eV can be explained through the lack of

p-states in figure 6.3.

2From now on, we will refer systems without core-hole, i.e., system in which the atoms have all core-electrons untouched

as a bare system. This system is said to be found on its ground state.
3In fact, all the following analysis will be performed observing how the core-hole system changes as compared to their

counterpart bare system. The most important changes will be labeled according to the same labels used in XANES spectra,

in order to make connections between the newly-generated states and the peaks of the spectra.
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(a)

A
B

C D

(b)

289.5

Figure 6.4: (a) Calculated XANES spectra for cubic diamond: black and red curves represent X-ray polarization perpendic-

ular to the material; green curve represents X-ray polarization parallel to diamond. (b) Experimental results from [2] for

C K-edge absorption spectrum of cubic diamond. The letters underneath the spectrum refer to special points within the

Brillouin zone, and its values were calculated in [209], which are listed in table I after [2].

According to Ma et al. in [2], 1 s core excitation is assigned to 289.5 eV, which is 5.5 eV above

the valence band maximum (VBM), and is related to the 1 s-σ transition. That value is close to the

high symmetry critical point X1 (red arrow on the bottom of the figure 6.4(b)), which is 5.91 eV above

the VBM [209]. Interestingly, an indirect energy gap of 5.5 eV was experimentally found [210] with

the VBM at Γ, and the CBM along the Γ −X path in the Brillouin zone [210, 211], which is the value

assigned to the 1s-σ∗ transition. Our calculation shown an indirect energy gap of 4.16 eV, whose value,

compared to other calculations we have found (4.12 eV [212], and 4.34 eV [213]), is in good agreement.

The underestimation with respect to the experimental value shown above is expected for this GGA-PBE

functional we have employed. The first peak in XANES spectrum is around 288.8, which is 5.6 eV above

the VBM. Indeed, it agrees very well with the results after Ma et al..

Through the figure 6.5, which shows the PDOS of both the first-neighboring atoms (figure 6.5(a))

of the X-ray absorbing one (figure 6.5(b)), one can see how those atoms contribute for the XANES spectra.

The first-neighboring atoms have the same PDOS due to the symmetry of the system. The projected

density of states on the absorbing atom comes both from the valence electron orbitals and from the orbitals

of the required projectors (6.5(b)) to perform the XANES simulations. As one can see, those PDOS fairly

correspond to the aforementioned peaks, especially those of 288.8 eV and 303.75 eV, which come mainly

from the absorbing atom. Furthermore, the peak at 295.3 eV (labeled as D), which could not clearly be

matched through the s- and p-orbitals of the figure 6.3, can be assigned to the first-neighboring atoms.
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Also, we can see that 3 s- and 3 p-orbitals mostly contribute to the shoulder-like part of the spectrum,

around 303.75 eV. In fact, the XANES simulation is in accordance with the experimental results of [2],

which are also reported in [39].

(a)

(b)

Figure 6.5: Projected density of states on: (a) the first-neighboring atoms of the X-ray absorbing one. All three first-neighbors

have the same PDOS due to the symmetry of the system; (b): X-ray absorbing atom, where we have the combination of

2 s and 3 s orbitals, as well as 2 p and 3 p orbitals in the plot. Both the 3 s and 3 p orbitals are required to perform XANES

simulations, as explained in the section 3.3.1. From now on, all the following figures regarding the absorbing atom will have

the same labels.

(a) (b)

Figure 6.6: (a) Cubic diamond is the arrangement of the six-membered carbon atoms layers with a shift half-way the diagonal

of a ring; (b) In the hexagonal diamond each layers is a mirror image of the previous one. The first structure is seen from

the top-view of the [101] crystalographic direction. The latter one is seen from [0100] direction.
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6.1.2 Hexagonal Diamond

The difference between the cubic and the hexagonal diamonds relies on how those layers of carbon

atoms are stacked. Through the figure 6.6 we can visualize the slight difference between these phases.

The former one has its six-membered rings shifted by half-way across the diagonal of a ring, whereas the

hexagonal one has its rings mirrored from the neighboring layer [197]. Therefore, it is expected that the

landasleite spectrum becomes different from the cubic one.

However, before analysing its spectrum, it is important to see the electronic properties through

the PDOS for the systems with and without core-hole. By looking at the figure 6.7, we can see that a

kink also appear at 288 eV for the p-states PDOS curve of cubic diamond (labeled as A). Nonetheless,

above it, both with and without core-hole PDOS curves are alike in many aspects. Figure 6.8 shows its

XANES simulation and the experimental EELS4 results [196]. Looking at the energy scale of the figure

6.8(b) we can see that our results (shown in figure 6.8(a)) is pretty much the same. For instance, around

287.5 eV, we can see that there is a tiny shoulder due to contributions from the in-plane polarization

(overlaid red and black curves), while around 297 eV another shoulder arises, this time due mostly to the

parallel component (green curve).

The local PDOS on the first-neighbor atoms of the absorbing one are shown in figure 6.9. The

peak A from XANES simulation, which has contributions from both perpendicular and parallel X-ray

polarizations, has larger contribution from px orbital of the in-plane atoms, as well as an even larger

contribution the pz orbital from the out-of-plane one. Similarly, from figure 6.9(c), we can see that the

absorbent one itself also contributes for the peak in the region of 288 eV. Although there are other two

observed peaks related to the differences observed in the figure 6.7, the local PDOS does not show a

straightforward contribution from the first-neighbors of the absorbent.

Figure 6.7: Projected density of states (PDOS) for hexagonal diamond without (left) and with (right) core-hole. The blue

arrows highlight the main differences in comparison to the bare system.

4It stands for Electron Energy Loss Spectrum.
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(a)

(b)

Figure 6.8: Simulated XANES for hexagonal diamond (a), and its experimental EELS result (b) from [196] (figure 4a from

supplementary information of that reference) in a natural londasleite sample of the Canyon Diablo’s meteorite. The grey,

shaded area, σ̄, refers to the mean of the polarized ones (black, red, and green curves). See text for more information. The

Fermi level is set to 284.2 eV.

However, one could wonder about the EELS spectrum from figure 6.8(b). In fact, this result was

published in 2014 by Németh and co-workers [196] when they were engaged at showing the necessity for

re-evaluating the interpretation of londasleite material. In their study, they used a natural sample from

the Canyon Diablo’s meteorite, from which the londasleite was first discribed [195, 214] more than 50

years ago, as well as a synthetized one [215]. Actually, according to [35], in its section 2.5, we can learn

that 100–300 keV eletron beams can be used to probe core level of atoms in a material. Within those

energies, electrons can be approximated as plane-waves, so that the cross-section would be proportional

to

σ ∝
∣∣〈Φf |eiq·r|Φi〉∣∣2 δ(Ef − Ei −∆E), (6.1)

where ∆E is the electron energy loss. With the expansion given by the equation (3.13), one can certify

the EELS spectrum is proportional to the XAS cross section:

σEELS ∝ σXAS ∝ |〈Φf |q · r|Φi〉|2 δ(Ef − Ei −∆E) (6.2)

In fact, in case of high-energy X-ray beam, the X-ray can also be approximated as a plane-wave. That is
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the reason for us to compare the figure 6.8(a) to the figure 6.8(b).

(a)

(b)

(c)

Figure 6.9: Projected density of states on: (a) the in-plane first-neighboring atoms of the X-ray absorbing one. All three

first-neighbors have similar PDOS due to the symmetry of the system; (b) the out-of-plane carbon atom, and (c) the X-ray

absorbing one.

6.2 Hexagonal Graphite and Bilayer Graphene

Electronic properties, and XANES spectra analysis will be addressed for these layered systems,

whose atoms are bonded together by sp2-hybridization throughout the in-plane directions, while those

planes interact weakly by van der Waals forces through π-orbitals, which are perpendicular to them.

Several works have reported the transition from graphite into diamond [215–223] mostly through either

shock-induced or pressure-dependence phase conversion from hexagonal graphite (HG) to hexagonal dia-

mond (HD), and also from rhombohedral graphite (RG) to cubic diamond (CD). That is the reason why

we are going to treat graphite systems in this section. Indeed, Rosenberg et al. reported in 1986 a study

showing that the C(K) near-edge X-ray absorption fine structure (NEXAFS) of highly oriented pyrolytic

graphite (HOPG) changes dramatically with the X-ray incidence angle α [204], which we are going to

define as the angle between the incident X-ray polarization vector, ε̂, and the direction perpendicular to
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the material surface, ĉ, that can be seen in the schematic figure 6.10.

x̂ŷ x

ẑ

Figure 6.10: A sketch of the angle α between the incident X-ray polarization vector ε and the direction perpendicular to the

crystal surface ĉ.

According to Rosenberg et al. [204], angular variations of the spectra depends on the X-ray

polarization vector. Indeed, in HOPG the σ-bonding symmetry is lifted when the ε̂ is aligned with the

bonding axis, otherwise π-symmetry is probed when ε̂ is perpendicular to the interatomic bonding axis.

So, in a nutshell, for carbon K-near-edge structure, we have the following transitions:

1 s → σ, for ε̂⊥ ĉ,

1 s → π, for ε̂ // ĉ,
(6.3)

One should be aware that, in the Rosenberg’s results, the angle values (α) shown on the left side of

the figure 6.11(a) do not correspond to the inset shown therein. It must have been typo errors, so that

we would like to draw your attention to that. Their results assigned 1 s → π transition to the peak at

285.5 eV, 2.0 eV above the Fermi level [204], marked with a letter A at the bottom of the figure 6.11(a).

The σ-resonance, in turn, is observed at around 292.5 eV5, letter B at the same figure. Besides, for

dipole transitions, the intensity of a pure 1 s→ π transition is proportional to sin2(α), as shown in figure

6.11(b).

Figure 6.12(a) shows how the angle dependence of the incident X-ray polarization influences the

form of the spectra. As the incident X-ray angle becomes perpendicular to the normal direction to the

material surface, ĉ, the 1s → π transition (blue arrows) is turned off – please, refer to the figure 6.10 for

a better understanding. Therefore, in that case, the 1s → σ trasitions becomes more apparent, which

are displayed as brown arrows. As seen in figure 6.12(a), an outstanding feature of this X-ray angle-

dependence analysis is that the peak A loses almost completely its intensity as α increases. Besides,

we have noticed that as long as the perpendicularly polarized curve drops down, the parallel polarized

spectrum seems to compesate it at 293.8 eV, which is linked to the states on the right-side inset of

the figure 6.13. One last thing to observe is the linearity of the intensity of the peak A with sin2(α), as

displayed in figure 6.12(b). It does resembles the trending observed in [204], which asserts the π-character

of that peak.

5It was also noted this peak at 292 eV for C–C intermolecular bond length of 1.42 Å, 7.3 eV above the binding energy

284.7 eV [204,224].
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(a) (b)

Figure 6.11: Experimental results after Rosenberg et al. (a) showing the carbon K-edge photoabsorption spectra of HOPG

for various incident X-ray angles α. At the bottom of the figure, dashed lines represent π-symmetrized states, and solid

line represent states with σ symmetry. The study of those correspondences can be found in [225]. The dependence of the

relative intensity of peak A with sin2(α).
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Figure 6.12: (a) Angle-denpendece of XANES for HG strucure, where the X-ray incidence angle is defined between the X-ray

direction relative to the crystal coordinates of the material and the axis perpendicular to the material surface. (b) Plot of

the peak intensities around 284.5 eV (peak A) versus sin2(α), where α is the angle between the incident X-ray and the

direction perpendicular to the crystal.

Here, we will investigate the electronic properties of both Bernal graphite and AB-stacked bilayer

graphene (BLG), along with the projected DOS on the atoms, as it was done in section 6.1 for diamond

systems. We will analyze them in the following along with the XANES simulations.

Electronic properties of both systems are shown in figure 6.13, wherein the PDOS on p-orbitals of

bare ones are displayed on the left-hand side, and the systems with core-hole, on the right-hand side. By

comparing both the bare systems, they present almost the same p-states (within our work’s theoretical
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level), except for the states within the 286 – 290 eV range, where one can see a ridge-like form of the

states related to the BLG. When it comes to the core-hole systems (right-hand side), the major differences

one can notice are pointed out by blue arrows. Their labels are linked to the XANES peaks observed

in figure 6.14, whose spectra are taken as the mean of the contribution from the non-equivalent atoms,

considering also the polarization contributions. Firstly, the states spotted by the A label (at 284.8 eV

for BLG) are around 0.15 eV above the ones for HG system. Sencondly, at B (285.6 eV) there are also

states related to the promoted core-electron. Those are states that noticeably differ from the bare system

and have influence on the XANES spectra owing to the dipole trasition rule (∆l = 1), as one can see in

the aforementioned figure. Other states that contribute for the D and E XANES peaks are also shown in

the figure: 291.3 eV and 292.1 eV, respectively. Although the PDOS associated to the BLG system are

higher, they do not influence on the XANES peaks as much as the HG-related states. This is observed

owing to the orbital hybridizations, although for 1s-π∗ transitions only pz orbitals are accounted for.

Moreover, there is the C peak, which is related to a shoulder-like curve of states (at 287 eV) shown in

figure 6.13. These reflect on the form of the XANES curve for BLG system (figure 6.14).

Figure 6.13: Projected density of states (PDOS) on p-orbitals per atom for HG and BLG without (left) and with (right)

core-hole. The Fermi level is set to 284.2 eV, which is under the vertical, violet, dashed line.

First of all, it is important to note that the peak A is related to the 1 s → π transition, which

occurs at 284.7 eV (284.8 eV) for HG (BLG), 0.8 eV below that reported by Rosenberg in [204] (285.5

eV), and 0.3 eV below that after Fischer et al. [226] (285.0 eV). Overall, it is an acceptable value. The

second main peak (peak D) is related to the 1 s → σ transition, which is around 291.3 eV. In fact, the

value reported by both aforementioned references is 292 eV. One can see that there is no shift in the peak

associated with the π transitions as the angle α diminishes, whereas the peaks D undergoes a tiny shift

from 291.3 eV to 290.8 eV as α cuts down (refer to the figure 6.12(a)). It is important to mention that
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the difference on the XANES contributions from the two inequivalent sublattice is practically null.

Figure 6.14: XANES simulations for both hexagonal graphite (HG) and bilayer graphene (BLG).
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Figure 6.15: Local projected density of states (PDOS) on first-neighbor atoms, and the absorbent one itself for both HG

(solid lines) and BLG (dashed lines). The top plot corresponds the perpendicularly positioned atoms w.r.t. the absorbent

one, the middle plot refers to the parallel first-neighbors, and the bottom plot regards the absorbing atom. Green, black

and red lines are indication of states decomposed on pz -, px -, and py -orbitals. The plots that present only black lines do

not show the red ones because they have the same quantitative contribution.

In order to investigate how the first-neighboring atoms of the X-ray absorbing one, as well as

itself, take part in this process, an analysis of the PDOS on each of them is necessary. Since both systems

present two non-equivalent carbon atoms, it is importante to point out that the analysis performed on
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both atoms did not bring out relevant differences between them. It consisted on investigating how the

local PDOS on each atom, and its first-neighbors (positioned in- and out-of-plane) took part in the

observed XANES peaks. Those PDOS are shown in figures 6.15. One can see that the peak A (figure

6.14) is linked to the pz states from both the parallel (in-plane) positioned neighbors w.r.t. the X-ray-

absorbent atom and itself of both systems (figure 6.15(c)). Peak C, in turn, has higher contribution from

the perpendicular and parallel positioned neighbors (figures 6.15(a) and 6.15(b), respectively). Peaks D

and E of XANES spectrum comes mainly from the absorbent atom (bottom figure), in fact an admixture

of the three components of p orbitals.

6.3 XANES investigation on diamond-like materials

Concerning the diamond-like structures shown in figures 6.16-a to 6.16-d, we have performed both

structural relaxation and XANES simulations. Essentially, the same type of analysis we have made in

the previous sections were performed. As one knows, diamondol formation comes from the fact that the

presence of hydroxyl groups on either a bi- or fewlayer graphene [56,58,180], can enforce sp3-hybridization

due to the formation of C–OH bonds, and three C–C interlayer covalent bonds. Also, the fluorination

of graphene sheets in Bernal stacking [57], forming C–F bonds, took place by chemical vapor deposition

(CVD) on a CuNi(111) crystal, nurturing the formation of interlayer carbon bonds.

Therefore, in the following, an analysis of the chemical environment of carbon atoms in such

structures, along with their electronic properties was performed. We have also calculated the work func-

tion (WF) of those materials, and the 1s-core-level binding energy (BE) for each of their non-equivalent

carbon atoms. These information can be a source of data for experimentalists in the field.

6.3.1 Atomic arrangement of the materials

Both ab-initio calculations and experimental techniques [56–58] confirmed the atomic structures

shown in figure 6.16. The table 6.2, in turn, shows the atomic disposition, namely bond length and

angle between the atoms, for those structures. According to that table, the bond length between the

carbon atom (X) and the oxygen atom is 4.2% larger than the same bond w.r.t. the fluorinated systems.

Also, the distance between atoms X’ and Y of the single-covered systems is found 6.1% larger than

the corresponding double-covered ones. Considering the angles amongst the atoms participating in such

bonds, one can notice that ϕY XF is slightly smaller for both flourinated systems than ϕY XO from the

hydroxylated ones. Furthermore, ϕA(C)XO is found to be 2.4% smaller than ϕY XO for both diamondol

and bidiamondol structures. It indicates, along with the value of ϕX′Y X , that the groups are slightly

tilted outwards the direction perpendicular to the plane of the material. Conversely, that is not observed

for both F-diamane and bi-F-diamane systems.
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Figure 6.16: Crystal structures of (a) diamondol, (b) bidiamondol, (c) F-diamane, (d) bi-F-diamane, and (e) diamondene*.

This last one is obtained by removing the hydroxyl groups from the diamondol structure. The orange spheres refer to the

X-ray absorbent atoms, which are non-equivalent carbon atom. Hydrogen, oxygen, carbon, and fluorine atoms are depicted

as light blue, red, yellow, and gray spheres.

For the sake of comparison, it is important to confront those information with those of the

diamonds and the Bernal graphite, which are also in the caption of the table 6.2. The former ones,

which are the cubic (CD) and hexagonal diamond (HD) have their bond length given by 1.55 Å, and

dX−C = 1.57 Å and dX−A(B,C) = 1.54 Å, respectively. With respect to the angles between the bonds,

the cubic diamond atoms are disposed in an angle of approximately 109.5°, and the HD shows their bonds

in angles of ϕCXD = 109.9° and ϕBXA = 109.0°. Bernal graphite, in turn, has bond length and angles

of 1.42 Å and 120°, respectively. The in-plane bonds of the diamondized structures, such as dX−Y and

dX′−Y ′ , have the same length as those of the diamonds structures. Besides, the bonding dY−X′ of both

diamondol and F-diamane are longer than the ones from bidiamondol and bi-F-diamane, whose bond

lengths are of the same order as that of the cubic diamond. The angular arrangement of the in-plane

atoms are around the same as the diamonds ones, whereas the arrangement of the out-of-plane atoms

may vary by about ±1°. By these information, therefore, the diamondized structures have been shown

to be sp3–hybridized materials.
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Table 6.2: Bond length, d (in Å), and angles, φ (in °), between atoms of the systems shown in figure 6.16 according to the labels

depicted therein. For the diamonds (CD, and HD), the values are 1.55 Å, and dX−C = 1.57 Å and dX−A(B,C) = 1.54 Å,

respectively. Their angles are given as 109.5°, and for HD, ϕCXD = 109.9° and ϕBXA = 109.0°. Regarding HG, we have

1.42 Å and 120°, respectively. Refer to the figure 6.1 for these labels.

Diamondol Bidiamondol F-diamane Bi-F-diamane

dX−O(F ) 1.44 1.43 1.38 1.37

dX−Y 1.55 1.57 1.54 1.56

dY−X′ 1.64 1.55 1.66 1.55

dX′−Y ′ 1.51 1.57 1.51 1.56

ϕY XO(F ) 110.24 110.82 108.26 108.85

ϕY XC(A) 110.27 109.78 110.65 110.09

ϕAXC 110.32 109.99 110.65 110.09

ϕA(C)XO(F ) 107.84 108.19 108.26 108.85

ϕX′Y X 108.54 108.69 108.26 108.85

6.3.2 XANES simulations

In the following, we show our results concerning the XANES simulations performed on the

diamond-like structures. The bottom plot of the figure 6.17 shows each of the spectra, which were

calculated as an average over all non-equivalent carbon atom, for the structures depicted in the figure

6.16. In the upper chart one can see the spectra for the carbon-layered systems and the diamond ones.

As we have already seen, the peak labeled as A for the HG has lower intensity than that of BLG, which

occurs due to the lower density of p-state, as was shown in figure 6.13. In fact, the p-DOS of BLG is

twice as high as that of HG in the 284− 286 energy region.

In the bottom chart, diamondol (magenta line) presents a peak at 284.5 eV (0.3 eV above the

Fermi level), close to the peak A from HG π-transition. On this region, the diamondol’s peak closely

resembles to the F-diamane peak (turquoise line), roughly at the same energy. Moving forward in the

energy scale, close to the D peak, diamondol presents a peak (at 288.1 eV) ∼0.3 eV below that one and

∼0.95 eV below the D’ peak. F-diamane, in turn, presents a peak 0.1 eV above that of diamondol, and

another one ∼1.0 eV below it (at 287.2 eV). Also, diamondol presents another peak (at 290.0 eV) 0.95

eV above the D’ one, and 1.23 eV below the peak B. F-diamane has a similar peak 0.5 eV above this one

of diamondol. Therefore, diamondol and F-diamane have spectral features from other carbon structures,

including the HG π-feature. Concomitantly, they also have peaks that give similar signatures to the

diamond structures.
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Figure 6.17: Carbon K-edge X-ray absorption spectra for: Upper: HG (solid, blue line), CD (dashed, blue line), HD (dot-

ted blue line), BLG (red line). Bottom: diamondol (magenta line), bidiamondol structure (dark green line), F-diamane

(turquoise line), bi-F-diamane (purple line), and diamondol structure without the hidroxyl group, which we called dia-

mondene* due to the fact that it resembles the diamondene structure [58] (orange line). The vertical, dashed, brown line

spots the Fermi level. The green, red, purple, and black arrows indicate the HG π-, HD σ-, CD σ-, and HG σ-trasition,

respectively.

By removing the -OH group of diamondol, the diamondene* (orange line in figue 6.17) shows a

more intensified peak near the A one compared to both diamondol and F-diamane, but shifted to higher

energy value. It has a peak at 290.8 eV, 0.4 eV below the peak B of HG, even with similar intensity.

Regarding the doubly-covered structures, bidiamondol (dark green line) and bi-F-diamane (purple line),

in turn, present higher intensities within 284–289 eV range. However, only the latter has the π-feature,

showing a peak at approximately 285 eV. It also has contributions at 287 eV (so as bidiamondol), a peak

similar to what F-diamane shows. Conversely, bidiamondol does not show π-transition. Instead, it has

a group of wavelet-like peaks on the region of the diamond ones. These peaks are endowed with higher

intensity compared to the diamondol ones.

It is well-known that experimentally one is able to perform polarization-dependent X-ray ab-

sorption spectra by changing the angle between the X-ray beam and the sample [227]. Such possibility

of probing a determined material gives rise to drastic changes in the spectra, which is related to the

prediction of the symmetry of the final states (σ or π) associated with that spectral feature [204]. In

figure 6.18, we have simulated the XANES spectra decomposed into perpendicular and parallel X-ray

polarization with respect to the direction perpendicular to the solid surface, according to the inset shown

on the left-hand side of the chart. Peaks a∗ of both diamondol and F-diamane (at 284.5 eV) have

mostly contributions from parallel polarized spectrum (green line), which are found 0.2 eV below the

energy of peak A for HG π-transition. As hydroxyl group is removed, the system (diamondene∗) becomes

characterized by the peak a (bottom figure, orange line), which is exactly at the HG π-transition, with

majoritary contribution from parallel polarization. Bi-F-diamane presents a peak of π-feature at ∼285
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eV as well. Besides, all the systems, but diamondene∗, have the peak d∗ (∼287.2 eV). They have mostly

parallel polarized contributions, except for the bi-F-diamane, whose d∗ has major contributions from

the perpendicular polarization. They are found 1.2 eV below the D peak from HD. Furthermore, the

peak d (at 288 eV) is located 0.4 eV below the peak D and has contribution from both parallel and

perpendicular polarized spectra. It is observed for Diamondol and F-diamane higher contribution from

parallel polarization for this peak. Also, bidiamondol and bi-F-diamane present d peaks at 288.5 eV (0.1

eV above D peak), but they have mostly perpendicular contributions. There is a shoulder-like peak in d’

exactly at the energy of the CD σ-transition, whose contribution in diamondol and F-diamane come out

from perpendicular spectrum. Another shoulder-like peak, d’∗ in diamondol (at 290 eV), is related to CD

σ-transition as well. This shoulder shape appears due to the parallel polarized X-ray. This peak also is

observed in diamondene*, but it has higher parallel contribution. Peak b∗, in turn, is straightforwardly

linked to the HG σ-transition. Its contribution comes mainly from perpendicularly polarized spectrum

both in F-diamane and in diamondene∗.

Figure 6.18: C(K)-edge XANES spectra decomposed into polarized X-ray beam. The lines and the colors represent the

same systems as the ones from Fig.6.17. The green lines refer to the spectra parallel to ĉ (inset on the left-hand side) while

the black ones refer to the perpendicularly polarized spectra. ĉ represents the direction perpendicular to the solid surface

(depicted as a black solid). The dashed, vertical lines are colored as the arrows shown in Fig.6.17. Fermi level is represented

by a thicker dashed, brown line. Lowercase letters stand for the peaks related to the ones from the other carbon allotropes,

which are shown as vertical, dashed-thin lines. The asterisk sign is to indicate the peak is nearby those ones.

By decomposing those spectra into the non-equivalent carbon atoms, one can see that the peaks

a∗ from both diamondol and F-diamane originate uniquely from the Y atom. The figures 6.19-a and -c

show the spectra for the single-covered systems. The atoms of these systems present almost the same
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spectra, except the F-diamane’s X atom, which shows higher intensity for the parallel spectrum. In

fact, although both the C–O and C–F bonds in these systems were found almost the same (1.44 and

1.38 Å), this can be explained be Löwdin total charge analysis, which showed that the charge in the X

atom increases by 1.57 and 1.64e, respectively, with respect to the calculation with no core-hole included.

Besides, due to the different electronegativities, fluorine presented about 0.7e more than the oxygen atom.

Furthermore, Y atom presents a parallel polarized peak near the Fermi level for both the systems. The

observed difference in intensity of the peaks around 290 eV is due to the fact that the spectra of their

Y and X’ components show tiny displacements one w.r.t. each other. The perpendicular components

of these atoms for F-diamane are shifted 0.5 eV higher than the ones of diamondol. Despite the fact

that the bond lengths of the involved atoms are very similar, the angle ϕY XO for diamondol is 2 higher

than the angle ϕY XF between the atoms in question. Since the Löwdin analysis for both atoms does not

draw any significant difference, this small angle difference can be interfering in the way the hybridization

between the p-orbital take place. By looking at the figures H.1, we can see that the py orbitals from the

Y’s in-plane first-neighbors, and px orbitals from the X’ in-plane first-neighbors of diamondol participate

in the bonds, whereas in the case of F-diamane, only the py orbitals of the Y’s in-plane first-neighbors

are accounted for it, as shown in figure H.3.

Figure 6.19: XANES spectra of (a) diamondol, (b) bidiamondol, (c) F- diamane, and (d) bi-F- diamane. The black and

green solid lines refer to the perpendicular and parallel polarized spectra, respectively. Each of them are assigned to an

atom of the unit cell, shown by blue letters on the left-hand side (refer to the figure 6.1). The gray, shaded areas show the

mean for each atom.

Besides, figures 6.19-b and -d show, in turn, spectra of the double-covered systems. Atoms X’

and Y’ present the same spectra by symmetry. Although the bidiamondol and bi-F-diamane are similar

in terms of their structures, it is important to notice that the peak a (shown in figure (d)), which has

contributions from both X and Y atoms, does not appear in the bidiamondol case at the same energy

value. In fact, both are to be regarded as π-transition peaks, as can be seen in figures H.2 and H.4, which

show the local PDOS of the addressed atoms, whose pz states are shifted. Diamondol and F-diamane,

in turn, show a rather less intense, but alike peaks on the same energy region (peak a∗). Unlike the bi-

F-diamane case, these peaks come only from the Y atom, as already mentioned. Such as bi-F-diamane,
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the bidiamondol structure also presents a pronounced parallel polarized peak (peak d* in 6.19-b), but it

has contributions mostly from the X atom.

One can also see that perpendicularly polarized peaks have their contribution to the spectra

coming mainly from around 288 eV. Lastly, it is worth to mention that in some cases, such as the d,

d∗ (bidiamondol and bi-F-diamane), d’∗, and b∗, the resulting peaks are contribution from a mixture

of perpendicular and parallel spectra from different atoms. Furthermore, around 290 eV, diamondol

spectrum shows higher intensity than the latter one. Considering the double-covered materials, bi-

F-diamane shows a high-intensity peak at ∼285 eV, which comes mainly from X atom (with lower

contribution from Y atom). In spite of that, there is no such a peak for the bidiamondol system.

6.3.3 Analysis of the electronic structure of the spin-polarized systems

Since the structures’ peaks have been assigned, we should turn our attentions into the spin-

polarized systems. We have seen through the Fig.6.18 in the previous section that the Y atom plays an

important role on both diamondol and F-diamane systems. These system were found to be spin-polarized,

both showing magnetization per unit cell of ∼ 9.0µB , which agree very well with [56].

The structure of those systems, on the ground state, are shown in Fig.6.20-a, which depicts their

spin-polarization as an isosurface of 0.0005 e/bohr3, with the spin-up region spotted by red color. One

can see that the bottom of both structures (around the atom X’) are spin-down polarized (blue region).

The magnetic moment per carbon site, µ, are also shown in the first column of table 6.3 for both systems,

which do not change too much from one system to the other. However, that situation undergoes some

variations depending on the carbon atom that is simulating the absorption of the incident X-ray, as one

can see in table 6.3. In fact, it shows how those quantities change with respect to their corresponding

ground state value. There are a few pieces of information we can extract from that table. µ increases by

∼ 50% for atom Y when it is simulated as the absorbing one. Indeed, the atoms X and Y, that undergo

the X-ray absorption, show increasing values of µ, except for the X’ and Y’ atoms: instead of increasing,

they decrease their values, being the Y’ the one that changed the most (71% for diamondol, and 97%

for F-diamane). Another observation connected to the last ones is that while µ are decreased, their first

neighbors Y’ and X’, respectively, increase their µ.
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Figure 6.20: (a): Spin density of diamondol (left) and F-diamane (right). Red regions refer to spin-up polarization. The iso-

surface was set to 0.0005 e/bohr3. The values of the magnetic moment per site in units of µB are shown in the first column

of table 6.3. Light-blue, red, yellow, and grey spheres indicate hydrogen, oxygen, carbon, and fluorine atoms, respectively.

(b) and (c): XANES spectra for atom Y of diamondol (magenta line) and F-diamane (turquoise line). The former shows

spin-polarized spectra, and the latter shows the mean of the perpendicular and parallel spectra for both spin-polarized

system (dark-green line) and for unpolarized system (orange line).

Table 6.3: Magnetic moment per carbon site, µ, for diamondol and F-diamane. The most left-hand column indicates the

non-equivalents carbon atoms as shown in Fig.1.1. “c.h.” stands for core-hole, which means that “no c.h.” represents the

system with no core-hole at any carbon atom whatsoever, as the systems depicted in Fig.6.20. The colored-cell backgrounds

indicate whether the magnetic moment increased (red hue) or decrease (blue hue), according to the calculation performed

on the atom with electronic core-hole, w.r.t. the “no c.h.” system.

Diamondol

no c.h. c.h. at X c.h. at Y c.h. at X’ c.h. at Y’

X 0.0035 0.0050 0.0017 0.0030 0.0012

Y 0.0814 0.0831 0.1178 0.0643 0.0499

X’ -0.0234 -0.0328 -0.0258 -0.0308 -0.0191

Y’ 0.3097 0.3328 0.3273 0.3396 0.0114

F-diamane

no c.h. c.h. at X c.h. at Y c.h. at X’ c.h. at Y’

X 0.0020 0.0080 0.0009 0.0018 0.0004

Y 0.0801 0.0791 0.1201 0.0666 0.0455

X’ -0.0262 -0.0318 -0.0219 -0.0332 -0.0180

Y’ 0.3032 0.3090 0.3039 0.3177 0.0092

In Fig.6.20-b shows the peak a∗ for the Y atom of diamondol and F-diamane, as well as their

spin-polarized decomposition. It indicates that the system is spin-down polarized, and that the Y atom is

the sole accounted for this character. Just for completeness, by turning off the polarization of the system

(orange lines), the peak vanishes, as shown in Fig.6.20-c. To investigate the origin of those peaks near
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the Fermi level, the Fig.6.21 shows us the Local PDOS on pz orbitals for the carbon atoms positioned

perpendicularly (C⊥, top graph) and parallel (C//, medium graph) to the absorbent one (C∗, bottom

graph), which is the Y atom. We also shown the pz -DOS for Bernal graphite (GR), bilayer graphene

(BLG), and diamondene∗.

It is important bearing in mind that in both GR and BLG, the distance between the absorbent

atom and the atoms positioned above it is about 3.37 Å, whereas in the case of the diamondol and

F-diamane the bond lengths between the Y atom and its neighbor are 1.64 Å and 1.66 Å, respectively.

Hence, we have observed that the lower the distance, the higher the hybridization between the s-orbitals

(not shown) and the pz -orbitals, as one can see at the top of the figure. This is so because of the selection

rule for XANES dipole transition is ∆l = 1. The same occurs with respect to the absorbent atoms,

but this time, pz orbitals of HG and BLG play a more important role compared to the other systems.

Regarding the in-plane atoms (middle plot), the systems have the same contributions, except that F-

diamane has a smaller contribution, and diamondol do not show any relevant contribution. For the local

PDOS regarding the other peaks shown in figure 6.18, please refer to the supplementary results in the

appendix H.1.

Figure 6.21: Local projected DOS on pz -orbitals for Y absorbent atom w.r.t. diamondol, F- diamane, diamondene*, Bernal

graphite (GR), and bilayer graphene (BLG). The top plot shows the PDOS of the atoms positioned out-of-plane w.r.t. the

absorbent one. The middle plot refer to the in-plane atoms (in all directions), and the bottom plot, to the absorbent one

itself. The dashed lines indicate spin-down polarized orbitals.

As we have already pointed out, the diamondol is a spin-polarized semiconductor [56]. So, in

the following, we will show how the electronic band structure changes as a core-electron is pulled out of

the carbon core region (1s orbital). In Fig.6.22-a one can see the electronic band structure of the bare

diamondol system, whose direct band gap (0.75 eV) between the VBM (spin-down) and the CBM (spin-

down) changes to a indirect band gap (0.2 eV) in the atom Y’s core-hole system (b). The VBM (spin-up)

now is at the K-point. Our calculated band gap is in agreement with the result shown in the inset [56],

which is 0.6 eV: calculated by Siesta code. Bare F-diamane band gap of spin-down states (at Γ-point)
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shown in Fig.6.22-c, in turn, increases w.r.t. the diamondol one by 0.65 eV. Nonetheless, the system

now presents an indirect bandgap of 0.8 eV, with the VBM at the middle-point within the K −M path.

Looking at the F-diamane Y-probed atom (Fig.6.22-d) we can see that the indirect band gap remains

with the same size as the diamondol case (Fig.6.22-b), but the VBM is now located within the halfway of

K−M path, unlike the diamondol Y-probed atom case. One can also notice that the spin-down VBM (at

Γ-point) is shifted-down. Also, states close to 288 eV (and above) undergo an up-shift of approximately

0.35 eV compared to the diamondol counterpart (green arrow). Besides, black arrows in Fig.6.22-b and

-d indicate the states that contribute for the peaks around 288 eV in Fig.6.20. In both cases, they are

located on the border of Brillouin Zone (K-point).

Figure 6.22: Electronic band structure for (a) bare diamondol (no core-hole), (b) probed diamondol’s Y atom, (c) bare F-

diamane, and (d) probed F-diamane’s Y atom. Red lines refer to spin-up energy levels, and the blue ones indicate spin-down

energy levels. The colored values indicate the energy gap between the spin-down conduction band minimum and spin-down

valence band maximum (blue), or spin-up valence band maximum (purple). The Fermi level is shown by a dashed, brown

line in each plot. The inset in (a) shows the band structure of the diamondol primitive cell calculated by [56].

Notwithstand the results of w.r.t. the Y atom, when the X atom is probed, the indirect band gap

(0.2 eV in b) is increased to 0.7 eV, as shown in figure 6.23-a. One can see that in the diamondol system

presents band gap of 0.7 eV when the X atom is probed. It is now indirect between the VBM (spin-up)

and the CBM (spin-down), unlike the bare diamondol system. The gap between the spin-down states at

Γ-point is 0.9 eV. Regarding the X-probed atom of F-diamane, the indirect band gap is increased from

0.2 (Fig.d) to 0.6 eV. The same increasing occurs for spin-down band gap at the Γ-point: from 1.1 eV

(Fig.d) to 1.6 eV. By comparing it with F-diamane case (b), one can see that the indirect band gap is

diminished by 0.1 eV, and the gap between spin-down states at Γ-point is increased by 0.7 eV w.r.t. the

diamondol case (a). Black arrows in the figures indicate the states that contribute for the peaks within

the 287–288 eV range in the figure 6.18. In both cases, they are located on the border of Brillouin Zone
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(K-point), contrary to the F-diamane case (figures 6.22-c and -d).

Figure 6.23: Electronic band structure for (a) diamondol?s X probed atom, and (b) F-diamane’s X probed atom. Red lines

refer to spin-up energy levels, and the blue ones indicate spin-down energy levels. The colored values indicate the energy

gap between the spin-down conduction band minimum and spin-down valence band maximum (blue), or spin-up valence

band maximum (purple). The Fermi level is shown by a dashed, brown line in each plot.

6.3.4 1s-core binding energy for carbon atoms

Complementarily, X-ray photoelectron spectroscopy (XPS) can be a way to provide insights on

the chemical environment of the systems under discussion. However, experimentally, one might not have

a direct interpretation of the acquired results after extracting the core-electron by an incident X-ray

photon. Therefore, Density Functional Theory (DFT) total energy calculations can be an ally in such

interpretations, by calculating the total energies differences between the ground and excited states [228].

In table 6.4 we show the core excitation binding energies (BE) as calculated by:

BEC1s
= ∆ESystem −∆EPPA + ∆EAEA, (6.4)

where the excited state here refers to the DFT calculations performed with explicit creation of an elec-

tronic core-hole on the pseudopotential of the carbon atom, whereas the ground state refer to the DFT

calculations using unaltered pseudopotential. Here, the subscripts stand for the total energy of the sys-

tem, the pseudopotential approximation (PPA), and the all-electron approximation (AEA) of the carbon

atom. If the local environment is weakly perturbed due to Pauling electronegativity, core-level shifts

(CLS) can also be computed [228] from differences between those values, choosing one of them as a

reference (inside square brackets).

Therefore, by looking at the table 6.4, the first thing one can notice is that the diamonds have

almost the same core BE. Notwithstand this result matches qualitatively with an experimental one [229],
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Table 6.4: 1s Core-level binding energies (BE) calculated as EC1s
= ∆BESystem −∆EPPA + ∆EAEA [228]. The shown

BE for diamonds, graphite (HG) and BLG systems are very far from the experimental ones (spotted by parenthesis).

Nonetheless, by correcting the system with a positive charge of 0.5e, the BE values improved greatly: 285.85 eV (CD),

285.92 (HD), 287.01 (HG), and 291.52 (BLG). The values in parenthesis were obtained from experiments [229]. The values

written within square brackets are the Core Level Shift (CLS) energies w.r.t. the X’ atom. In the cases of bidiamondol and

bi-F-diamane, the X’ atoms is equivalent to the X one.

System

Atom
X Y X’ Y’

Diamondol 294.76 293.35 293.91 291.79

[0.85] [-0.56] [0.00] [-2.12]

Bidiamondol 294.20 292.90 – –

[0.00] [-1.30] – –

F-diamane 296.34 294.53 295.20 293.23

[1.14] [-0.64] [0.00] [-1.96]

bi-F-dimanane 297.02 295.33 – –

[0.00] [-1.69] – –

CD 277.19 – – –

(286.92∗)

HD 277.32 – – –

HG 283.42 – – –

(284.40∗)

BLG 293.11 – – –

their values are way distant from the one measured by the experiment. Nonetheless, by adding 0.5e to the

system, the results improved greatly, as shown in the caption of the table. In the setup of the mentioned

experiment, they submit the silicon substrate to a negative bias “to simulate the conditions used in

physical vapor deposition” [229]. Besides, the dimaondol’s Y atom has almost the same BE as the BLG

one, with a tiny difference of 0.24 eV. In general, the overall core BE for diamodol is larger than those of

both the diamonds and the Bernal graphite. Similar observation can be done for the other diamondize

systems. Moreover, the energy difference between the X atom of diamondol and F-diamane is around

0.56 eV, and for Y atom is 0.45 eV. But, the same comparison between F-diamane and bi-F-diamane give

us -0.68 eV and -0.77 eV for X and Y atoms, respectively.

Finally, by using the 1s-core BE from table 6.4 along with the calculated workfunctions of the

materials, as shown in figure 6.24, one is able to calculate the electron kinetic energy a detector is able

to measure in the laboratory through the following expression:

hν = BEC1s
+Ke + φ −→ Ke = hν −BEC1s

− φ (6.5)

where hν is the X-ray photon energy, Ke is the kinetic energy of the electron, and φ is the workfunction

of the material. These are worthy note informations, for experimentalists can have them to characterize

the material they are probing. Through the aforementioned figure, one can see that the diamondol’s

workfunction is larger than the bidiamondol’s one, and both are smaller than those of F-diamane and bi-
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F-diamane. These latter ones, in turn, have almost the same workfunction values, being the workfunction

of bi-F-diamane 70 meV higher than the F-diamane one.

Figure 6.24: Diamondol (magenta line), bidiamondol (dark green line), F-diamane (turquoise line), and bi-F-diamane (purple

line) workfunction calculated using dipole correction added to the bare ionic potential [230]. A tiny electric field of 0.0001

a.u. was added to both diamondol and F-diamondol systems to correct the error throughout the vacuum space. The z

variable refer to the unit cell length along the direction perpendicular to the solid surface.

6.4 Main conclusions of this chapter

We saw that the results for the diamond systems agree very well with the experimental analysis,

as one can see in section 6.1. Moreover, performing a polarization-dependent carbon K-edge analysis

on HG and BLG, we have been able to access the symmetry of both the σ and π final states of the

1s-core electron that has been struck by the X-ray photon. Our results, which can be found in section

6.2, show that 1s–π transitions for Bernal graphite occurs at 284.5 eV, which agree very well with the

ones reported by Rosenberg [204] (285.5 eV) and Fischer et al. [226] (285.0 eV). Regarding the 1s–σ

transition, we have found that it is assigned to the peak at 291.1 eV in figure 6.12(a), while the value

reported by both aforementioned references is 292.0 eV. Besides, π-transition-related peak increases its

intensity as the polarization angle, α, goes to zero, which means that the X-ray polarization is parallel to

the normal direction to the material surface. On the other hand, the σ-transition-related peak rises under

the same condition. Those results also agree with the references just cited. Yet, we have also observed

the linearity of the intensity of the 1s–π trasition peak with sin2(α), as one can see in figure 6.12(b), as

also was observed by Rosenberg et al. in [204]. Therefore, our simulations performed on those materials

have corresponded very well to the experimental ones within the energy resolution of their respective
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experiments. The major error lies on the HD within 1.5 eV.

With respect to the diamondized structures, both the single-convered systems (diamondol and F-

diamane) present spin-polarized electronic band structure, whose electronic band gap of the first material

agrees well with the theoretical study by Barboza et al. [56]. Also, we have shown that they presented

almost the same spectral character, which are similar to the diamond ones. On the other hand, by

removing the hydroxyl group from diamondol, the intensity of the peak near the Fermi level increases

compared to the diamondized structures, resembling the spectral shape of the HG. Regarding the doubly-

covered materials, only the bi-F-diamane presents π-transition (at 285 eV), whereas the bidiamondol only

presents σ transition. Moreover, we have shown that polarization-dependent X-ray absorption spectra

confirm the signature of the peaks in terms of orbital dependence. In general, the peaks near the Fermi

level present π feature, which are characterized by the parallel polarized X-ray with respect to the

direction perpendicular to the solid surface, while the other peaks have mixed contributions, where, at

times, perpendicular contributions exceed over the parallel ones. Furthermore, the Y atom (see figure

6.16) is the main accounted for the peak near the Fermi level. In fact, we have observed that after the

removal of the core-electron, the magnetic moment at the site Y was increased by ∼50%, while the sites

X’ and Y’ decrease their values. The local PDOS on the Y atoms, and on its first neighbors, have shown

that pz are the responsible for the π-character peaks.

Regarding the electronic band structure, bare diamondol presents direct band gap between spin-

down states at Γ point in the PBE-GGA flavor for exchange-correlation functional (0.75 eV), whereas

F-diamane presents an indirect band gap (0.80 eV) between Γ point (spin-down state) and a k-point in

the half-way of the K −M path. The Y-probed site shows an indirect band gap of 0.2 eV for both the

systems, the difference between them relies on the location of the VBM k-point: the former has its VBM

at K-point, while the later one has its VBM in the middle of the K −M path. Besides, we have also

provided a theoretical core excitation binding energy for a core-electron to be removed from a carbon

nucleus, which can be employed to calculate the core-level shifts between carbon atoms of a material.

Interestingly, the ill predicted results for diamonds were circumvent by adding 0.5e to the system. With

the 1s-core BE energies, experimentalists can have the core-electron kinetic energy calculated, which can

characterize the material under investigation.

In summary, our results show that DFT calculations along with XANES simulations can be allied

tools to probe local environment of carbon atoms in diamond-like bidimensional materials that have as

their precursor layered carbon materials, such as bi- or few-layers graphene. We have seen through their

electronic properties that they maintain the 2D features in many aspects while the 3D ones are recovered

due to the re-hybridization between the spz and sp2 orbitals.



Chapter 7

The interaction of acetonitrile with

molybdenum-based layered materials: A

computational investigation

In reference [73], it was reported a simple and efficient route to synthesize, disperse, exfoliate,

and process molybdenum-based two-dimensional materials using acetonitrile (ACN) as a tri-functional

agent, which acts as a separator, exfoliator, and stabilizer of the mixture composed of molybdenum

disulfide (MoS2) and molybdenum oxide (MoO3) in thermal-controlled inert atmosphere. The result of

this liquid-liquid interfacial route (LLIR) is the formation of both layered MoS2 and agglomerated MoO3

solid.

The high stability of the dispersed material should be due to electrostatic repulsion. Electrokinet-

ics experiments (figure 3, supplementary material from [73]) have shown an accumulation of the dispersed

MoS2 onto the positive electrode, as an electric field was applied, indicating that it is negatively charged.

They argue that the origin of those charges could be due to the electron transfer from the solvent itself or

from the product of the degradation of acetonitrile under sonication process [74,231], which can increase

the polarity of the medium. Also, based on the work by Jawaid et al. [75], whose work showed that the

products obtained by ultrasonication of N-methyl-2-pyrrolidone and acetonitrile are responsable for the

stabilization of the sample due to charge transfer, charged MoS2 are able to be dispersed, whereas MoO3

should not be dispersed because no charge have been observed on it.

So, as long as acetonitrile interacts with the solids, charge may be tranferred to them, which has

to be better explored. Thus, we have performed MD simulations followed by DFT-based calculations

on acetonitrile (ACN) interacting both with MoO3 and MoS2, in order to simulate the conditions under

which the materials were found. Firstly, the former method was employed to observe how the system

evolve over the time, whereas the latter method was used to sort out the charge-transfer problems.
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7.1 MD simulations

Our model consists of the Mo-based solid surrounded by liquid acetonitrile as shown in the figure

7.2. Firstly, an appropriate equilibration of the subsystem containing liquid ACN was necessary. It

is shown in figure 7.1. To accomplish it, we performed an energy minimization on a simulation box

with liquid acetonitrile in it using the steepest descent method (section 4.3). This minimization was

accomplished in 600 steps, with an initial displacement of 0.001 nm, which accounts for the calculation

of the new atomic positions through both the equation 4.18 and its subsequent criteria therein. The

adopted convergence criterium was 20 kJ mol−1nm−1, under which the minimization is halted. The box

size is initially (36.95 × 39.41 × 32.03) Å3, containing 500 molecules of acetonitrile (3000 atoms). After

the minimization, we performed a MD simulation in NPT ensemble, using the leap-frog algorithm for

integration of the Newton’s equations of motion. The ensemble was kept at 1.0 bar and 298.15 K, with

0.1 ps coupling time. The time evolution of the MD simulation is 5.0 ns, with 0.001 ps time steps. After

this procedure we got a new box with size (35.71× 41.62× 31.50) Å3, whose average density was found

to be 730.3 kg/m3, which is within about 6% error from the value found in [232,233].

Figure 7.1: A simulated box containing 500 acetonitrile molecules after energy minimization and molecular dynamics sim-

ulations viewed in perspective. The box dimensions are colored in the figure, where blue, green, and red mean z, y,

and x directions, respectively. Carbon, nitrogen, and hydrogen atoms are represented as dark gray, blue, and light gray,

respectively.

Then, we performed a DFT-based variable-cell (VC) optimization on MoO3(MoS2) orthorhombic

unit cell containing four Mo atoms and twelve(eight) O(S) atoms. In other words, the unit cells have 16

and 12 atoms, respectively. After the optimization, we got unit cells with size (3.695 × 3.941 × 15.349)
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Å3 and (3.167× 5.486× 12.215) Å3. In order to simulate the experimental conditions in [73], we built a

composed system consisting of either (MoO3 or MoS2) and two portions of liquid acetonitrile enfolding

it on each of its surface. The resulting simulation box is shown in figure 7.2, which presents periodic

boundary condition. To perform such a task, we did the following subtasks. Firstly, the newly-relaxed

unit cell of the solid was turned into a 10x10x3 supercell (4800 atoms for MoO3), and into a 12x7x3

supercell (3024 atoms), which have dimensions 36.950× 39.410× 46.050 Å3 and 38.004× 38.402× 36.645

Å3, respectively. These supercell dimensions in the directions that form the solid plane differ from the

respective dimensions of the acetonitrile box. As the dimensions of both the solids and the acetonitrile

box are incommensurable, we changed the dimensions of the acetonitrile box into those of the solids.

Then, we performed another simulation run on the acetonitrile. It is important to mention that the

acetonitrile box dimensions were changed accordingly, in order to keep the same density as the prior one.

By doing so, we got a simulation box for ACN with appropriate dimensions so it fits well the supercell

of the solid surface: 36.85× 39.30× 31.95 Å3 for MoO3, and 37.97× 38.37× 31.94 Å3 for MoS2. One of

the acetonitrile boxes is displayed in figure 7.1. After those steps, we stacked the two acetonitrile boxes

with the supercell of the solid together along the [001] direction [60], so that the new systems now have

10800 atoms (1000 acetonitrile molecule and 4800 atoms from the MoO3 solid) and 9024 atoms (1000

acetonitrile molecules and 3024 atoms from MoS2). This arrangement of a group of molecules making

an interface contact with other group of molecules, atoms, or solid, periodically in x- and y-direction is

called a slab. In our case, we have a slab of liquid acetonitrile adjoined the solid slab, and both, in turn,

linked to another slab of acetonitrile. Each acetonitrile slab were kept around about 2.0 Å away from the

solid before the simulations.

Figure 7.2: Simulation box containing slabs of acetonitrile, and MoO3 solid. That system contain 10800 atoms, which is

composed by 1000 ACN molecules and 4800 atoms of the solid. Each ACN slab were kept 2.0 Å away from the solid before

the simulation. The box dimensions are colored in the figure, where blue, green, and red mean z, y, and x directions,

respectively. Carbon, nitrogen, hydrogen, molybdenum, and oxygen atoms are represented as dark gray, blue, light gray,

turquoise, and red spheres, respectively.

For this slabbing system of figure 7.2, we performed the energy minimization using 500 steps,

with a initial maximum step size of 0.01 nm within a tolerance of 200 kJ mol−1nm−1, under which the

minimization is halted. The solids slab were kept frozen, in the sense that we wanted only observe
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how the acetonitrile slabs would evolve through the time steps in the presence of the solids. After

this minimization procedure, we performed a leap-frog Stochastic Dynamics (SD) integration in a NVT

ensemble at T=298.15 K. The time evolution of the simulation was 1 ns, within which 106 steps were

performed. For the same reason as mentioned before (see the last paragraph of section 4.1, and section

4.2), for the SD procedure we also kept the solid slab frozen. It is important to mention that in this phase

of the study all the atoms of the solid were with no charges, but including Lennard-Jones potential, and

also the intramolecular components of the force fields, as explained in the subsection 4.1.2.

Then, on having the simulation of that system finished, we also performed other two simulations

(energy minimization and SD simulations): the atoms of the solid with charges extracted from DFT

calculations (Bader charges1) with the same SD parameters as the no-charged case; the other one is the

same as before, but with different SD parameters of the simulations, as shown in table 7.1. We will call

the no-charged solid atoms simulation as S1. The other two mentioned simulations will be called as S2

and S3, consecutively.

Table 7.1: Different parameters used for the SD calculations of the system composed by ACN and MoO3. The simulation

“S1” was performed with no charge for the atoms of the solid, whereas the simulations “S2” and “S3” present charges. The

distinction between these latter two simulations is in the different parameters employed. The neighbor list rcutoff is the

distance for short-range neighbor list within which non-bonded forces (LJ interactions, for instance) are calculated; Coulomb

rcutoff is the cutoff distance for Coulomb interactions; LJ rswitch indicates where one starts switching the LJ forces; LJ

rcutoff is the cutoff distance for LJ interactions.

time step

(ps)

neighbor list

rcutoff (nm)

Coulomb

rcutoff (nm)

LJ rswitch

(nm)

LJ rcutoff

(nm)

bond con-

straints

S1/2 0.001 1.2 1.2 1.0 1.2 none

S3 0.002 1.5 1.5 1.3 1.5 h-bonds

Therefore, we proceeded in analysing the region near the solid surface (just for MoO3) for each

aforementioned simulation type. To have an insight at what is going on in there, we extract the number-

density colormap of ACN molecules, which provides a time average of the measurement of the density

of molecules on small planes (perpendicular to the page) along the z direction (towards the right-side

of the reader) of the figure 7.2 for the simulations “S1”, “S2”, and “S3”. Furthermore, we also evaluated

the number density of the ACN molecules across the simulation box for the three simulation types.

The simulations “S1” and “S2” are displayed in figure 7.3. Since the last simulation (“S3”) shows small

differences relative to the second one (“S2”), we put it on the appendix H, figure H.5, whereby one can

check it out.

The density maps of figures 7.3(a) and 7.3(c) have a color scale, on which the red refers to the

maximum. Both the maxima of the maps were set to the same value (122 nm−3), which is the maximum

value of the system “S1”. Through those results we see that the charged atoms of the solid induce a

1QUANTUM ESPRESSO do not perform such charge evaluation. However, a post-processing tool can be used to extract

the all-electron valence charge density from PAW calculations. So, by using a code by the Henkelman Group from Texas

University [234] one can extract the total charge associated with each atom enclosed in a Bader’s volume [235–238]. A brief

explanation on this method is given in appendix G.
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small agglomeration of the molecules near the surface, which is shown by the red spots in figure 7.3(c).

These density maps also work as a guidance for the eyes when analysing how is the trend of the average

density of molecules near the surface. In the figures 7.3(b) and 7.3(d), one can notice that the maxima

are the same, but there are different oscillations of the density of ACN molecules as moving away from

the surface. The higher oscillation near the surface for the simulation “S2” indeed confirms what have

already been expecting. Looking at those figures, it seems that the charged atoms of the solid induces

an ordering on the ACN molecules near the surface.

(a)

(b)

(c)

(d)

Figure 7.3: Number-density colormaps (‘a’ and ‘c’) along the z direction (to the right side of the page), and number density

(‘b’ and ‘d’) for ACN molecule interacting with the MoO3 solid. In figures ‘a’ and ‘c’, the color scale indicates that the

red refers to the maximum value, while the blue color refers to the minimum value, which means that all the blue region is

related to the solid.

As both simulations “S2” and “S3” are very similar, the following results were performed within

the scheme “S3”. We evaluated the time average of the energy of the interactions per acetonitrile molecule

as depicted in figure 7.4. The bars in the figure 7.4-a are in log-scale. The labels across the horizontal

axis are related with the way the interactions take place (see figure 7.4-b). The “ACN” label means

that there is no solid, and that those evaluations are taken only from the interaction among acetonitrile

molecules. The “1-4” interactions, violet and black bars, mean that the interactions are calculated for

third neighbors of an atom i (atoms i + 3). ‘SR’ stands for Short Range interactions. As one can see

in the columns hatched with ‘o’, there is no practical difference with respect to the intra-interactions, so

that ACN molecules behave the same way regardless the solid. Considering the inter-interactions though,

there appear differences depending on the solid, with increasing of the LJ interaction as ACNs interplay
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with MoS2 by almost an order of magnitude. The Coulomb interaction, in turn, has decreased by an

order of magnitude.

Figure 7.4: (a) Energy profile of the system for Lennard-Jones and Coulomb potentials. The ‘o’ and ‘x’ marks in the hatched

figures refer to the interactions between the ACN molecules themselves (“intra”), and the interactions between the ACN

molecules and the solid (“inter”) as shown in (b). The energy scale is set as logarithmic. The ACN columns indicate that

there is no solid present. The bars are in log-scale. The red bar refers to the Coulomb short-range interaction; the blue

one means Lennard-Jones short-range interaction; the violet bar refers to 1-4 Coulomb interaction (see text); and, lastly,

the black bar is related to 1-4 Lennard-Jones interaction. As usual among MD code users, the energy units are given in

kJ/mol. As a reminder: 1.0 kJ/mol = 1.036× 10−2 eV.

In the figure 7.5-b, one can see the 2D colormaps of the number density of ACN molecules,

similar the ones shown in figure 7.3. However, now we have defined a different scale based on the

maximum density of the system composed by of ACN in the presence of MoS2 solid (figure 7.5-a). This

value has been used to normalize the result for the MoO3 (figure 7.5-b). As a result, this colormap is

lighter than before. This results show that the presence of MoS2 induces a certain accumulation of the

molecules along the surface, which is also observed, although in lesser intensity, as one moves away from

the surface. It can be seen in the zoomed-in regions (bottom part of the figures 7.5-a and -b), where

we can see that there are a few ripples (greenish regions) intercalated by a blueish region. In the figure

7.5-b one can see that in the presence of the MoO3 solid there is also an accumulaton of molecules, but

with lower intensity, contrary to the system with MoS2, whose ACN molecules are ordered and spread

throughout the solid surface. Also, one can notice a more diffusive ordering of molecules by moving away

from the surface compared to the MoS2 case.

The arrangement of the acetonitrile molecules on the solid surface is evaluated through the Radial

Distribution Functions (RDF) [139], gAB(r):

gAB(r) =
〈ρB(r)〉
〈ρB〉local

=
1

〈ρB〉local
1

NA

〈
NA∑
i∈A

NB∑
j∈B

δ(rij − r)
4πr2

〉
,

(7.1)
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where NA and NB are the number of particles within the system composed of atoms A and B, respectively,

〈ρB(r)〉 is the number density of particles B at a distance r from particles A, and 〈ρB〉local is the density

of particles B averaged over all spheres around particles A within a maximum radius rmax, which is

defined as the half of the box length. r here is the radial position that matches the center of mass

of the ACN molecules. Figure 7.6(a) displays a pictorial representation of the definition (7.1). Figure

7.6(b), in turn, shows the normalization factor 〈ρB〉local. In fact, gAB(r) is a function that describes the

spherically average local organization around any given molecule (or specific atom) [150], which reflects

the relative amount of molecules as a function of their distance from other molecules (or specific atoms).

The definition 7.1 inform us that

n(r) =

∫ r

0

gAB(r′) 4πr′2dr′ (7.2)

is proportional to the probability of finding a particle B in the volume element dr at a distance r from a

particle A. This is known as cumulative distribution, or Cumulative Number (CN) function [239].
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(a) (b)

Figure 7.5: Number-density colormap of the ACN molecules averaged over all the simulation time in the presence of the

solid of (a) MoS2 and (b) MoO3 (upper part of the picture). The respective systems are shown as a guide for the eyes. The

counting was performed along the z-direction (towards the right side of the page). The scales are the same for comparison,

but are larger than that of figure 7.3. Specific regions of both the colormaps (orange dashed rectangle) and the system

(green dashed rectangle) were zoomed in on the bottom of the figure.
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We calculated RDFs between ACN molecules for all the simulation box (figure 7.7-a), and also

for small slices (5nm long) of the simulation box: near the solid surface, in the middle of the ACN slab,

and away from the solid (figures 7.7-b, -c and -d). The left-side scales refer to the normalized RDFs, and

the right-sided ones refer to the CNs. By integrating n(r) up to its first minimum, and multiplying its

result by 〈ρB〉local, we have the first coordination number, which is the first set of molecules shell around

a given particle (right-hand side scales of the figure 7.7-a and -b). If we look at the first minimum, which

is around 0.67 nm, we have a cumulation number of approximately 12. This is the result expected for 3D

solids and liquid, being the difference between the two phases the ordering of the atoms within the first

coordination shell [138].

r

r+dr

(a) (b)

Figure 7.6: (a) Visual representation of the equation 7.1, where particles A can be considered as the oxygen atoms (red

spheres), while ACN molecules would represent the particles B. (b) Normalization volume, 〈ρB〉local, shown as a transparent

gray circle.

In figure 7.7-a, the RDFs between ACN molecules in the presence of MoS2 shows a tiny difference

compared to the MoO3 case, as pointed by a black arrow. Besides, there is a shoulder-like peak at

r ' 0.4 nm. That feature is still under investigation, but we believe that it could be assigned to the

molecular ordering of the first coordination shell mentioned in the previous paragraph in the sense that a

few molecules may be oriented differently than the others within this shell; or it could be assigned to the

proximity of a few molecules of the shell to the reference molecule. We found in the literature a similar

shoulder-like tendency in the reference [240], when Macchiagodena et al. calculated the RDF between

the center of one of the three carbon rings of the DPAP (4-(diphenylamino)phthalonitrile) and the center

of mass of ACN. However, no explanation was given therein.

Near the solid surface (7.7-b), one can see that difference is more pronounced, including in CN.

At about r ' 0.5 nm, g(r) for MoS2 is 4.1% higher than the MoO3 one, which is almost 3.4 times more

intense than the case of figure 7.7-a. Likewise, at r ' 0.4 nm it is around 3.7% higher than that value

depicted in the figure 7.7-a. Moreover, we can see that the first minimum of g(r) around r ' 0.67 nm
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presents a difference of 0.3 nm between the MoS2 and MoO3 cases. So, regarding the CN of ACN (∼ 12.0

for the case of figure 7.7-a), at r ' 0.67 nm we have calculated 7.8 for MoS2 case, and 6.5 for MoO3 at

r ' 0.7 nm. Moving away from the surface to the middle of the ACN slab (figure 7.7-c), at r ' 0.4 nm

there is no disparity between the RDFs, but both are 3.9 times higher than that of figure 7.7-a. Regarding

the peaks around r ' 0.5 nm, they present no difference with respect to those of figure 7.7-b. The CN

for both systems were found to be 5.8 at r ' 0.67 nm. These results compared to the ones away from

the surface (figure 7.7-d) do not show any relevant differences.

Figure 7.7: Radial Distribution Function (RDF) between ACN molecules for the whole system on the left scale (solid lines),

and Cumulation Number (CN) on the right scale (dashed lines) in (a). Black lines refer to MoS2 and red ones to MoO3.

Figures (b), (c), and (d) show the RDF and CN for a 5nm slice of the ACN box near the solid surface, in the middle

of the ACN slab, and away from the solid surface, respectively. The vertical, dashed green line in (a) indicates the first

coordination shell as explained in the text.

In order to see how the molecules are oriented along the simulation box with respect to the solid,

we calculated the probability of finding a molecule at a given angle formed by its C–N bond (cyanide

anion) and the axis perpendicular to the solid surface, as shown in figure 7.8-a. Figures 7.8-c and 7.8-d

show the results for ACN molecules in the presence of MoS2 and MoO3, respectively. The lines’ colors

refer to the small slices shown in the figure 7.8-b. It is remarkable the relatively higher probability of

finding ACN molecules positioned parallel to the surface (∼90°) near the MoS2 surface (black line in figure
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7.8-c) compared to MoO3 solid (figure 7.8-d). This can also be seen a little far from the surface (blue line).

This result corroborates with the investigation of the interactions between ACN molecules using ab-inition

molecular dynamics [241]. It showed they tend to organize themselves in an anti-parallel disposition due

to the dipole-dipole interaction, taking into account van der Waals contributions. Although we can

visually notice in figure 7.6 how ACN molecules are disposed with respect to each other, a more detail

investigation is needed. Besides, as one moves away from the surface, our results show that the molecules

can have similar probabilities within the 60° – 150° range regardless of the solid, as seen in figure 7.8-c

and -d.

Figure 7.8: Orientation of the ACN molecules through the probability of finding a molecule in an angle θ w.r.t. the axis

perpendicular to the solid surface (see the figure (a)). The colored lines refer to the dashed rectangles on the figure (b). It

shows small slices of 0.3nm width each, located at the referred distance from the solid surface as shown in the legends of

the figures (c) and (d) for MoS2 and MoO3, respectively.

In the exfoliation process pointed out in the reference [73], the solid was thermally treated in an

inert ambient, but the dispersion agent (liquid acetonitrile) was not. Since, as long as the manipulations

was performed in an airy environment, it is reasonable to think of water and oxygen molecules as “con-

taminants” of the ACN molecules. Therefore, we also performed MD simulations on the ACN simulation

boxes containing 0.1 mole fraction of either H2O or O2 (55 molecules each) explicitly, whose force fields

and motivations for using this model were treated in section 5.4. The new simulation box can be seen in

figure 7.9.

On equilibrating those new simulation boxes (NPT ensemble), we coupled them to the respective

solids, the same way as done previously, and performed another MD simulation (NVT ensamble). The
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results can be seen in figure 7.10, whose rz = 0 is set in the middle of the solid, so that we are here

analysing the region near the solid surface. The plot for the whole system can be seen in figure H.6. The

vertical, dashed-dotted lines indicate the point at which the differences will be analysed. The orange and

purple ones refer to the MoS2 solid, while the blue one refers to the MoO3 solid. For the case where we

have MoS2 solid, at rz ' 2.0 nm (vertical orange line) the difference between the nACN for the system

with ACN and oxygen (water) and pure ACN is ' 16.0 nm−3 (' 15.3 nm−3). At rz ' 2.4 nm (vertical

purple line), the same analysis returns ' −6.6 nm−3 (' −5.7 nm−3). For the MoO3 solid (vertical blue

line), the differences calculated were ' −11.1 nm−3 (' −10.9 nm−3). Negative values denote higher

density of pure ACN with respect to the “contaminated” case. Therefore, these results indicate that the

presence of O2 and H2O induces modifications on the way ACN molecules are organized near the MoS2

surface (region near the vertical orange line). By going away from solid surface, the density of pure ACN

becomes higher. Regarding the MoO3 solid, near its surface (vertical blue line) the density of pure ACN

is higher than either the density for ACN with O2, or the density for ACN with H2O.

Figure 7.9: Simulation box containing 500 molecules of acetonitrile and 55 molecules of water. After simulation in the NPT

ensamble, a new slabbing simulation box, as the one shown in figure 7.2, is built.

Figure 7.10: ACN molecule density in simulation boxes containg only pure ACN (solid lines), O2 (dashed lines), and H2O

(dotted lines). Black and red lines refer to the MoO3 and MoS2 solids, respectively. The rz = 0 is set in the middle of

the solid, so that it shows the region near the solid surfaces. The plot for the whole systems is depicted in figure H.6. The

vertical, dashed-dotted lines are used to indicate differences of nACN between the pure case and the case with either oxygen

or water.

By analysing and evaluating the ACN properties in the interface with the Mo-solids, we can have
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an idea of how the liquid behave in the presence of the solid. With this information, we can move on to

the quantum mechanical calculations.

7.2 DFT-based Calculations

In this section we would like to address the quantum nature of the systems, delving into the

charge transfer problem. In order to evaluate whether there is charge transfer, we had to elaborate a

way to turn the calculation more feasible, since DFT calculation is impossible for systems with about ten

thousand atoms. So, to circumvent such a heavy system, we cut out part of the system, which turns out

to be a smaller one composed of 942 atoms (for the case of MoO3). However, it is still a huge system for

DFT calculation purpose. Then, we again cut this sub-system into an even smaller one, which has 144

atoms of the solid, plus a few ACN molecules. That is a system that can be managed by plane-wave based

calculations. Afterwards, the charge analysis is performed by increasing the number of ACN molecules.

Figure 7.11: Sketch showing the steps performed to achieve the feasibility of the QM calculations mentioned in the text.

(a) shows the ACN molecules coupled to the MoO3 solid (top part of the chart). The shaded area, limited by an orange-

dashed rectangle, shows part of the system upon which another MD simulation was performed (942 atoms – too big for QM

calculations). In the middle part of the chart, one can see another shaded area, limited by a few colored, dashed rectangles,

each color indicating different number of “layers” of ACN molecules. One of them is shown in the bottom part of the chart:

a system composed of one layer (1L) of ACN molecules and 144 atoms of the MoO3 solid. The just mentioned different

number of layers were devised from the figures (b). It shows the normalized ACN number density, nACN , of the systems

containing MoS2 (solid lines) and MoO3 (dashed lines). Black lines refer to the larger system, which contains 1000 ACN

molecules (top part of the figure (a)), whereas red lines indicate systems containing 85 (96) ACN molecules in the smaller

system with MoO3 (MoS2). Each peak in nACN is linked to the aforementioned colored, dashed rectangles of the figure

(a).

A sketch of these steps is depicted in the figure 7.11-a. It is important to notice that, regarding

the QM calculations, the number of ACN molecules (or “layer” of ACN molecules) follows the peaks
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shown in the normalized ACN number density nACN of the figure 7.11-b, as the vertical dashed lines

have the same colors as the dashed rectangles in the middle of the figure 7.11-a. One can still see in this

figure that for the system containing MoS2 (top part of the figure 7.11-b), the nACN values are higher

for the small system (red line) than for the big one (black line), which contains 1000 ACN molecules. On

the other hand, this is not observed for the systems containing MoO3 (bottom part of the figure 7.11-b).

The same approach discussed above and shown in figure 7.11-a was used for the systems containing H2O

or O2.

In the following, we would like to address the charge transfer analysis on those systems, both

with and without the contaminants. To perform such a task, we integrated the change density of the solid

up to a certain height h, defined by the halfway between the closest atoms of the solid region and the

liquid region, as it is shown by a dashed, purple line in the figure 7.12. The volume of the region within

which the integral is performed is V = A · h = a · b · h, where a and b are the in-plane lattice parameters,

and A = a · b is the area formed by them. The difference of electrons in this volume, ∆qe, between the

self-consistent calculated electrons and the valence ones is given by

∆qe =

∫ h

0

ρSCF (r)Adz −
Nsolid∑
i

qvalencei (7.3)

where ρSCF (r) is the self-consistently calculated electronic density, r is the electronic positions, Nsolid is

the number of atoms inside the volume V , and qvalencei is the number of valence electrons of the i-th atom

in the volume V . If this quantity is null, the presence of ACN molecules does not influence anything. If

it is positive, we have accumulation of electrons in the volume V , otherwise we have depletion of them.

The figure 7.13 shows the difference ∆qe on each of the systems composed by different number of

ACN molecules, both for pure ACN (figure 7.13(a)) and contaminated ACN (figure 7.13(b)). In the latter

case, the calculation was performed for four layers of ACN molecules, as defined in figure 7.11, either

with or without non-local vdW functional (vdW-DF-ob86 [242]). As it can be seen in figure 7.13(a),

MoS2 solid has lost on average ∼ 0.9 more electron to ACN than the MoO3 solid: 2.4 electrons for MoS2

compared to 1.5 of MoO3. That trending seems ignore the number of ACN molecules. For example, in

the case of 1L of ACN, the difference of electrons lost is 0.7e, whereas for 3L is ∼ 1.1e.

Figure 7.12: System composed by MoS2 solid and the liquid part, which is made up by ACN and O2 molecules. The ẑ

direction shown in the bottom of the figure indicates the direction perpendicular to the solid surface. The charge density

is integrated within the volume of the solid, depicted by the letter h. Cyan, yellow, grey, blue, white, and red spheres

represent molybdenum, sulfur, carbon, nitrogen, hydrogen, and oxygen atoms.

In considering the vdW functional on the system composed by 4L of ACN in figure 7.13(b), we
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observe that for pure ACN the difference on the lost of electrons is very small from both the solids (left-

and right-hand side of the figure). For ACN with O2, MoO3 almost does not lose any charge, whereas

for MoS2, it loses more electrons than the case with pure ACN. Lastly, regarding ACN molecules with

H2O, the case for MoO3 shows the inverse trending compared to the one with O2: it doubles with respect

to the pure ACN case. However, for MoS2 the number of electron lost for ACN also increases, but too

few compared to the pure case. Furthermore, the vdW functional makes some difference on the number

of electrons calculated that left the solid. In spite of these results, experimentally [73], it was observed

that the dispersed MoS2 solid was found negatively charged, and the aggregated MoO3 solid was not.

Notwithstanding those evidences, our analysis within the theoretical level we have employed did not

provide us with the results we believed we would get. However, there can be other routes to deal with

this problem. We will delve into it in the chapter 8, where we will show some perspectives.

(a) (b)

Figure 7.13: Difference in the number of electrons within the Mo-based solids for the system comprising (a) pure ACN or

(b) non-pure ACN (containg either water or oxygen). In figure (a) this evaluation was performed for 5 ACN layers (1L, ...,

5L) as defined in figure 7.11, whereas in figure (b) we performed the calculations only for 4L of ACN taken into account

non-local vdW functional (vdW-DF-ob86 [242]). In both the figures, the numbers inside the bars are the number of ACN

molecules considered during the QM calculation.

7.3 Main conclusions of this chapter

In conclusion, we have performed Molecular Dynamics (MD) simulations followed by ab-initio

Quantum Mechanics (QM) calculations based on DFT, whereby the first method was able to show the

time evolution of the ACN molecules interacting classically with the solid systems. Then we performed

DFT calculations in order to investigate the electronic interactions in the liquid-solid interface.

Our MD simulations have shown that, whether the atoms of the solid present charges or not in

its force field (the solid is neutral overall), the atomic interactions remain the same. In fact, for all the

situations studied in section 7.1, where the ACN molecules is put into contact with the solid surface,

we have seen that the average energy per molecule interacting among themselves in the presence of the

solid does not change regardless the solid. Considering the interaction betweem the ACN molecules and
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the solids, the energetic profiles show higher values for MoS2 than for MoO3 for LJ interaction. An

opposite trending is observed with respect to the Coulomb interaction. By analysing the region near the

solid surface, we saw that there are a higher concentration of ACN molecules spread over it. In fact, we

have seen that the MoS2 induces a certain accumulation of the molecules along the surface, which is also

observed, although in lesser intensity, as one moves away from the surface, as shown in figure 7.5. This

result is supported by the normalized radial distribution function (RDF) shown in figure 7.7, which shows

a higher intensity for MoS2 in the main RDF peak at r ' 0.5 nm. Also, it shows a peculiar shoulder-

like peak before the main one. Although it is still under investigation, it can be assigned to either the

molecular ordering or position with respect to the reference molecules within the first coordination shell.

Moreover, simulations containing explicitly ∼ 0.1M of H2O or O2 were performed at the same previously

mentioned conditions. They show that the system composed by ACN and O2 in face of the MoS2 solid

presents higher density of ACN molecules near the solid surface compared to the system with both the

pure ACN molecules and ACN with H2O. However, for the solid MoO3 the differences are the same

either with H2O or with O2.

Afterwards, on integrating the charge density in the region comprising the solids, we obtained

the number of electrons within this region, which could be compared to the valence electrons of the solid

used to perform the DFT-based SCF calculation. Our results have shown (until this moment) that, in the

systems containing pure ACN, both the solids for each number of ACN layers analysed have lost electrons

to the molecules, which are not expected in face of the aforementioned experimental results. Considering

the systems comprising either H2O or O2, the quantitative results were similar despite the number of

electrons calculated. In fact, for four layer of ACN molecules the system containing MoO3 solid and O2

showed sharper decrease of the loss of electrons compared to the pure ACN case, whereas for MoS2 this

number is larger. Considering H2O molecules, the number of electrons increases with respect to the pure

ACN case.

In summary, through MD simulations we were able to evaluate how acetonitrile molecules behave

in the presence of both MoS2 and MoO3 solids. Also, despite the incongruence between the calculated

difference in the number of electrons inside regions comprising the solids and the experimental verification,

we were able to get a glimpse of how the MoS2 influenced our results compared to the MoO3 solid ones.

Qualitatively, the charge transfer due to the MoS2 solid is higher than that of MoO3. Lastly, in the chapter

8 we elaborate on a complementing way to deal with this problem, which can handle environmental effects

implicitly.



Chapter 8

Conclusions and Prospects

In this thesis we have addressed two problems. The first one concerns the carbon K-edge probed

by X-ray absorption near-edge spectroscopy (XANES) simulations of the newly-synthesized diamond-

like material called diamondol [56], which is a bidimensional hydroxilated structure, where the hydroxyl

groups are attached to carbon atoms as shown in figure 6.16-a. Systematically, we have also performed

simulations on fluorinated materials as shown in the same chart, as well as on both cubic and hexag-

onal diamonds (CD and HD, for short), and also on both Bernal graphite and bilayer graphene (HG

and BLG). In the second problem, we have performed theoretical simulations using both molecular dy-

namics and quantum mechanics approaches to better contribute to the understanding of the results

reported in [73], wherein they performed a simple and efficient method to synthesize, disperse, exfoliate,

and process molybdenum-based two-dimensional materials using acetonitrile (ACN), which stabilizes the

mixture of MoS2 and MoO3. The result of such a method, which was coined as Liquid-Liquid Interfacial

Route(LLIR), is the formation of both layered MoS2 and agglomerated MoO3 solid. Actually, uncer-

tainties are drawn when it comes to charge transfer because the mentioned study reported that MoS2

becomes negatively charged, whereas the MoO3 does not. Our aim was to address those charge transfer,

as well as the detailed description of the interaction between ACN molecules and the solid surface.

In the first problem, we have done DFT calculations along with XANES simulations to probe

carbon atoms in the aforementioned materials. We have seen that the results for the diamond systems, as

well as for the Bernal graphite agree very well with the experimental analysis accomplished in [209] and in

[204], respectively. as shown in sections 6.1 and 6.2. In this latter case, we were able to select the symmetry

of both the σ and π final states of the 1s-core electron that has been struck by the X-ray photon. Regarding

the diamond-like materials (section 6.3), both the single-covered systems (diamondol and F-diamane)

present spin-polarized electronic band structure. Also, we have shown that their spectral character are

similar to the diamond ones due to the hybridization of spz and sp2 orbitals caused by the functionalization

of hydroxyl group and fluorine atoms, respectively. However, the π character is more pronounced for

diamond-like systems due to the higher contribution of pz orbitals with spin-down character. Moreover,

our results for the theoretical core excitation binding energy can help experimentalists on having the

core-electron kinetic energy calculated, which can characterize the material under study.
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Concerning the second problem, the charge transfer issue between acetonitrile (ACN) molecules

and molybdenum-based system after liquid exfoliation, we have performed Molecular Dynamics (MD)

simulations followed by ab-initio Quantum Mechanics (QM) calculations based on DFT, whereby the

first method was able to show the time evolution of the ACN molecules interacting classically with the

solid systems. Then we performed DFT calculations in order to investigate the quantum interaction

in the liquid-solid interface. Our MD simulations have shown that the contribution of Lennard-Jones

potential in the energetic profiles for ACN molecules is higher for MoS2 solid than for MoO3, whereas the

contribution due to Coulomb interactions shows an opposite trend. Also, MoS2 induces more ordering and

accumulation of ACN molecules near its surface compared to the other solid. This was verified by RDF

analysis, by profiles of the density of ACN molecules in the simulation boxes, and by the angle formed

between the C–N bond in the ACN molecules and the axis perpendicular to the solid surface. DFT

calculations resulted in unmatched results compared with the experimental verification. Nonetheless, in

the level of theory we have used, we were able to see that MoS2 induced on average higher charge transfer

compared to MoO3, which qualitatively agree with the experimental outcome.

Concerning our perspectives, we would like to start with the second problem studied. It is

important to mention that, accorging to [73], the solid precursors were thermally treated in an inert

atmosphere. However, the realization of the processes where liquid acetonitrile was employed was not,

which drove us to perform the simulations involving either water or oxygen molecules. Despite the

unexpected results concerning the applied atomistic models, we keep on the electron transfer analysis

using the Environ module [243] from the Quantum Espresso package [43,244], which handles environment

effects in ab-initio calculations. We believe that the charge transfer in the aforementioned solid-liquid

interface can be better addressed by taking into account continuum models for the environment that is

embedding the system under discussion. To realize such a task, it is also important to well describe the

interface between the embedding system (the environment) and the embedded system (ions comprising

the system), as well as to provide the required interactions to feature all system properly.

Finally, regarding the diamond-like systems, we also intend to perform XANES simulations on

multilayer diamond-like systems, as multilayer graphene systems can be used as precursors in their syn-

thesis. Moreover, some efforts have been put on exploration of electronic and mechanical properties of

the aforementioned diamond-like materials under nitrogen-vacancy centers, which have a great spectrum

of application that goes from biosensors to quantum information [245]. Therefore, we also would like to

perform XANES simulations at the level of DFT for, as far as we know, such systems lack this kind of

analysis at the atomic core level.



Appendix A

Orthogonalized Plane Waves (OPWs)

Method

Before the interest in pseudopotentials have been brought up in 1950s by Emil Antoncik [102,103],

and James Phillips and Leonard Kleinman [101], Conyers Herring [99,246], in 1940, introduced the basis

for the firts quantitative calculations of bands in materials ( [78], chapter 11). OPW calculations attested

that Si is an indirect-band material [247, 248]. USPP and PAW methods are based on OPW method,

which is a general approach to build basis functions for valence electrons:

χOPWq (r) =
1

Ω

eiq·r −∑
j

〈uj |q〉uj(r)

 , (A.1)

where,

〈uj |q〉 ≡ −
∫
dr uj(r) eiq·r, (A.2)

so that χOPWq is orthogonal to each function uj , which are required to be localized around each nucleus.

If the localized part are well chosen, then equation (A.1) divides into a smooth part and a localized

part. This is conviente for crystals, whose former part may be represented by plane waves, as emphasized

by Herring’s words [99]:

“It would be practical to try to appoximate the eigenfunctions in a crystal by a linear

combination of a few plane waves, plus a linear combination of a few functions centered about

each nucleus and obeying wavefunctions of the form”

1

2
∇2uj + (Ej − Vj)uj = 0. (A.3)

As this definitions is rather broad, taking into account Vj = Vj(r) and uj to be chosen optimal for the

problem, OPW method is the startpoint of all the modern pseudopotential and PAW methods.

120
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One should consider the orthogonalized form of the valence states in an atom, labeled by angular

momentum, lm, as well as the added functions. The general form of the OPW-like function, based on

the equations (A.1) and (A.2), is

ψvlm(r) = ψ̃vlm(r) +
∑
j

Blmjulmj(r), (A.4)

where ψvlm is the valence function, ψ̃vlm is the smooth part, and all functions can be expressed in terms of

the original OPWs by Fourier transform:

ψvlm(r) =

∫
dq clm(q) χOPWq (r), (A.5)

ψ̃vlm(r) =

∫
dq clm(q) eiq·r, (A.6)

Blmjulmj(r) =

∫
dq clm(q) 〈uj |q〉. (A.7)

By the way, it is interesting to express the OPW relation, (A.4), as a transformation

|ψvlm〉 = T |ψ̃vlm〉. (A.8)

It means that one can always recover the full solution ψvlm using a linear transformation, T , on a smooth

solution ψ̃vlm. This is the approach used in the PAW method, as we will see later (2.5.2).

Concerning the localized states, they are chosen to be core orbitals, ulmi = ψclmi, and the potential

is chosen to be the actual potential (spherical near the nucleus), so that ψclmi are the lowest eigenstates

of the Hamiltonian

Hψclmi = εcliψ
c
lmi. (A.9)

The radial part of ψvl must have as many nodes as there are core orbitals with angular momentum lm,

because the valence states ψvlmi must be orthogonal to the core states ψclmi. One can show that the choice

uli = ψcli leads to a smooth function ψ̃vl (r) that has no radial node, and that is indeed smoother than

ψvl (r). Furthermore, the core states of an atom can be assumed to be the same in either a molecule or

solid composed by those atom.

Another relevant point is that the set of OPWs is not orthonormal, which means that each

function has norm less than unity:

〈χOPWq |χOPWq 〉 = 1−
∑
j

|〈uj |q〉|2. (A.10)

This means that equations for the OPWs have the form of a generalized eigenvalue problem with an

overlap matrix.
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Phillips and Klienman [101], and Antoncik [102, 103], in turn, proposed the pseudopotential

transformation, which is the insertion of (A.4) for ψvi (r) into the equation for valence eigenfunctions:

Ĥψvi (r) =

[
−1

2
∇2 + V (r)

]
ψvi (r) = εviψ

v
i (r), (A.11)

where V is the total effective potential, which leads to an equation for the smooth functions, ψ̃vi (r),

ĤPKAψ̃vi (r) ≡
[
−1

2
∇2 + V̂ PKA

]
ψ̃vi (r) = εvi ψ̃

v
i (r). (A.12)

Here

V̂ PKA = V + V̂ R, (A.13)

where V̂ R is a non-local operator that acts upon ψ̃vi (r) as

V̂ R ψ̃vi (r) =
∑
j

(
εvi − εcj

)
〈ψcj |ψ̃vi 〉ψcj(r). (A.14)

which is the formal transformation of (A.11), the OPW expression, and the summation runs over core

states. It has both advantages and disadvantages. First of all, V̂ R is repulsive since εvi − εcj are always

positive in equation (A.14). Besides, a stronger attractive nuclear potential would lead to deeper core-

states, which makes (A.14) yet more repulsive. Thus, V̂ PKA is much weaker than V (r), but is more

complicated and is a non-local operator. Furthermore, the smooth pseudo-function, ψ̃vi (r), are not or-

thonormal because the core orbitals is contained in the full function, ψvi , as well as a smooth potential

is not obtained by this transformation, as one can see in equation (A.14). This problem, (A.12), is,

therefore, a generalized eigenvalue problem1.

In spite of the potential operator is more complex than a simple local potential, it has its advan-

tages, conceptually and computationally, because the weaker and smoother the potential is, the smaller

will be the number of Fourier components in its expansion. It resolves the contradiction that the va-

lence bands, εvnk, are nearly-free-electron-like in some materials, whereas the wavefunctions, ψvnk, must

be non-free-electron-like as they must be orthogonal to the core states. This occurs because the bands

are determined by the secular equation for the smooth ψ̃vnk, whose weak potential V̂ PKA, or V̂ model, is

included.

Based on these foundations, the theory of pseudopotentials has led to two different approaches:

definition of either an ionic pseudopotential, or a total pseudopotential. The former is a more general

approach in the sense that the pseudopotential could be transferable. The latter, in turn, are very useful

for describing band structure accurately, as they can be treated as adjustable empirical potentials. As a

matter of fact, we will focus on the ionic potentials (or model potential) that give the same properties as

1Norm-conserving potential solves the non-orthogonality intricacy. But, this problem resurfaces in ultrasoft pseudopo-

tentials.
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the operators in equations (A.13) and (A.14). The model potential is spherically symmetric, as it replaces

the potential of a nucleus and its core electrons. Also, this symmetry turns angular momentum (l,m) to

be treated separately, which leads to non-local l-dependent model pseudopotentials Vl(r). Outside the

core region, the potential is Zion/r, a Coulomb potential between the nucleus and the core electrons. The

repulsiveness inside the core region is tuned according to angular momentum l.

The l-dependence of a pseudopotential means that it is a non-local operator that can be written

in “semilocal” (SL) form:

V̂SL =
∑
lm

|Ylm〉Vl(r)〈Ylm|, (A.15)

where Ylm(θ, φ) = Pl (cos(θ)) e
imφ are the spherical harmonics. It is semilocal, actually, because it is

local in radial variable, such that if V̂SL acts on a function f(r, θ′, φ′), then

[
V̂SL f

]
r,θ,φ

=
∑
lm

Ylm(θ, φ)Vl(r)

∫
d(cosθ′)dφ′ Ylm(θ′, φ′) f(r, θ′, φ′). (A.16)

As one can imagine, electronic structures involves the matrix elements between states ψi and ψj :

〈ψi|V̂SL|ψj〉 =

∫
dr ψi(r, θ, φ)

[
V̂SL ψj

]
r,θ,φ

. (A.17)



Appendix B

Norm-conserving Pseudopotentials

(NCPPs)

Norm-conserving pseudopotentials [100] preserve the fundamentals of ab-initio pseudopotentials.

They are termed in this fancy way because they are not fitted to experiment. Compared to the PKA

approach outlined in equation (A.4), norm-conserving method has advantage, at first, because the norm-

conserving pseudofunctions, ψPS(r), are normalized and are solutions of a model potential chosen to

reproduce the valence properties of an all-electrons calculation. For complex systems, as the ones already

described, the valence pseudofunctions satisfy the usual orthonormality conditions as in equation (2.36):

〈ψσ, PSi |ψσ
′, PS
j 〉 = δi,j δσ,σ′ , (B.1)

so that the Kohn-Sham equations have the same form as in:

(
Hσ, PS
KS − εσi

)
ψσ, PSi = 0, (B.2)

with Hσ, PS
KS given by equations (2.39) and (2.40), and the external potential will be derived soon.

The definition of an ab-initio norm-conserving pseudopotential needs a list of requirements pro-

posed by D. R. Hamann, M. Schlüter, and C. Chiang (HSC) [100], which are the following (extracted

from [78], section 11.4):

1. All-electron and pseudo valence eigenvalues agree for the chosen atomic reference configuration.

2. All-electron and pseudo valence wavefunctions agree beyond a chosen core radius Rc.

3. The logarithmic derivatives of the all-electron and pseudo wavefunctions agree at Rc.

4. The integrated charge inside Rc for each wavefunction agrees (norm-conserving).

5. The first energy derivative of the logarithmic derivatives of the all-electron and pseudo wavefunction

agrees at Rc.
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Both points 1 and 2 assert that NCPPs equal the atomic potential outside the core region.

Concerning the point 3, a dimentionless logarithmic derivative, D, is defined by

Dl(ε, r) ≡ rψ′l(ε, r)/ψl(ε, r) = r
d

dr
ln [ψl(ε, r)] , (B.3)

and it follows that if ψl(r) and its radial derivative, ψ′l(r), are continuous at Rc for any smooth potential.

One step forward, even though one knows that inside Rc both the pseudopotential and the radial pseudo-

orbital, ψPSl , differ from their all-electron peers, point 4 asserts that the integrated charge,

Ql =

∫ Rc

0

dr r2 |ψl(r)|2 =

∫ Rc

0

dr φl(r)
2, (B.4)

is the same for ψPSl , or φPSl , as for the all-electron radial orbital ψl (or φl) for valence states. There

are two consequences from the conservation of Ql: firstly, it ensures that the core charge in the core

region is correct and, secondly, unlike the smooth orbital from equation (A.6), the normalized pseudo-

orbital is equal to the true orbital outside of Rc. This ensures that the bonding between atoms can be

thought as reliable, even because the potential outside Rc is to be correct since the potential outside a

spherically symmetric distribution depends on the total charge inside the sphere bounded by Rc. The

point 5, in turn, is essential for building a good pseudopotential, which means that it could be generated

in a spherical-like atomic environment, and then to be used on a more complex environment.

In fact HSC showed that point 5 is implied by point 4 [100]. Since the model potential is

spherically symmetric, one can write the radial equation for spherical atom (or ion) as

− 1

2
φ′′l (r) +

[
l(l + 1)

2r2
+ Veff (r)− ε

]
φl(r) = 0, (B.5)

where a prime means derivative with respect to r. Defining the variable xl(ε, r) as

xl(ε, r) ≡
d

dr
lnφl(r) =

1

r
[Dl(ε, r) + 1] , (B.6)

the following non-linear first-order differential equation is gotten by substituing (B.6) into (B.5):

x′l(ε, r) + [xl(ε, r)]
2

=
l(l + 1)

r2
+ 2 [V (r)− ε] . (B.7)

Differentiating it with respect to energy, one has

∂

∂ε
x′l(ε, r) + 2xl(ε, r)

∂

∂ε
xl(ε, r) = −1. (B.8)

For any function f(r) and any l, one would get

f ′(r) + 2xl(ε, r)f(r) =
1

φl(r)2

∂

∂r

[
φl(r)

2 f(r)
]
, (B.9)



126

and, in multiplying this by φl(r)
2 and integrating, one finds at radius R:

∂

∂ε
xl(ε, R) = − 1

φl(R)2

∫ R

0

drφl(r)
2 = − 1

φl(R)2
Ql(R). (B.10)

or, making usage of the dimensionless logarithmic derivative, Dl(ε, R):

∂

∂ε
Dl(ε, R) = − R

φl(R)2

∫ R

0

drφl(r)
2 = − R

φl(R)2
Ql(R). (B.11)

This shows that if φPSl seems like the all-electron function φl at Rc and obeys norm-conserving (Ql are

the same), then xl(ε, R), and in turn Dl(ε, R), is the same as for the all-electron wavefunction.

The generation of the l-dependence norm-conserving pseudopotential embraces two aspects. An

usual all-electron atomic calculation ( [78], chapter 10) is performed for each state (l,m), accompanied by a

self-consistent calculation regarding the exchange-correlation functional of the given atomic configuration.

Then, the valence states is identified in order to generate both the pseudopotential Vl(r) and the pseudo-

orbitals ψPSl (r) = rφPSl (r). By finding the “screened” pseudopotential acting on valence electrons, an

“unscreening” has to be made such that

Vl(r) ≡ Vl,total(r)− V PSHxc(r), (B.12)

which means that a subtraction has been made on the total potential by the sum of the Hartree and

exchange-correlation potentials, V PSHxc(r) = V PSHartree(r)+V PSxc (r), and, still, V PSHxc(r) is defined for valence

electrons in their pseudo-orbitals.

In fact, if the effective exchange-correlation potential were a linear function of density, then we

could unreservedly write the equation (B.12) as:

Vl,total = Vl(r) + VHartree
(
[nPS ], r

)
+ Vxc

(
[nPS ], r

)
, (B.13)

where [nPS ] means the quantity is evaluated as a function of nPS . However, as Vxc is a non-linear, and

probably non-local, functional of n, the equation (B.13) becomes more difficult to be treated. So, the

unscreening of the potential is directly related to the effective exchange-correlation funtional, which, by

(B.12), can be written as

Ṽxc(r) = Vxc
(
[nPS ], r

)
+
[
Vxc

(
[nPS + ncore], r

)
− Vxc

(
[nPS ], r

)]
. (B.14)

According to [105], the term in brackets is a core corrections that increases the transferability of the

pseudopotential. Nonetheless, the core charge density must be stored along with the pseudodensity.

Moreover, the variation of the core density comes to be a drawback in plane wave methods. This obstacle
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was overcome by Louie, Froyen, and Cohen [105], who defined a smooth “partial core density”, ncorepartial(r),

as1

ncorepartial(r) =


Asin(Br)

r , r < r0,

ncore(r), r > r0,
(B.15)

where A and B are determined by the value and gradient of the core charge density at r0, a radius chosen

where ncore is about 1 ∼ 2 times nvalence.

By separating the ionic pseudopotential of (B.12) into a local l-independent part plus non-local

terms as

Vl(r) = Vlocal(r) + δVl(r), (B.16)

one can find the analysis useful within r > Rc. Because the eigenvalues and the orbitals are required to

be the same for both pseudo and all-electron potential, δVl(r)→ 0 and Vl(r)→ −Zionr when r →∞. So,

all the long-range effect of Coulomb potential are included in the local potential, Vlocal(r). Therefore, the

semilocal operator, (A.15), can be written as

V̂SL = Vlocal(r) +
∑
lm

|Ylm〉δVl(r)〈Ylm|. (B.17)

As a matter of fact, there is no “best” pseudopotential for any given element. What there exists

is the “best” choice for each particular problem. As cited in [78], there are two overall competing factors:

I The smaller cutoff radius, Rc, the harder will be the developed potentials, since the wavefunctions

are to be better described near the atom. This leads to better accuracy and transferability.

I The larger cutoff radius, Rc, the softer will be the pseudopotential. The smoothness of the pseudopo-

tential is a consequence of fewer basis functions (plane waves, for instance) needed for describing

the wavefunctions.

An example for Mo [100] is shown in the figure B.1 below.

Christiansen et al. [249], and Kerker [250] defined a pseudo-wavefunction, φPSl (r), with the desired

properties for each l and were able to find the potential Vl(r), for which φPSl (r) is solution with energy

ε, by inverting the Schrödinger equation. For this nodeless functions, for each l, the potential is

Vl,total(r) = ε− ~2

2me

[
l(l + 1)

2r2
−

d2

dr2φ
PS
l (r)

φPSl (r)

]
. (B.18)

1A discontinuity in the second derivative at r0 arises in GGA functionals. But, it can be circumvented by using a more

flexible functional.
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At Rc the wavefunction is matched to a parameterized analytic function. Conveniently, Kerker chose

φPSl (r) = ep(r), r < Rc, where p(r) = polynomial to fourth power with coefficients chosen by continuous

first and second derivatives at Rc and norm-conservation. Considering smoothness, Bachelet, Hamann,

and Schlüter (BHS) [251] used gaussian expansion to build what can be called as “standard reference

pseudopotentials” from H to Pu elements. And it is called so because they are hard and are used for

comparison. Vanderbilt [252] also made use of the same approach, but changing parameters until the

wavefunction reaches the desired property. A bit later, Troullier and Martins [253] developed a higher

order polynomial in order to make smoother potentials than the Kerker’s ones. The interesting figure

below, B.2, shows the comparison among those generated pseudopotential.

Figure B.1: Example of norm-conserving pseudopotential, pseudofunctions, and logarithmic derivative for Mo. Left Bottom:

Vl(r) in Ry for l = 0, 1, 2 compared to Zion/r (dashed line). Left top: All-electron valence radial functions, φl(r) = rφl(r)

(dashed line), and norm-conserving pseudofuntions. Right: Logarithmic derivative of the pseudopotential compared to the

full atom calculation; the points indicate the energy where they are fitted. Figure extracted from [78], page 216.
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Figure B.2: Comparison of pseudopotential for carbon in both real and reciprocal space. Dotted lines mean s state,

and solid lines mean p state. All the potentials shown are norm-conserving potentials. From left to right: Troullier and

Martins [253]; Kerker [250]; BHS [251]; Vanderbilt [252]. Regarding the differences among them, please refer to the text

and the reference [78], page 217, where the figure was extracted from.

Optimization can be done to turn a pseudopotential as reliable as possible through convergence as,

for example, by minimizing the kinetic energy of the pseudopotential for the chosen radius core [254,255].

This can be quantified by examination of the Fourier transform and its behavior at large momentum q.

Once this optimization is accomplished, the resulted pseudopotential can be carried over to molecules

and solids, since the convergence as a function of qmax is the same whatever is the case.

B.1 Separable Pseudopotential Operators and Projectors

Kleinmann and Bylander (KB) [256] found out a way to construct a separable pseudopotential

operator, i.e., δV (r, r′) ≡
∑
i fi(r)gi(r

′). They showed that the semilocal δVl(r) of (B.16) can be replaced

by a non-local separable operator δV̂NL. Thus, the total pseudopotential would be

V̂NL = Vlocal(r) +
∑
lm

|ψPSlm δVl〉〈δVlψPSlm |
〈ψPSlm |δVl|ψPSlm 〉

, (B.19)

where the second term, with the form δV̂NL(r, r′), is fully non-local in angles θ, φ, and r. The projectors

〈δVlψPSlm | are defined as functions that operate on a wavefunction:

〈δVlψPSlm |ψ〉 =

∫
dr δVl(r)ψ

PS
lm (r)ψ(r). (B.20)

Independently of the extent of the functions ψPSlm = ψlm(r)Pl (cos(θ)) e
imφ, the projectors are only non-

zero inside the cutoff region. The advantage of this form is that one only has to calculate products of

projectors (B.20) to express the matrix elements:
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〈ψi|δV̂NL|ψj〉 =
∑
lm

〈ψi|ψPSlm δVl〉
1

〈ψPSlm |δVl|ψPSlm 〉
〈δVlψPSlm |ψj〉, (B.21)

which can be contrasted with the radial integration of the equation (A.17) for this saves computational

time for large systems.

However, it is possible to construct the separable pseudopotential directly, as Vanderbilt showed

[104]. Through the same method used to build norm-conserving pseudopotential, ψPSlm and Vlocal(r) are

chosen smooth within r > Rc. One can define functions χPSlm , such that

χPSlm (r) ≡
{
εl −

[
−1

2
∇2 + Vlocal(r)

]}
ψPSlm (r), (B.22)

so that χPSlm (r) = 0 outside Rc. Also the operator

δV̂NL =
∑
lm

|χPSlm 〉〈χPSlm |
〈χPSlm |ψPSlm 〉

(B.23)

has the same properties as the KB operator in (B.19); in other words, ψPSlm is a solution of ĤψPSlm = εlψ
PS
lm ,

with Ĥ = − 1
2∇

2 + Vlocal + δV̂NL.



Appendix C

Gauge Freedom

The Maxwell’s equations are defined as [257]

∇ ·E =
1

ε0
ρ, (C.1)

∇ ·B = 0, (C.2)

∇×E = −∂B

∂t
, (C.3)

∇×B = µ0J + µ0ε0
∂E

∂t
, (C.4)

so that given ρ(r, t) and J(r, t), the fields E(r, t) and B(r, t) could be found. As a reminder, ρ and J

are the charge density and the current density, respectively. These are a set of coupled first-order partial

differential equations. However, certainly, it would be better if this number of equations were diminished,

even if they turn out to be second-order equations, satisfying the Maxwell’s equations. Thus, with this

intention, it is convinient to introduce potentials: a scalar potential Φ, and a vector potential A [258].

Since equation (C.2) holds, B can be defined in term of the vector potential:

B =∇×A. (C.5)

Then the equation (C.3), Faraday’s law, can be written as

∇×E = − ∂

∂t
(∇×A) , (C.6)

∇×
(

E +
∂A

∂t

)
= 0. (C.7)

Because a curl of a vector is null, one can write equation (C.7) as a gradient of some scalar

function, a scalar potential Φ:

E = −∇Φ− ∂A

∂t
(C.8)
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which recovers E = −∇Φ when A is a constant. The definintion of the fields E and B in terms

of the potentials Φ and A, as defined in equations (C.5) and (C.8), satisfies both the aforementioned

Maxwell’s equations. The other two inhomogeneous equations would determine the dynamic behavior of

the potentials. In the vacuum, these two equations can be written in terms of the potentials as

∇2Φ +
∂

∂t
(∇ ·A) = − ρ

ε0
, (C.9)

∇2A− 1

c2
∂2A

∂t2
−∇

(
∇ ·A +

1

c2
∂Φ

∂t

)
= −µ0J, (C.10)

where c is the light velocity.

Even though we have reduced the Maxwell’s equations into a set of two equations, they are

still coupled. The uncoupling can be accomplished by exploint the arbitrariness of the definition of the

potentials. This arbitrariness is called gauge freedom, which means that we can impose extra condition

to the potentials, as long as nothing happens to E and B [257].

So, supposing we have two set of potentials (Φ,A) and (Φ′,A′), which correspond to the same

fields. Writting them as

A′ = A + α (C.11)

Φ′ = Φ + β (C.12)

The curls of the potentials A′ and A must be equals since they give the same B. Hence

∇×α = 0. (C.13)

Therefore, α can be written as a gradient of some scalar:

α =∇λ. (C.14)

Also, Φ′ and Φ give the same E:

∇β +
∂α

∂t
= 0, (C.15)

or

∇
(
β +

∂λ

∂t

)
= 0. (C.16)

Calling the term in parenthesis as k(t), we have
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β = −∂λ
∂t

+ k(t). (C.17)

Therefore,

 A′ = A +∇λ,

Φ′ = Φ− ∂λ
∂t .

(C.18)

Therefore, for any scalar function λ(r, t), one can add ∇λ to A, assuming ∂λ/∂t is subtracted

from Φ. Under such changes in Φ and A, the fields E and B will not be changed. These gauge transfor-

mations can be used to symplify the equations (C.9) and (C.10) through an adjustment to the ∇ ·A.

C.1 Coulomb Gauge

In magnetostatic, the best choice is

∇ ·A = 0 (C.19)

so that the equation (C.9) becomes

∇2Φ = − ρ

ε0
. (C.20)

which is the Poisson’s equation, whose solution is

Φ(r, t) =
1

4πε0

∫
dr′

ρ(r′, t)

r
, (C.21)

where r =
√

r− r′, with r and r′ being the distance to a point in space whereby the source charges in r′

are “felt”. Its advantage lies at that the scalar potential is easily calculated. On the flip side, the vector

potential is particularly difficult to calculate. The differential equation for A, equation (C.10), in the

Coulomb gauge is

∇2A− µ0ε0
∂2A

∂t2
= −µ0J + µ0ε0∇

(
∂Φ

∂t

)
. (C.22)
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C.2 Lorenz Gauge

The Lorenz1 gauge is

∇ ·A = µ0ε0
∂V

∂t
. (C.23)

The idea is to sweep out the middle term in equation (C.10), so that it becomes

∇2A− µ0ε0
∂2A

∂t2
= −µ0J, (C.24)

while the differential equation for Φ becomes

∇2Φ− µ0ε0
∂2Φ

∂t2
= − ρ

ε0
. (C.25)

Actually, the equations (C.24) and (C.25) can be written in terms of a common differential

operator:

∇2 − µ0ε0
∂2

∂t2
≡ �2, (C.26)

which is called d’Alembertian. So, these equations can also be written as

�2V = − ρ
ε0

�2A = −µ0J.
(C.27)

1Until recently, it was spelled “Lorentz”, in honor of the Dutch physicist H. A. Lorentz, but is now attibuted to L. V.

Lorenz, the Dane ( [257], page 441).
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Proof of Equation (3.39)

According to the reference [41], for x ∈ R, we have

π
∑
f

|ψ̃f 〉δ(Ef − x)〈ψ̃f | = lim
γ→0

Im

[
Ŝ−1/2 1

x− Ŝ−1/2H̃Ŝ−1/2 − iγ
Ŝ−1/2

]
. (D.1)

Further, if

π
∑
f

|ψ̃f 〉δ(Ef − x)〈ψ̃f | = lim
γ→0

Im

∑
f

|ψ̃f 〉
1

x− Ef − iγ
〈ψ̃f |

 , (D.2)

then we have

∑
f

|ψ̃f 〉
1

x− Ef − iγ
〈ψ̃f | =

∑
f

Ŝ−1/2 1

x− Ef − iγ
Ŝ1/2|ψ̃f 〉〈ψ̃f | =

∑
f

Ŝ−1/2 1

x− Ŝ−1/2H̃Ŝ−1/2 − iγ
Ŝ1/2|ψ̃f 〉〈ψ̃f |

= Ŝ−1/2 1

x− Ŝ−1/2H̃Ŝ−1/2 − iγ
Ŝ−1/2

∑
f

Ŝ|ψ̃f 〉〈ψ̃f | = Ŝ−1/2 1

x− Ŝ−1/2H̃Ŝ−1/2 − iγ
Ŝ−1/2.

(D.3)

where we have used the following property of (2.84):

1 =
∑
f

|ψ̃f 〉〈ψ̃f |Ŝ =
∑
f

Ŝ|ψ̃f 〉〈ψ̃f |. (D.4)
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Ŝ−1 Matrix Calculation

According to [96], Ŝ can be written as

Ŝ = 1 +
∑
i,j

qij |p̃i〉〈p̃j |, (E.1)

and the matrix Ŝ−1 as

Ŝ−1 = 1 +
∑
ij

aij |p̃i〉〈p̃j |. (E.2)

The condition ŜŜ−1 = 1 must be satisfied, so that

ŜŜ−1 =

1 +
∑
i,j

qij |]epi〉〈p̃j |

1 +
∑
l,m

alm|p̃l〉〈p̃m|


= 1 +

∑
i,j

|p̃i〉〈p̃j |

qij + aij +
∑
l,m

qijPjlalm

 ,

(E.3)

where Pjl = 〈p̃j |p̃l〉. In matrix form, we have

q + a+ qPa = 0, (E.4)

whose solution is a = −(1 + qP )−1Q. Therefore, S−1 can be calculated by inverting the matrices of size

Np ×Np, where Np is the number of ultrasoft projectors.



Appendix F

Gauge-Including Projector

Augmented-Wave Method

This method has its origin in the look for understanding atomic structure of systems under

Nuclear Resonance Magnetic (NMR), whose chemical shift spectra give unambiguous determination of the

microscopic structure [111]. Concerning first-principle calculations based in all-electron Hamiltonian [259,

260], up to 1996 only norm-conserving pseudopotentials have been used. In fact, pseudowave functions are

properly chose because in the core region because of pseudopotential methods, and many properties, such

as NMR chemical shifts, depend critically on the all-electron wavefunctions at the nucleus. As one knows,

PAW approach gives an overall technique to calculate all-electron properties from pseudopotential-based

scheme. For example, core-level [261] spectra and electric-field gradient [262] have been calculated using

PAW method.

As in all works mentioned, an X-ray absorbing atom is in presence of an electromagnetic field, an

extension of the Blöchl’s PAW approach called Gauge-Including Projector Augmented Wave (GIPAW) is

needed. This is necessary because the Hamiltonian constructed using GIPAW would have the demanded

transational invariance in the presence of a magnetic field [111]. So, as PAW method has already been

discussed in section 2.5.2, the single-augmentation region in a uniform magnetic field will be discussed,

followed by the consequences under which translations under such fields could make rise. Afterwards, the

GIPAW method will be introduced and, then, the GIPAW Hamiltonian. We will be based on the main

work on this subbject [111].

F.1 The All-Electron Hamiltonian

In the presence an external magnetic field B, the all-electron Hamiltonian is

H =
1

2

(
p +

1

c
A(r)

)2

+ V (r), (F.1)
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where c is the speed of light, V (r) is the all-electron local potential, and B = ∇×A(r). The aim is to

construct a pseudo-Hamiltonian for a system, which will contain many augmentation region. To begin

with, considering a simplest system with only one augmentation region around the atomic site.

The symmetric gauge is A(r) = 1
2B × (r− d), where d indicates the gauge origin, from which

the expectation values of the observables do not depend. Nonethless, the number of partial waves to

describe the valence all-electron eigenstates do depends on d. Putting d = 0 (atomic site of that region)

that number of partial waves is minimized, as well as the effect of the magnetic field on all-electron

wavefunctions in the augmentation region [111]. Also, and this may be the most important aspect as

we are using pseudopotential approximation, that choice of gauge results in diminishing the interaction

between the valence and core states of the augmented atom.

Thus, if

A(r) =
1

2
B× r, (F.2)

the equation (??) becomes

H =
1

2
p2 + V (r) +

1

2c
L ·B +

1

8c2
(B× r)

2
, (F.3)

where L = r× p is the angular-momentum operator computed within the augmentation region.

Now, using the equation (2.96) rewritten here:

Õ = O
∑

R,n,m

|p̃R,n〉
[
〈φR,n|O|φR,m〉 − 〈φ̃R,n|O|φ̃R,m〉

]
× 〈p̃R,m|, (F.4)

and supposing that the norms within ΩR of |φ̃R, n〉 and |φR, n〉 coincide, we can recover the norm-

conserving formalism of KB [263]. Thus, the pseudo-wave functions that correspond to the all-electron

valence eigenstates of the H are eigenstate of the H̃ with the same eigenvalues. Thus,

H̃ = T †HT =
1

2
p2 + V loc(r) +

∑
R

V nlR , (F.5)

where V loc(r) is the local part of the pseudopotentials, and its non-local part at the atomic site R is

given by

V nlR =
∑
n,m

|p̃R,n〉aRn,m〈p̃R,m|, (F.6)

where aRn,m depend on R because each atomic site may be occupied by a different chemical species [111].

The pseudo-Hamiltonian is obtained by using (F.4), (F.5) and (F.3):



139

H̃ =
1

2
p2 + V loc(r) + V nl0 +

1

2c
L ·B +

1

8c2
(B× r)

2
+
∑
n,m

|p̃0,n〉
(
b(1)
n,m + b(2)

n,m

)
〈p̃0,m|, (F.7)

where

b(1)
n,m =

1

2c
B ·
[
〈φ0,n|L|φ0,m〉 − 〈φ̃0,n|L|φ̃0,m〉

]
, (F.8)

and

b(2)
n,m =

1

8c2

[
〈φ0,n| (B× r)

2 |φ0,m〉 − 〈φ̃0,n| (B× r)
2 |φ̃0,m〉

]
. (F.9)

We can see that, as in norm-conserving case, if only one projector is used per angular momentum

[100, 253], then b
(1)
n,m vanishes, since both all-electron and pseudo wavefunctions are the same within

the augmentation region, and also they are both eigenstates of L and Lz. Also, in the center of the

augmentation region, (B× r)
2

goes to zero. Therefore, with one augmentation region centered at the

gauge origin, the coupling with the magnetic field in the pseudo- and all-electron Hamiltoninans has the

same form:

H̃ =
1

2
p2 + V loc(r) + V nl0 +

1

2c
L ·B +

1

8c2
(B× r)

2
. (F.10)

F.2 Translation Invariance

For systems with several augmentation region, the last derivation is not appropriated, since the

gauge origin can coincide with just one augmentation region. Thus, the number of projectors of the other

augmentation regions would have to increase for those regions [111]. The description of a system under

a uniform magnetic field should be invariant upon atomic translation t, however this does not occur in

PAW approach.

The new potential for translated atoms is V ′(r) = V (r− t), and so the corresponding Hamilto-

nian:

H ′ =
1

2

(
p +

1

c
A(r)

)2

+ V (r− t), (F.11)

where A(r) is given by equation (F.2).

The eigenenergies of H and of H ′ are the same because of the translational invariance, but the

eigenstates |Ψ′n〉 and |Ψn〉 are not. Actually, they need an additional phase owing to magnetic field:
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〈r|Ψ′n〉 = e(i/2c)r·(t×B)〈r− t|Ψn〉, (F.12)

which is not achieved by the transformation (2.95) according the PAW approach.

F.3 GIPAW Method

A PAW-like approach need to be constructed to restore the translation invariance. To do so, a

new field-dependet transformation operator TB is defined as

TB = 1 +
∑
R,n

e(i/2c)r·(R×B)
[
|φR,n〉 − |φ̃R,n〉

]
〈p̃R,n|e−(i/2c)r·(R×B), (F.13)

so that the GIPAW pseudo-wave functions and the GIPAW operators obtained with TB are read as |Ψ̄〉

and Ō, respectively. The pseudo-eigenstate |Ψ̄〉 = TB|Ψ〉, thus, satisfies the same translation relation as

that of equation (F.12). And the GIPAW pseudo-operator Ō = T †BOTB is given by

Ō = O +
∑

R,n,m

e(i/2c)r·(R×B)|p̃R,n〉

×
[
〈φR,n|e−(i/2c)r·(R×B)Oe(i/2c)r·(R×B)|φR,m〉

− 〈φ̃R,n|e−(i/2c)r·(R×B)Oe(i/2c)r·(R×B)|φ̃R,m〉
]

× 〈p̃R,m|e−(i/2c)r·(R×B).

(F.14)

F.4 GIPAW Hamiltonian

From equation (F.14), using the identity

e−(i/2c)r·(R×B)

(
p +

1

c
A(r)

)n
e(i/2c)r·(R×B) =

(
p +

1

c
A(r−R)

)n
, (F.15)

where n is an integer, and the results from section F.1 for b
(1)
n,m and b

(2)
n,m, we get the GIPAW pseudo-

Hamiltonian:

H̄ =
1

2
p2 + V loc(r) +

∑
R

e(i/2c)r·(R×B) V nlR e−(i/2c)r·(R×B) +
1

2c
L ·B +

1

8c2
(B× r)

2
. (F.16)
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If one makes B = 0 the GIPAW Hamiltonina recovers the PAW Hamiltonian of equation (F.5),

and for B 6= 0 it recovers the PAW Hamiltoninan of equation (F.10) for systems with a single augmen-

tation region centered at the origin [111]. Also, indeed, the GIPAW eigenenergies are invariant upon

translation, unlike the PAW ones. Therefore, with such an instrument, one is able to obtain the expec-

tation values of the desired operators.



Appendix G

Bader Charge Analysis

Following [234], an intuitive way of saparating molecules into atoms is called Quantum Theory of

Atoms in Molecules (QTAIM)1. An atom participating in a molecular bonding is defined based purely on

its electronic charge density within a specific volume. Each atom is separated by a bidimensional zero-flux

surface, where the charge density is a minimum between the atoms, and their maxima are located on

each of them, as one can see in figure G.1.

Figure G.1: A sketch of the region comprised by two bonding atoms (blue circles), which is shown by light green color. The

surface charge density and the maximum charge density are shown in the figure (extracted from [234]).

The surface density defined as a surface that separated the volume comprising each atom, or

the Barder volumes, has the minima of the scalar function, the charge density in this case. It is, in

turn, defined in a grid of points, whose values are evaluated and assigned to define a path (arrows in

figure G.2-a) towards which a maximum is found. Whenever two maxima is found (see figure G.2-b), the

minima between them define the zero-flux surface, which separetes the Bader volumes (red line in that

figure) [235]. Therefore, integrating all the charge density within the Bader volume one is able to get the

Bader charge for that atom.

1It was devised by Richard Bader from McMaster University [264].
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Figure G.2: Partitioning of the charge density grid into Bader volumes around the atomic site. Each point in figure (a)

composes the grid of charge density function, and each arrow points to its maxima following certain criteria, such as if the

point was already assigned or if it has a higher value than the previous one. After the assignment of every point of the

grid, the set of point close to each maximum (m1 in green, and m2 in blue) determines the Bader volume. The minimum

between these two volumes (two atoms) defines the Bader surface that separates the two volumes, which is shown in figure

(b) by a red line. Figure from [235].



Appendix H

Supplementary Results

H.1 Local PDOS for XANES contributions shown in figure 6.18

The peak a∗ in Fig.H.1 has contributions from spin-down pz orbitals from Y and X’ (smaller

contribution) atoms, as well as the out-of plane atoms (2nd line in the plot), and the in-plane atom w.r.t.

X? atom. Regarding the d∗ peak, we have contribution from pz orbital from both X and O atoms.

Peak d, in turn, has pz orbitals from out-of-plane atom w.r.t. the X and X’ atoms, and also from

py orbitals from in-plane atoms w.r.t. the X and Y atoms. Also, there are contribution from pz and px

orbitals from the X and X’ atoms themselves.

Concerning the d’ peak, we have that py orbitals from X atoms contribute. px orbitals from

in-plane atoms w.r.t. the X atom, and py orbital w.r.t. the Y atom play their role. Regarding the out-

of-plane ones, pz orbitals from Y and X atoms contribute, the former contributes mostly. Peak d’∗ has a

strong mixture of contributions from different atoms when it comes to the in-plane atoms and absorbent

ones themselves. Nonetheless, the out-of-plane atoms w.r.t. Y and X’ atoms strongly contributes with

pz orbitals.
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Figure H.1: First line: XANES of diamondol (magenta line) lines green and black (armchair direction), or red (zingzag

direction), refer to parallel and perpendicular XANES polarization. Second line refer to PDOS of the atoms that lay

perpendicularly the absorbent one. Third line: atoms that lay in-plane w.r.t. the absorbent one. Last line: absorbent ones.

The solid, dashed, dotted, and dashd-dotted lines refer to the atoms X, Y, X’, and Y’, respectively.

Regarding the bidiamondol system (Fig.H.2), peak d∗ has contribution from p z orbitals of both

the X atom itself and oxygen atom attached to it. There is also a tiny contribution from px and py orbitals

of X atom and its parallel neighbors. Likewise, the peak b has also the same kind of contributions, added

to them also the px and py states from parallel atoms w.r.t. both the X and Y atoms. It is important

to notice that the atoms X’ and Y’ are equivalents to their counterparts, the X and Y ones. Therefore,

they present the same contributions.
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Figure H.2: First line: XANES of bidiamondol (dark green line) lines green and black (armchair direction), or red (zingzag

direction), refer to parallel and perpendicular XANES polarization. Second line refer to PDOS of the atoms that lay

perpendicularly the absorbent one. Third line: atoms that lay in-plane w.r.t. the absorbent one. Last line: absorbent ones.

The solid and dashed lines refer to the atoms X and Y, respectively. Atoms X’ and Y’ are equivalent to them.

The F-diamane’s peak a∗, as shown in Fig.H.3, has contributions from spin-down pz orbitals from

Y atom, as well as the out-of plane atoms (2nd line in the plot), and the in-plane atom w.r.t. X and X’

atom. Regarding the d∗ peak, we have contribution from pz orbital from both X and F atoms, just as in

the diamondol case. Peak d has pz orbitals from out-of-plane atom w.r.t. the X and X’ atoms, and also

from py orbitals from in-plane atoms w.r.t. the X and Y atoms. Also, there are contribution from pz

and px orbitals from the X and X’ (smaller in comparison) atoms themselves. It is important to notice

that there is no contribution from pz orbitals of perpendicular atoms to the X at 288 eV, as observed in

diamondol. Concerning the d’ peak, the contributions are very similar to those of diamondol. Concerning

the peak b∗ the strong mixture of contributions comes mainly from px and py orbitals of different atoms

when it comes to the in-plane atoms and absorbent ones themselves. Nonetheless, the out-of-plane atoms

w.r.t. Y (2nd line) and X’ (4th line) atoms strongly contributes with acepzorbitals.
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Figure H.3: First line: XANES of F-diamane (turquoise line) lines green and black (armchair direction), or red (zingzag

direction), refer to parallel and perpendicular XANES polarization. Second line refer to PDOS of the atoms that lay

perpendicularly the absorbent one. Third line: atoms that lay in-plane w.r.t. the absorbent one. Last line: absorbent ones.

The solid, dashed, dotted, and dashd-dotted lines refer to the atoms X, Y, X’, and Y’, respectively.

Concerning peak a of bi-F-diamane (Fig.H.4, pz orbitals from X atom and perpendicular first-

neighbor have the most important contribution. Also, pz orbitals from Y atom and its first-neighbors

contribute to the continuity of the observed spectrum. Regarding the peak d∗, one has mainly contribution

from pz orbitals from Y atom and its perpendicular neighbor, and also px and py orbitals from X and Y

atoms and their parallel neighbors. Peak d, in turn, despite the same kind of contributions compared to

the d∗ peak, it is found that the pz ones are less intense compared with the others.
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Figure H.4: First line: XANES of bi-F-diamane (purple line), green and black (armchair direction), or red (zingzag direction),

lines refer to parallel and perpendicular XANES polarization, respectively. Second line refer to PDOS of the atoms that

lay perpendicularly the absorbent one. Third line: atoms that lay in-plane w.r.t. the absorbent one. Last line: absorbent

ones. The solid and dashed lines refer to the atoms X and Y, respectively. Atoms X’ and Y’ are equivalent to those.
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H.2 Mo-based Systems, and Their Interaction with Acetonitrile

(a)

(b)

Figure H.5: Number-density color map along the z direction, number density, and charge density for ACN molecule inter-

acting with the MoO3 solid. All the figures refer to the simulation “S3”. In figure (a), the color scale indicates that the

red refers to the maximum value, while the blue color refers to the minimum value, which means that all the blue region is

related to the solid.

Figure H.6: Number density of ACN molecules in simulation boxes containg only pure ACN (solid lines), O2 (dashed lines),

and H2O (dotted lines). Black and red lines refer to the MoO3 and MoS2 solids, respectively. The rz = 0 is set in the

middle of the solid.
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Figure H.7: Normalized ACN number density, nACN , of the systems containing MoS2 (solid lines) and MoO3 (dashed lines).

Black lines refer to the larger system, which contains 1000 ACN molecules (top part of the figure (a)), whereas red lines

indicate systems containing 85 (96) ACN molecules in the smaller system with MoO3 (MoS2), as depicted in figure 7.11.
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[103] ANTONČÍK, E. Approximate formulation of the orthogonalized plane-wave method. Journal of

Physics and Chemistry of solids, v. 10, n. 4, p. 314–320, 1959.

[104] VANDERBILT, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism.

Physical Review B, v. 41, n. 11, p. 7892, 1990.

[105] LOUIE, S. G.; FROYEN, S.; COHEN, M. L. Nonlinear ionic pseudopotentials in spin-density-

functional calculations. Physical Review B, v. 26, n. 4, p. 1738, 1982.

[106] KOKALJ, A. Xcrysden: a new program for displaying crystalline structures and electron densities.

Journal of Molecular Graphics and Modelling, v. 17, n. 3, p. 176–179, 1999.

[107] HANWELL, M. D.; CURTIS, D. E.; LONIE, D. C.; VANDERMEERSCH, T.; ZUREK, E.;

HUTCHISON, G. R. Avogadro: an advanced semantic chemical editor, visualization, and analysis

platform. Journal of cheminformatics, v. 4, n. 1, p. 17, 2012.



159

[108] X-ray - wikipedia. https://en.wikipedia.org/wiki/X-ray#cite_note-1. (Accessed on

02/16/2020).

[109] SCHNOHR, C. S.; RIDGWAY, M. C. X-ray absorption spectroscopy of semiconductors. Springer,

2015.
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