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Resumo

As cadeias de spin XY e os modelos de férmions quadráticos relacionados foram ampla-
mente estudados durante os últimos 70 anos atrás. Nesta tese, a solução e a conexão
entre o modelo de spin XY solúvel e os férmions quadráticos, obtidos pela fermionização
de Jordan-Wigner, são revistos em detalhes. A família de cadeias de spin XY , como a
cadeia quântica de Ising e a cadeia de spin XX, tem sido uma grande parte da física
quântica de muitos corpos e da informação quântica. Após apresentar a solução para a
diagonalização da cadeia de spins XY e o modelo fermiônico, são apresentados outros
métodos de formulação de autoestados desses sistemas. Também discuto o conteúdo
da função de correlação desses modelos, e não se limita apenas ao estado fundamental.
Diferentes formulações do operador de matriz de densidade também são apresentadas
da maneira mais abrangente. Todas as quantidades mencionadas são então usadas para
estudar o emaranhamento bipartido desses modos. A segunda parte da tese (parte de
artigos publicados) contém as aplicações dos métodos fornecidos nas partes anteriores
para estudar particularmente o emaranhamento nesta família de modelos. Por exemplo,
estudamos a média do emaranhamento de subsistemas em modelos fermiônicos gerais e
fornecemos raciocínio analítico para o comportamento dessa média. Além disso, forne-
cemos um método comprovado para calcular o emaranhamento em cadeias de spin que
têm interação não uniforme com campos magnéticos externos nos limites. Os modelos
mencionados são conhecidos por serem difíceis de resolver e estudar. Nós fornecemos (e
provamos) uma fórmula para reduzir drasticamente a dificuldade de calcular a matriz
de densidade reduzida e o emaranhamento de contorno em tais sistemas. Este trabalho
fornece um método concreto e fácil para estudar ainda mais o emaranhamento dos modos
de borda de Majorana e outros sistemas relacionados na física quântica de muitos corpos.

Palavras-chaves: Cadeias de spins. Férmions quadráticos. Correlação quântica. Operador
densidade. Matriz densidade. Entrelaçamento quântico. Emaranhamento quântico.



Abstract

The XY spin chains and related quadratic fermion models have been studied vastly during
the last 70 years ago. In this thesis, the solution and the connection between the solvable
XY spin model and quadratic fermions, obtain by the Jordan-Wigner fermionization,
are reviewed in detail. The family of XY spin chain, such as the quantum Ising chain
and XX spin chain, have been a huge part of quantum manybody physics and quantum
information. After presenting the solution to the diagonalization of the XY spin chain
and the fermionic model, other methods of the formulation of eigenstates of these systems
are presented. I also discuss the correlation function contents of these models, and it is not
limited to ground state only. Different formulations of density matrix operator are also
presented in the most comprehensive way. All the mentioned quantities are then used to
study the bipartite entanglement of these modes. The second part of the thesis (published
articles part) contains the applications of the methods provided in the earlier parts to
particularly study the entanglement in this family of models. For instance, we have studied
the universal average entanglement entropy over all eigenstates of the general fermionic
models in 1D and provided analytical reasoning for the behavior of this averaging. It was
proved that these models, independent of the gap, have infinite excited states that can be
described by conformal field theory. In addition, we have provided a proven method to
calculate the entanglement in spin chains that have non-uniform interaction with external
magnetic fields at the boundaries. The models mentioned are known to be challenging to
solve and study. We provide (and proof) a formula to reduces the difficulty of calculating
the reduced density matrix and boundary entanglement in such systems drastically. This
work dispenses a concrete and easy method to further study entanglement of Majorana
edge modes and other related systems in manybody quantum physics.

Key-words: Quantum spin chains. Quadratic fermions. Correlation functions. Density
matrix operator. Entanglement.
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Quantum mechanics’ correlations have no classical analogue and are one of the most
fascinating discoveries of the 20th century. The existence of such correlations, called
entanglement, was revealed by the famous Einstein-Podolsky-Rosen (EPR) Gedanken
experiment in the 1930s [1], which could not be explained by any classical theory. Even
it was considered by Einstein as a “spooky action at a distance” at that time. Nowadays,
the notion of entanglement has transformed into a well-established concept. The kick-off
for this development was the inequalities formulated by Bell in 1964 [2]. Violation of a
Bell inequality implies the existence of quantum mechanical correlations that leads to
quantum entanglement. Over twenty years later, the first convincing experiment proving
the violation of a Bell inequality was performed (by Aspect) [3, 4]. Aspect’s experiments
gave rise to the advent of quantum information theory in the early 1990s, where the
quantum correlations and quantum entanglement played the role of resource for many
technological applications. Since that time, quantum information science has developed
into a popular research area, ranging from foundational questions of the interpretation of
quantum mechanics to the search for the technological application of entanglement [5].

With the beginning of the 21st century intriguing experiments using ultracold quan-
tum gases (see [6] for a review) were an immense success for this field of science, and
attracted the attention of the quantum information and condensed matter community.
The groundbreaking realization of a Bose-Einstein condensate in a system of Rubidium
atoms revolutionized condensed matter physics. The present experiments with bosonic
and fermionic atoms offer an exciting possibility to verify concepts predicted by the theory
of condensed matter physics and allow to discover and explore new and exotic quantum
phases. Furthermore, realization of cold atoms led to the immense success of quantum com-
putations. Certain computational tasks, such as simulating quantum mechanical systems,
can be done exponentially faster using an ultracold atom setup or quantum computer
based on qubits than by a classical computer [7]. However, the experimental realization of
a large-scale quantum computer capable of accomplishing those tasks is still an unsolved
task.

The study of entanglement in quantum many-body systems has become one of the
major efforts in the physics community, due to its potential for describing quantum phases
of matter and topological order [8, 9, 10, 11]. Characterizing entanglement in many-body
systems is still an open field of research (see [12] for a review). The situation gets more
complicated when the particles or size of the system under consideration grows. Calculation
of entanglement entropy, even bipartite entanglement for pure states grows with the size of
the system. In particular, knowing the entanglement relies on finding the eigenvalues of a
matrix that grows exponentially with the size of the system, let alone the fact that finding
eigenvalues is a complicated computational process. The application of tools and techniques
from various fields of physics, and mathematics into the condensed matter physics resulted
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in interesting insights in calculating the entanglement for manybody systems, specially
fermionic systems. Fermions, which are the basic building blocks of matter, are central to
many of the most fascinating effects in condensed matter physics, like superconductivity,
superfluidity, or the quantum Hall effect. In this regard, free fermionic systems are especially
interesting, as there have been theoretically proven relations which allow one to write the
density matrix and calculate the entanglement with less computational efforts [13, 14, 15].
Consequently, the investigation and study of quantum aspects in many fermionic systems
are the main focus of this Thesis.

The important components of this thesis are organized as follows. The first part,
the prerequisites part, is devoted to educate the reader on the models and methods. It
can be thought of as a self-sufficient review of the spin and fermionic chain materials in
which relations are explained well, equations are opened up and derived in easy steps,
and examples have been given. In chapter 2, the XY spin model and related spin models
are presented in detail, then the connection of these spin chains to fermionic models is
cleared up. Then I discuss the quadratic fermions and their solution in extension. I stick
to the most general case possible, and after explaining the diagonalization process, I go
into the means to represent the eigenstates of the system and possible constraints. End
of the first chapter spin chains are revisited, and it focuses on obtaining the spectrum
of the spin system from that of the fermion system. Chapter 3 is devoted to the study
of the correlation function for quadratic fermions and related spin chains. Chapter 4
introduces different formulations of density matrix and reduced density matrix, which
uses the results of previous chapters. The final chapter of part I, briefly talks about the
quantum entanglement in manybody systems, and some useful relations are presented. In
part II of this thesis, published papers are located. In chapter 6 (Ref. [16]) we investigated
the averaging of the subsystem entanglement entropy over all excited states of general free
fermion models. In particular, firm reasoning is proposed for the behavior of mentioned
averaging, which is valid for the most general case of free fermion and related spin chains.
In chapter D (Ref. [17]), we took the advantage of the methods and formulations of free
fermions to prove a new ansatz for reduced density matrix which reduces the difficulty of
studying the entanglement in spin systems with diverging boundary magnetic field in 1D.
The boundary entanglement contains more information than conventional belief.



Parte I

Prerequisites
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Capítulo 2. Integrable spin chains and free fermions 17

2.1 Solvable Spin Chains
Historically, the realization of spin interactions goes back to the works in the early

stages of quantum mechanics such as works by Heisenberg and Dirac’s works [18, 19]. These
interactions were found to be arising instinctively between electrons of nearby atoms, and
it could explain the ferromagnetism concept. In 1931, Hans Bethe published the first exact
solution of a many-body quantum system [20], known as the spin-1

2 Heisenberg model.
Bethe’s work inspired many scientists in mathematics and theoretical physics and started
a new branch of physics, the theory of exactly solvable models. For instance, in 1979,
Fadeev, Sklyanin, and Takhtadzhyan formulated the algebraic version of the Bethe ansatz
[21, 22], which is a remarkable method. Solvability in many-particle quantum systems is
very important. On the one hand, the exactly solvable models can have analytical and/or
exact numerical results that can be used to extract information from the system; on the
other hand, these solvable models open the door for a better understanding of quantum
many particle systems.

Although the Bethe ansatz was revolutionary in the realm of quantum mechanics, the
solutions coming from (algebraic) Bethe ansatz are quite involved and complicated. In
the rest of the work, I will not consider models solvable in the sense of Bethe ansatz. The
interesting physical quantities in this thesis, namely the correlation matrices, formulation
of the density matrix, and entanglement properties, do not generally find a useful solution
in the framework of (algebraic) Bethe ansatz. In fact, I will use a different approach to the
problem of interacting spin-1

2 ’s, coming from the similarity between spin-1
2 and fermion

operators [23]. This thesis is intended as a guide to those specific models that can be
mapped into non-interacting fermion systems. The rest of this chapter is devoted to first,
the study of the XY model, second, study of quadratic fermion models.

2.2 XY model
The quantum XY spin chain and its extensions have been studied for a very long time
and from various perspectives. they are interesting for couple of reasons. First of all, it is
possible to obtain an exact solution (for spin one-half) in terms of non-interacting fermions
[24]. Also, it can be used in examining various techniques that are applied to a wide range
of non-integrable systems [25]. Another motivation could be to use the model to describe
the experimental data of quasi-one-dimensional systems [26]. In recent years the XY chain
has been extensively examined in the context of quantum information theory and quantum
entanglement entropy [27, 28, 29, 30, 31, 32].

The XY model is a quantum spin-1
2 chain formulated by the Hamiltonian

HXY = −J
∑
n,m

(1 + γ

1 SxnS
x
m + 1− γ

1 SynS
y
m

)
− h

∑
n

Szn (2.1)
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where Sαl = 1
2σ

α
l (α = x, y, z) and σαs are the Pauli matrices. J is the coupling constant,

which specifies the interaction of each spin with neighboring ones, h is known as the
transverse magnetic field, and γ is the coupling constant, altering the weight of x − y
component of the interaction between neighboring spins. Although the form of Hamiltonian
above is written for a general D-dimension system with possible long range interactions,
throughout this thesis we only consider spin models in one spatial dimension (1D) and
only the next nearest interactions. For 1-dimension, the Hamiltonian above can be written
as

HXY = −J
L∑
l=1

(1 + γ

4 σxl σ
x
l+1 + 1− γ

4 σyl σ
y
l+1

)
− h

2

L∑
l=1

σzl , (2.2)

where spin operators are swapped for the Pauli matrix operators σ. The boundary condition
in the 1D system can be open, called an open chain, or periodic which means spins are
located on a circle. Mathematically, the boundary condition can be manifested in the spin
σαL+1. Either it is replaced by σα1 for periodic boundary condition (PBC) or non-existence
(zero), for the open (OBC) system.

In the context of the energy spectrum, the sign of the coupling J in the XY model is
not important. Meaning that the energy spectrum of the ferromagnetic phase (J < 0) is
the same as the spectrum of anti-ferromagnetic (J > 0). However, the sign of J can not be
neglected for the eigenstates of ferromagnetic (|ψ⟩) and anti-ferromagnetic (|ψ′⟩) case. The
reasoning is explained in the following subsection. In short, there exist transformations
that change the sign of coupling constants in the system. Because of the existence of these
particular transformations, without loss of generality, J can be scaled to +1 (or −1) and
one could only study the properties of this model for the h ≥ 0 region (or h ≤ 0). For
γ = 0, the XY model is called the XX model (see section 2.2.4 for more details). When
γ = +1, the XY model is called the Ising model and a more detailed explanation of its
properties can be found in section 2.2.3. The phase diagram for the XY ground state is
shown in figure 1. A detailed reference regarding the origin of all phases (especially the
oscillatory phase) is [33, 34].

2.2.1 Symmetries and general transformations

The XY model shows some global invariance. In particular, the global symmetries de-
pend on the value of γ. For start, if γ = 0, then HXY is invariant under a global U(1)
transformation 

σ′x

σ′y

σ′z

 =


cos θ − sin θ 0
sin θ cos θ 0

0 0 1



σx

σy

σz

 (2.3)
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Figure 1 – The phase diagram of the ferromagnetic XY chain. One can distinguish three phases, i.e.
a ferromagnetic phase (F), which divides to oscillatory and non oscillatory regions, and a
paramagnetic phase (PM). Parameters h and γ are the magnetic field strength and anisotropy
parameter respectively. Figure from [34].

where θ is an arbitrary real number. If γ ̸= 0, one only has a global Z2 invariance
σ′x

σ′y

σ′z

 =


−1 0 0
0 −1 0
0 0 1



σx

σy

σz

 . (2.4)

This symmetry can be produced by

P =
L∏
j=1

σzj (2.5)

which is also known as the Parity operator and it is shown that [HXY , P ] = 0. The
Z2 invariance is obvious for the γ ̸= 0. Since σ′z

i → σzi and σ′α
i σ

′α
i+1 does not change

(α = x, y). The Z2 symmetry is present in almost all physical systems. An interesting
study of non-parity cases in a spin system can be found in chapter 7. For U(1) symmetry
in the case of γ = 0 we have:

H ′
XY =− J

4

L∑
l=1

(
σ′x
l σ

′x
l+1 + σ′y

l σ
′y
l+1

)
= −J4

L∑
l=1

(
[cos θσxl − sin θσyl ]

[cos θσxl+1 − sin θσyl+1] + [sin θσxl + cos θσyl ][sin θσxl+1 + cos θσyl+1]
)

= −J4

L∑
l=1

(
[cos2 θ + sin2 θ]σxl σxl+1 + [cos2 θ + sin2 θ]σyl σ

y
l+1

)
= HXY

It should be noted that here we omitted the last term in HXY since it only contains the
σz, and U(1) symmetry has no effect on the z-component of spin.

As it was pointed out earlier, in contrast to the well-known Heisenberg spin model,
where the sign of the coupling constant J distinguishes the ferromagnetic model from the
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anti-ferromagnetic one, the sign of J in the XY model is unimportant. It can be shown by
the existence of the transformation

PJ ≡
L∏

l=odd (even)
σzl (2.6)

which changes the sign of the coupling constant J . Clearly, transformation PJ has no
action on the last term of Hamiltonian equation (2.2). Using σaσb = δa,b1 + iεabcσ

c, we
will examine the effect of this similarity transformation on other terms of Hamiltonian
separately:

PJ
( L∑
l=1

σxl σ
x
l+1

)
P̃J =

L∑
l=1

⌊L/2⌋∏
n=1

σz2n−1σ
x
l σ

x
l+1σ

z
2n−1 =

L∑
l=1
−σxl σxl+1

PJ
( L∑
l=1

σyl σ
y
l+1

)
P̃J =

L∑
l=1

⌊L/2⌋∏
n=1

σz2n−1σ
y
l σ

y
l+1σ

z
2n−1 =

L∑
l=1
−σyl σ

y
l+1

Therefore, we can show that

PJHXY(J, h)P †
J = HXY(−J, h). (2.7)

Above relation and the fact that PJ is a normalized similarity transformation (PJP
†
J = ⊮)

I can argue that:
HXY(J, γ, h) |ψ⟩ = Eψ |ψ⟩

PJP
†
JHXY(J, γ, h)PJP

†
J |ψ⟩ = EψPJP

†
J |ψ⟩

PJHXY(−J, γ, h)P †
J |ψ⟩ = PJEψP

†
J |ψ⟩

HXY(−J, γ, h) |ψ′⟩ = Eψ |ψ′⟩

where |ψ′⟩ = P †
J |ψ⟩ and Hamiltonian HXY(−J, γ, h) corresponds to anti-ferromagnetic

model. We see that the ferromagnet system (J > 0) and anti-ferromagnet one (J < 0),
both have the same energy spectrum Eψ.

Similar to the PJ case, the transformation

Ph ≡
L∏
l=1

σxl (2.8)

changes the sign of the magnetic field coupling h. To show this, we start with the fact that
transformation Ph has no action on the first term of Hamiltonian (2.2). We will examine the
effect of this similarity transformation on other terms of Hamiltonian separately, likewise.

Ph
( L∑
l=1

σzl
)
P †
h =

L∑
l=1

L∏
n=1

σxnσ
z
l σ

x
n =

L∑
l=1
−iσyl σxl =

L∑
l=1

(−i)2σzl =
L∑
l=1
−σzl

The action of Ph on the y-spin interactions does not change anything. Therefore, we have:

PhHXY(J, h)P †
h = HXY(J,−h) (2.9)
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Like the PJ case, the sign of h does not affect the structure of the energy spectrum in the
XY model.

Following the same procedure, it is possible to write a transformation such as Pγ which
changes the sign of the coupling γ:

Pγ ≡
L∏
l=1

1√
2

(1 + iσzl ). (2.10)

Then

Pγ
L∑
l=1

σxl σ
x
l+1P

†
γ =1

4
∑
l

(1 + iσzl )σxl (1− iσzl )(1 + iσzl+1)σxl+1(1− iσzl+1)

=1
4
∑
l

(σxl + iσzl σ
x
l − iσxl σzl + σzl σ

x
l σ

z
l )(σxl+1 + iσzl+1σ

x
l+1

− iσxl+1σ
z
l+1 + σzl+1σ

x
l+1σ

z
l+1) = 1

4
∑
l

(σxl + (i)2σyl − i(−i)σ
y
l − σxl )

× (σxl+1 + (i)2σyl+1 − i(−i)σ
y
l+1 − σxl+1) =

∑
l

σyl σ
y
l+1,

and similarly, for the y-spin interaction we have

Pγ
L∑
l=1

σyl σ
y
l+1P

†
γ =

∑
l

σxl σ
x
l+1.

As you can see, this transformation changes σxl σxl+1 to σyl σ
y
l+1 and vice-versa which is the

same as changing γ → −γ in Hamiltonian (2.2). As one can notice, the action of Pγ on
the last term of the equation (2.2) does not change this term.

All the transformations introduced earlier (PJ , Ph and Pγ) are Similarity transforma-
tions, A′ = PαAP

−1
α . They all satisfy the conjugate condition

PαP
†
α = 1 (2.11)

More accurately, They can be called Canonical transformation, meaning they do not change
the algebra. However, PJ and Ph, defined earlier, are Involutory matrices (Projection),
PJPJ = PhPh = 1 but Pγ is Unitary (PγP †

γ = 1). Each of these transformations was
introduced to change a particular coupling of the system, although for some of the required
changes transformation is not unique. For instance, P ′

h ≡
∏L
l=1 σ

y
l also does change the

sign of magnetic field’s coupling constant.

Here we intend to write these transformations and probably others that we have
not encountered yet, in a more general form. This way, we can discuss more general
transformation and symmetries of interest. To start let’s write the most inclusive form of
the Euler formula

eiα(n̂·σ⃗) = 1 cosα + i(n̂ · σ⃗) sinα (2.12)
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which |n̂| = 1. Having this, we can write the former transformations in a generic form.
Before going any further we have to rewrite the previous transformations. For instance

PJ =
⌊L2 ⌋∏
l=1

iσzl and Ph =
L∏
l=1

iσxl =
L∏
l=1

iσyl (2.13)

this new PJ and Ph are unitary and still deliver the same result as before. Now we can
write

Ph =
L∏
l=1

iσxl =
L∏
l=1

ei
π
2 (n̂1·σ⃗l),

n̂1 =
(
1 0 0

)
σ⃗l =

(
σxl σyl σzl

)
or consequently

Pγ =
L∏
l=1

1 + iσzl√
2

=
L∏
l=1

ei
π
4 (n̂γ ·σ⃗l), n̂γ =

(
0 0 1

)
.

Another interesting outcome of such a notation could be the case N̂ ′ = ∏L
l=1 iσ

z
l . We

have named this transformation as N ′. The reason is not going to be discussed in this
part but in the section 2.4, this operator is going to play an important role in solving the
XY-Hamiltonian.

N̂ ′ =
L∏
l=1

iσzl =
L∏
l=1

ei
π
2 (σzl ) = ei

π
2 (σz1)ei

π
2 (σz2) · · · ei

π
2 (σzL) = ei

π
2 S

z (2.14)

Where Sz is the total spin in the z direction and N is the Z2 transformation generator
(later we are going to see that [N ′, HXY ] = 0).

With equation (2.12) it is helpful to investigate the action of a general transformation
Pα = ∏

j e
iα(n̂·σ⃗j) on HXY . It is also straightforward to look at the adjoint action of Pα on

the Pauli vector, namely rotation effectively by double the angle α

eiα(n̂·σ⃗l)σ⃗le
−iα(n̂·σ⃗l) = σ⃗l cos(2α) + n̂× σ⃗l sin(2α) + n̂(n̂ · σ⃗l)(1− cos 2α) (2.15)

then we can write

PαHXY P †
α =− J

L∑
l=1

(1 + γ

4 eiα(n̂·σ⃗l)σxl e−iα(n̂·σ⃗l)eiα(n̂·σ⃗l+1)σxl+1e−iα(n̂·σ⃗l+1)

+ 1− γ

4 eiα(n̂·σ⃗l)σyl e−iα(n̂·σ⃗l)eiα(n̂·σ⃗l+1)σyl+1e−iα(n̂·σ⃗l+1))− h

2

L∑
l=1

eiα(n̂·σ⃗l)σzl e
−iα(n̂·σ⃗l)

(2.16)
Since we are interested to see explicitly what happens to our Hamiltonian after this
transformation, we will attempt to simplify the above relation. Although it is not possible
to write the former in a compact equation, we can write in symbolic form. For instance:

PαHXY P
†
α =− J

L∑
l=1

−→σ T
l A−→σ l+1 −

h

2

L∑
l

B−→σ l. (2.17)
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This is a matrix product with −→σ T
i =

(
σxi σyi σzi

)
. For A and B we have:

A =


AXX AXY AXZ

AY X AY Y AY Z

AZX AZY AZZ

 B =
(
BX BY BZ

)

Before going through the explicit form of these elements, we should elaborate a few
words on this. Technically, our new Hamiltonian contains all possible interactions. For
instance, AZZ is the interaction coupling between σzl and σzl+1. Conversely, AXY is the
interaction intensity between σxl and σyl+1 (same argument is valid for B). Not all the
possible interactions are interesting or even physical. By tunning parameters like α and n̂
one can turn some of interactions on or off as needed. The A’s and B’s explicit expressions
are given in Appendix B. We can check this result with known cases, for example α = 0
and n̂ = (0, 0, 0).

A =


1+γ

4 0 0
0 1−γ

4 0
0 0 0

 B =
(
0 0 1

)

which is the original Hamiltonian. Also, For Ph (left, α = π
2 and n̂ = x̂) and Pγ (right,

α = π
4 and n̂ = ẑ) we have:

Ah =


1+γ

4 0 0
0 1−γ

4 0
0 0 0

 , Aγ =


1−γ

4 0 0
0 1+γ

4 0
0 0 0

 ,
Bh =

(
0 0 −1

)
, Bγ =

(
0 0 1

)
.

Special cases:

• For arbitrary n̂ but α = kπ, Hamiltonian does not change.

• For n̂ = nz but α = k π2 , Hamiltonian does not change.

• For n̂ = 0 but arbitrary α, Hamiltonian does not change.

2.2.2 Computation and Examples

In this section, first, we are going to construct the Hamiltonian of the XY-model and then
look at some easy cases (L = 2, 3). For L spins arranged in one dimension, we have a 2L

dimensional configuration space. The natural basis set for describing a set of L coupled
spins is the tensor-product basis. In this basis, the spin operators σx,y,zj acting only on spin
j are defined as having a trivial action on all other spins except the site j, for example

Sαj → 1⊗ · · · ⊗ 1︸ ︷︷ ︸
j−1

⊗1
2σ

α
j ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸

L−j

, (2.18)
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or like wise,

Sβi S
α
j → 1⊗ · · · ⊗ 1︸ ︷︷ ︸

i−1

⊗1
2σ

β
i ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸

i−j−1

⊗1
2σ

α
j ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸

L−i−j

, (2.19)

where α, β ∈ {x, y, z}, depending on the model.

Unless otherwise stated, we prefer to work in the basis of z-spin. At some point, if
we wish to work in another basis such as eigenstates of x-spin, we can relabel the indices
according to Sx′ = Sz, Sy′ = −Sy and Sz′ = Sx. Thus the eigenstates of σx′ are just the
eigenstates of σz. In the following, for demonstration and better understanding purposes,
we consider the example of a small spin chain. To see some examples of the computational
parts, see appendix B.

2.2.3 Ising model

The quantum Ising model is famous in the family of XY spin chains. It is obtained by
putting γ = 1 in the Hamiltonian (2.2):

HIsing = −J2

L∑
l=1

σxl σ
x
l+1 −

h

2

L∑
l=1

σzl . (2.20)

This model is widely used to study quantum critical behaviors [35] and a play model
for CFT predictions [36, 37]. The ground state of the quantum Ising models shows a
second-order quantum phase transition when the magnetic field is increased from zero
to the critical value of hc = J , in the thermodynamic limit (L → ∞) [38, 39]. The
existence of this critical point can be explained as follow. In zero (or very small) magnetic
fields (|h| ≪ 1), there are two degenerate ground states for the ferromagnetic ordered
phase, all spins are aligned parallel to each other in the x-direction (either |→→ · · · →⟩
or |←← · · · ←⟩). By increasing the magnetic field (h ≫ J), the ground state would be
non-degenerate, and the spins are aligned in the z direction (direction of magnetic field).
This argument suggests that one can not go from one ground state to the other smoothly
by changing the magnetic field, which corresponds to a second-order quantum phase
transition [38, 39].

The existence of the quantum critical point can be also proved via the duality in
this model. Duality is the equivalence of two Hamiltonians with different parameters.
In particular, we are talking about the Kramers-Wannier duality which is originally
the equivalence of low temperature to high temperature in the Ising model [40]. A
comprehensive exposition on duality can be found in [41]. In the case of quantum Ising
this duality means there is a critical point going from low magnetic fields to high magnetic
fields [42, 43]. To show this, we first add a term to the Ising Hamiltonian (2.20):

HIsing = −J2

L∑
l=1

σxl σ
x
l+1 −

h

2

L∑
l=1

σzl −
J

2 σ
x
1

L∏
j=1

σzjσ
x
L. (2.21)
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The last term was added to make it possible to go through Kramers-Wannier duality and
take care of some terms which are going to pop up. Also, it should be emphasized that
boundary condition is assumed to be periodic. For the case of OBC, the extra terms which
should be added are either −J

2σ
x
L or +h

2σ
z
L.

To get to the dual version of the system, on our (1D) lattice (PBC or OBC), we make
a dual lattice, by putting a new particle µ

i+1/2 in between each two spins σi and σi+1.
σ1
◦ ⋄

µ

1+
1
2

σ2
◦ ⋄

µ

2+
1
2

σ3
◦ · · ·

σℓ

◦ ⋄
µ

ℓ+
1
2

· · ·
σL

◦ ⋄
µ

L+
1
2

The new operator µ associated with the new particles has the definition:

µzj+1/2 = σxj σ
x
j+1, µxj+1/2 =

∏
k≤j

σzk. (2.22)

With above definitions, we can verify that

[µxi , µzj ] ∝ δij, {µxi , µzi } = 0, and µzj
2 = µxi

2 = 1.

In fact, µα operators have the same algebra as the Pauli matrices. To have a complete
algebra, one can get the µy by

iµyi = [µzi , µxi ]. (2.23)

At this point, we are not interested in the µy at all and we would not proceed further in
demonstrating the SU(2) algebra for µα operators.

By writing the σ operators in terms of µ operators and substituting in the Hamiltonian
(2.21), we get (after some simplifications)

H̃Ising = −J2

L∑
l=1

µzl+1/2 −
h

2

L∑
l=1

µxl−1/2µ
x
l+1/2. (2.24)

As a consequence, H(J, h;σ) = H̃(h, J ;µ). By putting λ = h
J
, then:

HIsing(λ;σ) = λH̃Ising(
1
λ

;µ). (2.25)

Therefore, Kramer duality maps the high magnetic field to the weak magnetic field, which
is also called the Strong-Weak duality. The energy spectrum of dual Hamiltonians should
be related analogously as Ej(λ) = λEj( 1

λ
). It means that the distance between two energy

values ∆(λ) = Ej − Ej+1 should have equal behavior. Particularly for the ground state
and the first excited state have:

∆(λ) = λ∆( 1
λ

). (2.26)

In the most general case, the function ∆(λ) should have the form below

∆(λ)|λa − 1
λb
|c;


1
c

+ b = a

1
c
− a = −b

. (2.27)
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The form above has two solutions for ∆(λ) = 0, given by λ = 0, 1. Roots of ∆(λ) establish
that there should be a value for parameter λ where the gap between the ground state and
the first excited one goes to zero. This gap closing shows the existence of a critical point,
namely J = h. Finally, this duality is valid also for non-uniform or non-local coupling
constant, {J, h} → {Jl, hl}.

2.2.4 XX model

The XX model is the anisotropic regime of equation (2.2) with γ = 0:

HXX = −J4

L∑
l=1

(
σxl σ

x
l+1 + σyl σ

y
l+1

)
− h

2

L∑
l=1

σzl . (2.28)

This model has application in various parts of quantum many-body and condensed matter
physics and quantum information [44, 45]. As an example, it is related to the hard-core
limit of the one-dimensional Bose-Hubbard model [39]. The XX Hamiltonian (2.28) is
mapped into the Bose-Hubbard Hamiltonian:

HB.H. = −J2
∑
<i,j>

(
b†
ibj + bib

†
j

)
+ U

2
∑
i

ni(1− ni) + µ
∑
i

ni ni = b†
ibi, (2.29)

where bi is a spinless boson. This bosonic model was realized experimentally by Greiner et
al [46] in 2002 and provided the simplest realization of a quantum phase transition. For
more information see [35], also [39] page 27.

On the characteristics of this model, the total spin in the z-direction, Sz = 1
2
∑L
l=1 σ

z
l ,

commutes with the XX Hamiltonian,

[Sz, HXX ] = 0.

It means that the eigenstates of XX models sit in the different sectors based on the value
of Sz. independent of the magnetic field h, Hamiltonian (2.28) is block diagonal in the Sz
basis. This model is critical for any value of |h| ≤ J with the central charge of c = 1 [39].
However, for |h| ≫ J , all spins are aligned in the z-direction in the ground state and it is
not critical in this regime.

Together with the connection to different many-body models, the XX model is favorable
because of its mathematical simplicity but still non-triviality. With no doubt, many of the
existing manybody predictions, such as subsystem entanglement entropies and full counting
statistics, have been obtained and verified considering XX spin chain [39, 47, 16, 48].
Another point is the diagonalization of this model (after the fermionization) for periodic
and open boundary conditions, which allows further simplifications for the XX model (see
sections 2.4.1 and 2.4.2). In conclusion, specific mathematical features of spin models such
as the XX model and Ising model make the XY model an archetype of integrable spin
models. I am going to describe the fermionic mapping of the XY model in the following
subsection.
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2.2.5 Fermionic mapping

In this part, the fermionizatoin of the XY model will be discussed. The XY model can
be solved exactly by mapping the Hilbert space of L spins-1

2 to the Fock space of L
spinless fermions [24, 39, 49]. This fermionization is assigning a new fermion particle to a
combination of spins. This is achieved by the Jordan-Wigner (JW) transformation: the
creation and annihilation operators acting on the Fock space can be defined as

c†
l =

∏
j<l

σzjσ
+
l , cl =

∏
j<l

σzjσ
−
l , (2.30)

where σ± = σx±iσy
2 , and the operators satisfy the anti-commutation relations{

c†
l , c

†
n

}
= 0

{
c†
l , cn

}
= δn,l {cl, cn} = 0. (2.31)

One should note that this transformation is a non-local transformation. To better unders-
tand the above relation, I have opened these relations in appendix B.

As mentioned before because of the string of σz, the JW transformation is non-local.
However, it does not affect the degrees of freedom enclosed in the subspace [1, l] mapped
into the corresponding subspace for both spin and fermionic representations. The non-
locality of this transformation affects the terms (interactions) at boundaries. For instance,
the open boundary condition means c†

L+1 = 0 and there is no change from spin to fermion
representation. On the other hand, the boundary conditions after the Jordan Wigner
transformation, when the chain is periodic, produce:

c†
L+1 = N̂ c†

1 (2.32)

where N̂ = ∏L
l=1 σ

z
l with eigenvalues N = ±1. The definition of JW transformation can

be understood as associating a spinless quasiparticle to z-spin up in the chain. Then N̂
can be seen as the parity of the spins down or the parity of the number of fermions. In
the PBC, (2.32) means that JW transformation puts a product of all σz when it passes
site L to site 1. This also happens if one uses the inverse JW transformation to get a
spin representation of a fermionic model, see appendix C for an example. As it will be
elaborated more later, after JW transformation we obtain two chains of fermions, one with
normal PBC, and the other with a minus sign when we go around the chain. On the same
topic, N̂ commutes with the XY Hamiltonian (

[
HXY , N̂

]
= 0) and divides the Hilbert

space into two subspaces, which must be considered separately.

To have a unified notation, we could use the symbol N for identifying the OBC as
well, it means to put NOBC = 0. The Jordan-Wigner transform can be inverted, allowing
us to express the Pauli operators in terms of the fermion operators c†

l and cl. In particular,
we have:

σzl = c†
l cl − clc

†
l , σxl =

∏
j<l

σzj (cl + c†
l ), σyl = i

∏
j<l

σzj (cl − c
†
l ). (2.33)
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These expressions for σx and σy are rather inconvenient, involving as they do products of
large numbers of Fermi operators. However, for certain simple products of Pauli operators,
it is possible to obtain simple expressions in terms of the Fermi operators. In particular,
with a little algebra we see that:

σxl σ
x
l+1 = −(c†

l − cl)(cl+1 + c†
l+1)

Here, we do not go through the fermionization calculations part by part, you can refer to
appendix B. Putting all the relations (2.33) together with Hamiltonian (2.2), the fermion
version of the XY Hamiltonian is given as follows:

HXY (c†, c) = J

2

L−1∑
l=1

(
c†
l cl+1 + γc†

l c
†
l+1 + c†

l+1cl + γcl+1cl
)
− JN̂

2
(
c†
Lc1 − cLc†

1 + γc†
Lc

†
1 − γcLc1

)

− h
L∑
l=1

c†
l cl + hL

2
(2.34)

Now, the XY Hamiltonian is made from pair of fermion creation and annihilation operators,
which is also the reason to name it Quadratic fermion model. These models are also known
as free fermion models since there are no fermion-fermion interactions in the Hamiltonian
above. It should be emphasized that starting from a PBC spin chain (2.2), we obtained
two versions of the PBC free fermion model, one with PBC (N = −1) and the other with
anti-periodic boundary condition (N = +1).

It will be clear later that the Hamiltonian (2.34) having a quadratic form in the fermi-
onic creation and annihilation operators is essential: the Hamiltonian can be diagonalized
exactly (numerical or analytical), see section 2.3.2. Additionally, the expectation value of
any n-point and/or complex function of these operators can be calculated with respect
to the expectation values of 2-point fermionic operators (Wick theorem [50]). The fol-
lowing section addresses the study and diagonalization of quadratic fermion Hamiltonians
such as (2.34), and even more general quadratic fermion Hamiltonians. A more detailed
diagonalization process for open and periodic boundary conditions is presented in the
following parts of this thesis. Intriguingly, in 1D, any quadratic fermion Hamiltonian can
be written in Majorana form [51] and it is discussed later in this chapter. The ground state
or any state in the spectrum of XY model (2.2) can be obtained by correct projection
of eigenstates of diagonalized fermionic Hamiltonian. A comprehensive discussion on the
location of the spin chain can be found in section 2.4.3.
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2.3 Quadratic fermions model
In this part, we want to study the general quadratic fermionic models. In particular, we
study the general properties of these models and the means to diagonalize the Hamiltonian.
Due to the quadratic form of Hamiltonian These systems are also called free fermions. The
interest in free-fermion systems is because while still exactly solvable, certain quadratic
Hamiltonians are good approximations for more complicated systems, like e.g. the BCS-
Hamiltonian used in the theory of superconductivity. Unlike the spin chain studies presented
before, the material in this section is valid for any dimension and not just the 1D. The
diagonalization process is discussed for open and (anti)periodic boundary conditions. In
this section, we study some particular states and discuss their characteristics. One can
find the correlation matrices, density matrix formulation and the entanglement of these
systems in chapters 3, 4 and 5.

2.3.1 General properties

The Hamiltonian of general free quadratic fremions can be written as:

H =
L∑

i,j=1

[
c†
iAijcj + 1

2c
†
iBijc

†
j + 1

2ciB
∗
jicj

]
− 1

2tr(A∗) (2.35)

where L is the number of sites. Here, the matrix A is Hermitian, A = A† and the B
matrix is anti-symmetric (skew-symmetric), B = −BT . we can write the Hamiltonian
(2.35) in a more compact matrix notation as:

H = 1
2
(

c† c
)

M

 c
c†

 , where M =
 A B
−B∗ −A∗

 , (2.36)

and c(†) is the column/row of fermionic creation and annihilation operators,

c(†) =


c

(†)
1

c
(†)
2
...
c

(†)
L

 . (2.37)

The fermion operators above (c, c†) are known as Dirac fermions.

It is useful to write the Hamiltonian in terms of Majorana fermions, as they are widely
used in the condensed matter and quantum many-body literature. Majorana fermions can
be written in terms of c-fermions (defined before) as:

γj = cj + c†
j, γ̄j = i(c†

j − cj). (2.38)

Most of the calculations are easier and more compact in the Majorana representation.
Consider the generic Hamiltonian (2.35), one can write the Hamiltonian in the Majorana
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representation as:

H = 1
4(γ γ̄)W

γ
γ̄

 , (2.39)

W =
 Aa + Bs i(Ba + As)
i(Ba −As) Aa −Bs

 , (2.40)

where As(a) = A±AT

2 and Bs(a) = B†±B
2 , which stand for symmetric and anti-symmetric

combination of A (and B). Note that A∗
s(a) = ±As(a) and B∗

a(s) = ±Ba(s), meaning that
the W matrix is purely imaginary antisymmetric matrix (consequently Hermitian). In
chapter 3, we mostly calculate the correlation functions for Majorana fermions rather than
Dirac fermions.

The eigenstates of the quadratic Hamiltonian (2.35) are eigenstates of the parity
operator too which means that Hamiltonian commutes with the parity. The parity operator
is given by

P = (−1)
∑

ni =
L∏
i=1

(1− 2c†
ici) (2.41)

where ni is number of fermions at site i and ∑ni is the total number of fermions. Above
can be written as:

P = ei
πL
2 e

iπ
2 (c† c)

I 0
0 −I

 c
c†


, (2.42)

and then we have

P−1

 c
c†

P = −
 c

c†

 . (2.43)

Using the above equation we can easily show that P−1HP = H.

2.3.2 Diagonalization

To find the spectrum and energy level of free fermionic Hamiltonians, we need to find
eigenvalues of the matrix H. These matrices grow exponentially with the size of the system,
which makes it extremely difficult to find their eigenvalues. In this part, we are going
to present analytical or easy computational methods to find the spectrum of the given
Hamiltonian. For instance, we can diagonalize the (2.36) using Unitary transformation
and write

H = 1
2
(

c† c
)

U†UMU†U

 c
c†

 = 1
2
(
η† η

) Λ 0
0 −Λ

 η

η†

 , (2.44)

where
 η

η†

 = U

 c
c†

 is the new quasiparticle. The η(†) is not an actual particle and

the Hamiltonian matrix has a diagonal form in the basis of this new quasiparticle. The
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Λ is diagonal matrix with non-negative elements λk. The components of this diagonal
matrix are the energy modes of quasiparticles and the spectrum of the Hamiltonian is
made from the activation (or annihilation) of different modes. Therefore, the diagonal
form of Hamiltonian (2.35) is:

H =
∑
k

λkη
†
kηk −

1
2tr(Λ). (2.45)

The vacuum state |0⟩ is the state which annihilates by all the ηk’s,

ηk |0⟩ = 0, (2.46)

for all k.

Now, we seek to find the eigenstates of the Hamiltonian and it is a necessity to have
some selection rules for later use. Therefore, we start by introducing the operator J as
[52]:

J

 u

v

 =
 v∗

u∗

 . (2.47)

We can show that this operator anticommutes with matrix M (2.36) in a way that

(
MJ + JM

) u

v

 = 0. (2.48)

To verify the relation above, we start by:

MJ

 u

v

 =M

 v∗

u∗

 =
 Ãv∗ + B̃u∗

−B̃∗u∗ − Ã∗v∗

 = J

 −B̃u− Ãv
Ã∗v + B̃∗u

 = −JM

 u

v

 .

As consequence, if
 u

v

 is an eigenvector of Hamiltonian with eigenvalue λ then the

vector J

 u

v

 is an eigenvector with eigenvalue −λ. It means that one does not need

to find all the eigenstates of Hamiltonian. Finding the eigenstates corresponding to
positive eigenvalues is enough. We can get the eigenstates for negative eigenvalue by
acting on positive eigenstates with J. Now, going back to transformations that diagonalize
Hamiltonian as in (2.44), we know that the U should have the form

U =
 g h

h∗ g∗

 , (2.49)

which also can be written as

U =
 u

Ju

 , where u =
(

g h
)
. (2.50)
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To complete the diagonalization procedure, we can write for η’s operators:

ηk =
L∑
j=1

gkjcj + hkjc
†
j, η†

k =
L∑
j=1

h∗
kjcj + g∗

kjc
†
j. (2.51)

From the inverse transformation, we can write the c-fermions in terms η-operators as:

ck =
L∑
j=1

(g∗
j,kηj + hj,kη

†
j), c†

k =
L∑
j=1

(h∗
jkηj + gjkη

†
j). (2.52)

The c-fermions are also known as the real space operators while the η ones are defined in
other space connected to real one with the transformation U.

The diagonalizing transformation (matrix U) could be obtained either analytically
or by exact numeric diagonalization of M, based on the specific model at the hand. In
the section 2.4, I go through more details of the solving the Hamiltonian (2.2) which is
related to the Hamiltonian (2.35) (only next nearest interactions) with periodic and open
boundary conditions. Some of the analytical calculations in diagonalization of XY spin
chain can be extended to a general form of free fermions. In the following part, a different
representation of the fermionic vacuum (ground state) is presented. The new formulation
of vacuum is very useful in the calculation of reduced density matrix, chapter 4, and
calculation of entanglement, chapter 5.

2.3.3 Etta’s Vacuum in the configuration basis

We have already introduced the unitary transformation that diagonalizes the Hamiltonian
(2.35). In this subsection, we talk about the vacuum of η-operators because computationally
this state is more important than the rest, and also there are many technicalities in finding
this state. In the rest of this subsection, we introduce different methods to calculate
the vacuum of η. Computationally, we can find a matrix representation for Hamiltonian
and fermionic operators which satisfies the algebra (commutation or anti-commutation).
Having this in mind, we could find the form of the vacuum. The process of finding such
a state is fairly straightforward, one needs to find the state in which ηk |0⟩ = 0 for all
k ∈ {1, · · · , L}. The next step is to fix L and find the solution for a general state for each
size.

Using the methods above, it is not easy to find the vacuum of η for a large size L. In
that method, the number of equations needed to be solved increases exponentially. Also
due to the possible degeneracy in the spectrum of the system, it would not be trivial to
select the vacuum. There is another method that is much more efficient to get the vacuum
in exponential form. Having the desired state in the exponential form helps us to study
the entanglement more efficiently (see section 4.1). One can write the vacuum of η, |0⟩η,
in terms of the vacuum state of the c-fermions |0⟩c [13]. If the parity of |0⟩c is positive
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then we have:
|0⟩η = 1(

det[I + R†R]
)1

4
e

1
2
∑

i,j
Rijc

†
i c

†
j |0⟩c (2.53)

where cj |0⟩c = 0 for all j and R is an antisymmetric matrix, using the ηk |0⟩ = 0 we can
show that

g.R + h = 0. (2.54)

It should be pointed out that we can find a solution for the R matrix if the g is invertible.
There is no guarantee that the g of the particular system has an inverse. However, one
can find a canonical transformation that makes the g invertible and does not change the
parity of vacuum [53]. For instance, such a transformation could be the following change

cj → c̃†
j, c†

j → c̃j

ck → c̃†
k, c†

k → c̃k

 for even number of fermion operators (2.55)

We call this transformation Tilda transformation. This transformation does not change
the underlying algebra of the system.

In the case where the vacuum has parity P0 = −1, we would not be able to use the
equation (2.53). The parity of vacuum is equal to det[U]. To use the equation above one
needs to do a canonical transformation (Tilda transformation), as before, to change the
parity of the ground state of c-fermions.

cj → c̃†
j and c†

j → c̃j (2.56)

for only one specific index j (if we choose j = 1 then this transformation can be written
as P̃ = ei

π
2 σ

x
1 ). If as in the previous case the g is not invertible, then we could use this

transformation for an odd number of fermions. With the following transformation, we
could use the |0⟩c and we would get the right parity for the vacuum. To put in another
word, after the following transformation det[Ũ] = +1, and we have:

H̃ = 1
2
(

c̃† c̃
)

M̃

 c̃
c̃†

 , where M̃ =
 Ã B̃
−B̃∗ −Ã∗

 . (2.57)

The matrices Ã and B̃ are very similar to the forms of equations (7.8). The difference
is that the first row and columns have different signs. We can also address the unitary
transformation which diagonalizes the Hamiltonian (2.57).

H̃ = 1
2
(

c̃† c̃
)

Ũ†ŨM̃Ũ†Ũ

 c̃
c̃†

 = 1
2
(
η̃† η̃

) Λ 0
0 −Λ

 η̃

η̃†

 ,

where
 η̃

η̃†

 = Ũ

 c̃
c̃†

. The eigenvalues of Hamiltonian would not be affected after this

transformation. Since we are able to select the fermion to make this Tilda transformation,
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one can choose to c1 → c̃†
1 and c†

1 → c̃1. Now we use equation (2.53) to find the vacuum
of ηs in terms of the ground state of c fermions. Therefore we have∣∣∣0̃〉

η
= 1(

det[I + R̃†R̃]
)1

4
e

1
2
∑

i,j
R̃ij c̃

†
i c̃

†
j

∣∣∣0̃〉
c
, (2.58)

and
∣∣∣0̃〉

c
is the state annihilated by c̃0, c1, c2 and so on. A note to be made here is that

the
∣∣∣0̃〉

c
=(c1 + c†

1) |0⟩c.

2.3.4 Excited eigenstate in the configuration basis

Previously, we saw that we can write the vacuum of η in terms of the vacuum of c-operators
which we used an exponential function of c-fermions. It was important to take care of the
parity; The method worked for the even parity vacuum only. Now we want to show that
any eigenstate of η’s can be written in terms of the vacuum of c’s with an exponential
function. It makes sense, for translational invariant free fermions we know that every
excited eigenstate is a ground state of another Hamiltonian, which they commute [16].

Excited states can be created by exciting different modes on the vacuum. This is
achieved by acting with different η†-operators on the vacuum (2.46).

|ψ⟩ = |k1, k2, · · · , kN⟩ =
∏
kj∈E

η†
kj
|0⟩ , Eψ =

∑
kj∈E

kj (2.59)

where set E could be any subset of modes. the states created above are called excited
eigenstates of Hamiltonian. We denote the set of indexes of excited modes as E and the
set of modes that are not excited as Ē. We assume that we can write the following excited
state in the exponential form as [13]:

|ψ⟩ = Cψe
1
2
∑

i,j
Rψijc

†
i c

†
j |0⟩c (2.60)

where Cψ = 1
4
√

det[I+Rψ†Rψ ]
. For this excited state we have:

ηkj |ψ⟩ = 0; kj ∈ Ē

η†
kn
|ψ⟩ = 0; kn ∈ E

(2.61)

Now to find the Rψ for an excited state, we use the results above and write the η in terms
of c using equation (2.51).

η
kj
|ψ⟩ =Cψ(gkj lcl + hkj lc

†
l
)e

1
2R

ψ
nmc

†
nc

†
m |0⟩c = Ne

1
2R

ψ
nmc

†
nc

†
m

[
gkj l(

Rψ
lm

2 c†
m −

Rψ
nl

2 c†
n) + hkj lc

†
l

]
|0⟩c

=Cψe
1
2R

ψ
nmc

†
nc

†
m

[
gkj lR

ψ
lm + hkjm

]
c†
m
|0⟩c = 0; kj ∈ Ē

Therefore
gkj lR

ψ
lm + hkjm = 0; kj ∈ Ē. (2.62)
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From the second line of equation (2.61) we get:

h∗
knlR

ψ
lm + g∗

knm = 0; kn ∈ E. (2.63)

We have found the Rψ for excited state with equation (2.62) and (2.63). We can write a
generalized formula for the Rψ as

gRψ + h = 0 (2.64)

where g and h are a generalized version of g and h given by

gnm =

gnm if n ∈ Ē

h∗
nm if n ∈ E

hnm =

hnm if n ∈ Ē

g∗
nm if n ∈ E

(2.65)

Also, same as the section 2.3.3, one should make sure that the g has an inverse. If not one
should use the canonical (Tilda) transformation to overcome the inversion problem. If
applicable, the equation (2.60) gives the excited eigenstate in an exponential form which
as remarked before is advantageous in the study of entanglement (see section 4.1).

There is also another method to write the excited eigenstates which do not need the
inversion of g matrix. In this method, although does not face the non-invertibility of
matrices, It is not trivial to write the excited in exponential form (at least for more than
one mode excited!). For instance, we have calculated the excited state for some number of
modes excited.

One mode: η†
k1 |0⟩ = C(h∗

k1l
c
l
+ g∗

k1l
c†
l
)e

1
2Rijc

†
i c

†
j |0⟩c = Ce

1
2Rijc

†
i c

†
j (h∗

k1m
R
ml

+ g∗
k1l

)c†
l
|0⟩c

(2.66)

Two modes: η†
k2η

†
k1|0⟩ = C(h∗

k2s
cs + g∗

k2s
c†
s
)e

1
2Rijc

†
i c

†
j (h∗

k1m
R
ml

+ g∗
k1l

)c†
l
|0⟩c

= Ce
1
2Rijc

†
i c

†
j

[
(h∗

k2n
Rns + g∗

k2n
)c†
n

+ h∗
k2s
cs
]
(h∗

k1m
R
ml

+ g∗
k1l

)c†
l
|0⟩c

= Ce
1
2Rijc

†
i c

†
j

[
M

k2n
M

k1 l
c†
n
c†
l

+ h∗
k2s

M
k1s

]
|0⟩c

(2.67)

Three modes: η†
k3η

†
k2η

†
k1|0⟩= C(h∗

k3r
cr + g∗

k3r
c†
r
)e

1
2Rijc

†
i
c
†
j

[
M

k2n
M

k1 l
c†
n
c†
l

+ h∗
k2s

M
k1s

]
|0⟩c

=Ce
1
2Rijc

†
i
c
†
j
[
(h∗

k3m
Rmr + g∗

k3r
)c†
r

+ h∗
k3r
cr
][
M

k2n
M

k1 l
c†
n
c†
l

+ h∗
k2s

M
k1s

]
|0⟩c

=Ce
1
2Rijc

†
i
c
†
j

[∏
kj

M
kj l
c†
l

+ h∗
k3s

M
k2s

M
k1n
c†
n
− h∗

k3s
M

k2n
M

k1s
c†
n

+ h∗
k2s

M
k1s

M
k3n
c†
n

]
|0⟩c

(2.68)
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Four modes: η†
k4 · · · η

†
k1 |0⟩= Ce

1
2Rijc

†
i
c
†
j

[(∏
kj

M
kj l
c†
l

)
+ h∗

k4s
M

k1s
M

k3n
M

k2 l
c†
n
c†
l

− h∗
k4s

M
k2s

M
k3n

M
k1 l
c†
n
c†
l

+ h∗
k4s

M
k3s

M
k2n

M
k1 l
c†
n
c†
l

− h∗
k3s

M
k1s

M
k4n

M
k2 l
c†
n
c†
l

+ h∗
k3s

M
k2s

M
k4n

M
k1 l
c†
n
c†
l

+ h∗
k2s

M
k1s

M
k4n

M
k3 l
c†
n
c†
l

+ Pf[χ]
]
|0⟩c

(2.69)
where M = h∗R + g∗ and χ is given by

χ =



0 h∗
k4a

M
k3a

h∗
k4a

M
k2a

h∗
k4a

M
k1a

−h∗
k4a

M
k3a

0 h∗
k3a

M
k2a

h∗
k3a

M
k1a

−h∗
k4a

M
k2a
−h∗

k3a
M

k2a
0 h∗

k2a
M

k1a

−h∗
k4a

M
k1a
−h∗

k3a
M

k1a
−h∗

k2a
M

k1a
0

 . (2.70)

Although useful, relations above do not have a compact notation. Previously introduced
method appears to be more handy to use.

2.3.5 General state in the configuration basis

Let us extend our studies to a general state |φ⟩ defined by

|φ⟩ =
∑
r

ar |Er⟩ (2.71)

where |Er⟩ are the eigenstates of the Hamiltonian with energy Er, as defined in (2.59). These
types of states do not have the Wick theorem normally, which makes them unfavorable to
study. For instance to study their entanglement aspects one needs to work with the density
matrix of these states and the density matrix grows exponentially with the size of the
system. One should note that a general state like (2.71), is not necessarily an eigenstate of
the parity operator. However, based on the context, we can use that ketEr that have the
same parity (even or odd).

2.4 Solving the XY spin chain (Spin chain revisited)
After introducing the XY spin chain in section 2.2 and connecting it to a fermionic model
via JW transformation, the diagonalization process and structure of eigenvalues and
eigenvectors were shown in section 2.3. Now, the results of the diagonalization of free
fermions will be used to solve the original spin model. Here, some analytical results will
be established for the PBC where spins only interact with the next-nearest spins. Also,
some examples of OBC will be displayed. The notation is quite similar to the reference
[39], however, I have made the effort to elaborate more on details. The sections might
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appear a little technical, however, they provide a concise background to the fermionic
representation of the XY model, which will be useful in the rest of the work.

2.4.1 Periodic boundary conditions

As previously seen, the JW transformation maps the XY spin model (2.2) into a chain
of non-interacting spinless fermions. In practice, after this transformation we obtain two
copies of a fermionic model, one is periodic (N = −1) and the other is an anti-periodic
(N = +1) chain. Periodicity (also called translational invariant) is very useful and allows
us to diagonalize the Hamiltonian in the Fourier space [39]. hence it is worth recovering
it, or in the other words, we want to get rid of the N̂ in the boundary terms of (2.34).
Fortunately, the periodicity can be restored by applying the transformation below for a
generic L [54],

c̄l = e
iπ(N +1)l

2L cl, (2.72)

The transformation above eliminates the N̂ appeared in the Hamiltonian (2.34) as:

c̄
L+1 =e

iπ(N +1)(L+1)
2L cL+1 = −N e

iπ(−N −1)
2L cL+1 = −N e

iπ(−N −1)
2L (−N )c1 = N 2c̄1 = c̄1.

However, it breaks the translational symmetry (in the corresponding fermionic space). We
can see that by substituting cl = e− iπ(N +1)l

2L c̄l into the equation (2.34). Therefore, we can
combine the boundary terms in the sum on l and re-write the whole thing with one sum,
as1:

HXY (c̄†, c̄) = J

2

L∑
l=1

(
e
πi(−N −1)

2L c̄†
l c̄l+1 + γe−πi(−N −1)

2L e
πi(−N −1)l

L c̄†
l c̄

†
l+1 + H.C.

)
− h

L∑
l=1

c̄†
l c̄l +

hL

2
(2.73)

I have used the e− iπ(N +1)
2 = −N in the boundary terms above knowing N 2 = 1. With the

form above, we are able to do Fourier transform. The discrete Fourier transform is defined
as: c̄l = 1√

L

∑L
k=1 e

2iπkl
L c̃k, and the Hamiltonian (2.73) will be block-diagonal afterward. To

prove this, I substitute the Fourier form of c̄l in to equation (2.73).The summation on l

simplifies to the delta function, δk,k′ = 1
L

∑L
l=1 e

2iπ(k′−k)l
L . With that in mind, we can use

this definition of delta function to simplify the rest of the terms and drop the sum on k′,
Therefore,

HXY (c̃†, c̃) =J2

L∑
k=1

(
e

2iπk
L

− iπ(N +1)
2L c̃†

kc̃k + γe− iπ(N +1)
2L + 2iπk

L c̃†
kc̃

†
N +1

2 −k

+ e
iπ(N +1)

2L − 2iπk
L c̃†

kc̃k + γe+ iπ(N +1)
2L − 2iπk

L c̃kc̃N +1
2 −k

)
− h

L∑
k=1

c̃†
kc̃k + hL

2
1 It should be mentioned that we concluded this proof for h = 0. The reason is this part of Hamiltonian

is easy to verify under such a transformation.
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To simplify further, let us define a new parameter ϕk = 2π
L

(
k − N +1

4

)
, and re-wrte the

Hamiltonian above, in terms of Fourier creation and annihilation operators c̃† and c̃, as:

HXY (c̃†, c̃) =J2

L∑
k=1

(
eiϕk c̃†

kc̃k + γe+iϕk c̃†
kc̃

†
N +1

2 −k + e−iϕk c̃†
kc̃k + γe−iϕk c̃kc̃N +1

2 −k

)

− h
L∑
k=1

c̃†
kc̃k + hL

2 .

With the help of Euler formula eiα = cos(α) + i sin(α) and the anti-commutation relations{
c̃

(†)
k , c̃

(†)
k′

}
= 0 and

{
c̃†
k, c̃k′

}
= δk,k′ , we can write the above equation as:

HXY (c̃†, c̃) =J

2

L∑
k=1

(
2 cos(ϕk)c̃†

k c̃k + γeiϕk c̃†
k c̃

†
N +1

2 −k + γe−iϕk c̃k c̃ N +1
2 −k

)
− h

L∑
k=1

c̃†
k c̃k + hL

2 .

(2.74)
Now if we change k → −k + N +1

2 , ϕk goes to −ϕk. The reason is that we want to write
this Hamiltonian in the simplest form possible (see equation (2.76)). Therefore, let’s look
at some of the terms above separately. For instance:

∑
k

cos(ϕk)c̃†
kc̃k =1

2
∑
k

cos(ϕk)
[
c̃†
kc̃k − c̃N +1

2 −kc̃
†
N +1

2 −k

]
+ 1

2
∑
k

cos(ϕk)

The last term above vanishes due to sum over all the Fourier modes. It would be the
similar for the interaction with external magnetic field term. Putting these calculations
together, we can write the Hamiltonian in the matrix form of:

HXY (c̃†, c̃) =
∑
k

(
c̃†
k c̃N +1

2 −k

) 1
2

J cos(ϕk)− h iγJ sin(ϕk)
−iγJ sin(ϕk) −J cos(ϕk) + h

 c̃k

c̃†
N +1

2 −k

 , (2.75)

where ϕk = 2π
L

(
k− N +1

4

)
. Then we can write the Hamiltonian in the (block) diagonal form

of:

H (PBC)
XY (c̃†, c̃) =

L∑
k=1

(
c̃†
k c̃N +1

2 −k

)
Hk

 c̃†
k

c̃− N +1
2 − k

 , (2.76)

where Hk is the Hamiltonian restricted to the subspace of the momentas 2πk
L

and π(N +1)
L
−

2πk
L

[39]:

Hk =
[
J cos(2πk

L
− π(N + 1)

2L )− h
]
σz − Jγ sin(2πk

L
− π(N + 1)

2L )σy (2.77)

The last step is the Bogolioubov transformation, let us start with the operator relation

e−iλB̂ÂeiλB̂ = Â− iλ[B̂, Â] + · · ·+ (−iλ)n
n! [B̂, [B̂, [· · · , [B̂, Â] · · · ]]] + · · · , (2.78)

which to write the above relation we have used the Taylor expansion for eiλB̂. Using above,
we can write

e−i θk2 σ
x

σzei
θk
2 σ

x =σz − θkσy −
θ2
k

2 σ
z + θ3

k

6 σ
y + · · · = cos θkσz − sin θkσy
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Using (2.78), I parameterize the Hk as:

Hk = λk e
−i θk2 σ

x

σzei
θk
2 σ

x (2.79)

where λk is called the dispersion relation and θk is called Bogolioubov angle [39]. The
explicit relation of the mentioned parameters are given by:

λk =
√(

J cosϕk − h
)2

+ J2γ2 sin2 ϕk, ϕk = 2π
L

(
k − N +1

4

)
,

cos θk = J cosϕk−h
λk

, sin θk = Jγ sinϕk
λk

.
(2.80)

In fact, the Bogolioubov transformation diagonalizes the Hk, and it can be thought of
as a rotation in 2 × 2 subspace of each momentum k. The fermions diagonalizing the
Hamiltonian can be obtained by acting on the vector

(
c̃†
k c̃− N +1

2 − k
)

with Bogoliubov
rotation, for instance:

η†
k = cos(θk2 )c̃†

k − i sin(θk2 )c̃N +1
4 −k, (2.81)

then
HXY (η†, η) =

L∑
k=1

λk
(
η†
kηk −

1
2
)

(2.82)

This is the diagonal form of the periodic and anti-periodic free fermion Hamiltonian. In
comparison to the contents of section 2.3.2, λk is the same λk introduced in (2.45), for
instance, ∑L

k=1 λk = tr(λ).

As for the transformation U introduced in section 2.3.2, for PBC (also anti-PBC),
we can get the g and h matrices analytically. To show this, I fix N = −1 and write the
η-fermions in term of c-fermions starting with (2.81):

η†
k = cos(θk2 )c̃†

k − i sin(θk2 )c̃−k, η−k = cos(θk2 )c̃−k − i sin(θk2 )c̃†
k. (2.83)

As it was mentioned before, for N = −1 sector, we have c̄l = cl, which allows us to do an
inverse Fourier transform to get: η†

k

η−k

 = 1
L

L∑
k=1

e
2πikl
L ei

θk
2 σ

x

c†
l

cl

 . (2.84)

Comparing with the (2.51), we can see that

gkl = 1
L

L∑
k=1

e
2πikl
L cos(θk2 ) and hkl = i

L

L∑
k=1

e
2πikl
L sin(θk2 ) (2.85)

Now we have been able to find the transformation that diagonalizes our Hamiltonian
analytically and it means we can solve it exactly. Although the result above is for the
N = −1 only, the analytical calculations for the anti-periodic case should be obtained in
the same manner.
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For the inverse transformation, From c
(†)
l to η(†)

k , we proceed the same way to drive the
equation (2.52). Let us starting by writing the c̃−k+ N +1

2
and c̃†

k as a function of η-operators:
 c̃†

k

c̃
−k+ N +1

4

 =

 cos θk
2 i sin θk

2

i sin θk
2 cos θk

2


 η†

k

η
−k+ N +1

4

 = ei
θk
2 σ

x

 η†
k

η
−k+ N +1

4

 (2.86)

Putting N = −1, and preforming the inverse Fourier transformation, we can expressing
the JW fermions, ĉ(†), in terms of the Bogolioubov ones, η̂(†), as:

c†
l

cl

 = 1√
L

L∑
k=1

e− 2πikl
L

 c̃†
k

c̃−k

 = 1√
L

L∑
k=1

e− 2πikl
L ei

θk
2 σ

x

 η†
k

η−k

 (2.87)

Same as before, we are not going through the calculations for N = +1.

The results of this part can easily be applied to other models in the family of XY -chain,
such as Ising or the XX model. The exact expressions for quantities like g, h and λk allow
us to calculate entanglement, correlations, and so on, without much effort. In the next
subsection, we go over some known results for OBC systems.

2.4.2 Open boundary conditions

In this subsection, we consider the XY model with open boundary conditions. due to the
boundaries, the Hamiltonian does not simplify in Fourier transform, like (2.76). Apart from
some specific cases, the diagonalization is more complicated. For this reason, we just discuss
the easy case, however, considering the more general problem of diagonalizing an OBC
quadratic Hamiltonian, a good review can be found in the thesis [39]. The diagonalizing
transformations (7.14) can be solved easily in the isotropic case (XX model with γ = 0),
and for γ = ±1 (quantum Ising model). In the following, we only focus on the XX model.

The fermionic version (2.34) of the XX Hamiltonian (2.28) with OBC is:

HOBC
XX = J

2

L−1∑
l=1

(
c†
l cl+1 + c†

l+1cl
)
− h

L∑
l=1

c†
l cl + hL

2 . (2.88)

The number of particles (JW fermions) is conserved in this model, indeed one can write
HXX = ∑

l,n c
†
lMl,ncn. This can be solved by diagonalizing the tridiagonal symmetric

Toeplitz matrix M. The new fermions (quasiparticles) that diagonalize HOBC
XX are given

by:

η†
k =

√
2

L+ 1

L∑
l=1

sin( πkl

L+ 1)c†
l , (2.89)

Comparing to the PBC case, with γ = 0 in (2.80), the η-fermion is given by:

η†
k =

√
2
L

L∑
l=1

sin(πkl
L

)c†
l , (2.90)
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which is quite similar. It is another example of why the XX model is considered to be the
simplest spin model previously in this thesis. The fact is, the XX spin chain has only A
and B = 0, both in OBC and PBC cases. Then diagonalization reduces to solving the Eigen
equation of a Toeplitz matrix which can be obtained analytically. Some mathematical
reviews can be found in [55, 56].

Substituting the (2.89) into the Hamiltonian (2.88) gives:

HOBC
XX =

L∑
k=1

(
J cos( πk

L+ 1)− h
)
η†
kηk + hL

2 , (2.91)

which is the diagonal version of OBC XX Hamiltonian. It also gives the energy of modes
as:

λk = J cos( πk

L+ 1)− h. (2.92)

Unlike the general XY chain, λXXk can be negative. Consequently, the ground state is not
the vacuum of the operators η, |0⟩. The ground state is the lowest energy possible which
is obtained by exciting all the negative modes,

|GSXX⟩ =
∏
k∗
j

η†
k∗
j
|0⟩ ; λk∗ < 0. (2.93)

Modes with negative energy belong to the Fermi sea. Annihilation of fermions with negative
energy (inside the Fermi sea) are excited states of our spectrum. This means that depending
on the annihilated k (inside or outside of Fermi sea), we get:〈

η†
kηq
〉

= δk,qΘ
(
h− J cos( πk

L+ 1)
)
,

with ⟨· · ·⟩ being the expectation value for the XX ground state. This argument is valid
for PBC equally.

Finally, we can write the operators c in terms of the ηs:
L∑
k=1

sin( πkn
L+ 1)η†

k =
√

2
L+ 1

L∑
l=1

∑
k

sin( πkn
L+ 1) sin( πkl

L+ 1)c†
l

=
√

2
L+ 1

∑
l

L+ 1
2 δl,nc

†
l =

√
L+ 1

2 c†
n.

Then:
c†
l =

√
2

L+ 1

L∑
k=1

sin( πkl

L+ 1)η†
k (2.94)

where we have used the orthogonality of sin functions.

2.4.3 Spin chain ground state

The last piece of the puzzle is to determine the spectrum of the original spin chain (2.2)
from the diagonalized fermion Hamiltonian (2.73). The Hamiltonian (2.73) (and eventually
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the diagonal one (2.82)) acts on a Hilbert space of dimension 2L (for fixed N = ±1), but
only the eigenstates with the correct value of N are also eigenstates of the original XY
spin Hamiltonian [39]: This means that some eigenstates of the original spin Hamiltonian
lie in the Hilbert space of N = −1 (N = +1) final diagonal fermion Hamiltonian. In this
section, we name those eigenstates of the fermion model which are eigenstates of the XY
model as real and those who do not belong to the XY model as not real states.

To determine which states are real and which ones are not, as it was mentioned, in
any sector, states with the right parity (N ) are those which are real. Our objective here
is to find a method to extract suitable states after the Bogoliubov transformation. To
accomplish that, we can write the parity of any state as

N =
L∏
l=1

σzl = (−1)nf = (−1)
∑L

j=1 c
†
jcj = (−1)

∑L

k=1 c̃
†
k
c̃k , (2.95)

where the nf = ∑L
j=1 c

†
jcj is the number of fermions of the particular state and N0 is the

parity of the ground state. For the spin chain ground state we have:HXY |GS±⟩ = E±
g |GS±⟩

and the energy of ground state is given by E±
g = 1/2∑L

k=1 λk. First, One can find a relation
for the vacuum of η-fermions as a function of c-vacuum. Since, the possible values of q are
different in each sector, for a general N we have:

∣∣∣0±
〉
η

=
[L−1]/2∏
q>0

(
cos(θq2 )− i sin(θq2 )c̃†

q c̃
†
−q

)
|0⟩c (2.96)

where c̃q |0⟩c = 0 for all q ∈ [±(1 − N +1
4 ), · · · ,±(L − N +1

4 )]. It is easy to show that
ηq |0⟩η = 0 for all allowed q’s. In the relation above, there is an even number of c-fermions,
N0 = (−1)2n = 1 and consequently, only states with an even number of b-fermions have
the same parity as N0. To realize which states appear in the original spin chain we separate
two cases, (a) L even and (b) L odd.

Case (a) and N = +1: the counter q = ±1
2 , · · · ,±

2L−1
2 which mean φq ∈ (o, π). For this

values, sin(φk) is not zero for all the k’s. Parity of |0+⟩η is N̂ |0+⟩ = + |0+⟩ as it was
assumed, also this state has the same parity as |0⟩c. Since excited states are created by
acting on the ground state as η†

q |0+⟩η then only states with an even number of excitation
are real states and have the write parity.

Case (a) and N = −1: this time φk = 2π
L
k and sin(φL) = sin(φL

2
) = 0. This two modes

do not need Bogoliubov transformation (from (2.79) and (2.80)):

1
2η

†
L
2
HL

2
ηL

2
= −(J + h

2 )(2c̃†
L
2
c̃L

2
− 1) (2.97)

1
2η

†
LHLηL = (J − h)(2c̃†

Lc̃L − 1) (2.98)
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Based on the sign of the terms above, we could get a lower energy than just using equation
(2.96) and some c̃† should be added by hand. In fact, exists 4 possibilities that needs more
attention:

• −J+h
2 < 0 and J > h then |G−⟩η = c̃†

L/2
∏
q ̸=L,L2

(
cos( θq2 )− i sin( θq2 )c̃†

q c̃
†
−q

)
|0⟩c

• −J+h
2 < 0 and J < h then |G−⟩η = c̃†

Lc̃
†
L/2

∏
q ̸=L,L2

(
cos( θq2 )− i sin( θq2 )c̃†

q c̃
†
−q

)
|0⟩c

• −J+h
2 > 0 and J > h then |G−⟩η = ∏

q ̸=L,L2

(
cos( θq2 )− i sin( θq2 )c̃†

q c̃
†
−q

)
|0⟩c

• −J+h
2 > 0 and J < h then |G−⟩η = c̃†

L

∏
q ̸=L,L2

(
cos( θq2 )− i sin( θq2 )c̃†

q c̃
†
−q

)
|0⟩c

The regions above allow us to select the correct ground state of the spin chain. Other real
excitations come from exciting even number of modes on the correct ground state.

Case (b) and N = +1: same as before, we should look for values of q which sin(φq) = 0
and this time it happens at q = L+1

2 . The energy of this mode is given by:

1
2η

†
L+1

2
HL+1

2
ηL+1

2
= −(J + h)(2c̃†

L+1
2
c̃L+1

2
− 1). (2.99)

Based on the sign of this mode, we have 2 scenarios:

• −(J + h) > 0 then |G+⟩η = ∏
q ̸=L+1

2

(
cos( θq2 )− i sin( θq2 )c̃†

q c̃
†
−q

)
|0⟩c

• −(J + h) < 0 then |G+⟩η = c̃†
L+1

2

∏
q ̸=L+1

2

(
cos( θq2 )− i sin( θq2 )c̃†

q c̃
†
−q

)
|0⟩c

Same as before, real excited states come from exciting even number of modes on the
correct ground state.

Case (b) and N = −1: for k = L, we have:

sin(φL) = 0, 1
2η

†
LHLηL = (J − h)(2c̃†

Lc̃L − 1). (2.100)

Based on the sign of J − h, we have 2 scenarios:

• J − h > 0 then |G−⟩η = ∏
q ̸=L

(
cos( θq2 )− i sin( θq2 )c̃†

q c̃
†
−q

)
|0⟩c

• J − h < 0 then |G−⟩η = c̃†
L

∏
q ̸=L

(
cos( θq2 )− i sin( θq2 )c̃†

q c̃
†
−q

)
|0⟩c

Same as before, real excited states come from exciting even number of modes on the
correct ground state.

This sums up the search for the real spectrum that we were looking for. For the sake
of completeness, we show the selection rules for the size L = 3 in the B.
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Correlations
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3.1 Correlation Matrices
Correlations in quantum manybody systems are vital in measuring many quantities. They
are even more fundamental in experimental works. Experimental measurement of a quantity
in space (and time) comes from measuring correlation functions. Our measurement of
how a quantity of a system system evolves in space (and time) comes from measuring
correlation functions. Many scattering experiments directly measure correlation functions,
for example by X-rays diffraction one can measure the electron specious density–density
correlation in laboratory[57]. In this section, we will provide a methods for computing the
correlation functions. We will address the calculation of the correlation matrix for different
eigenstates of the system including ground state.

We would only address the correlation function for fermion operators, since spin
correlation can be related to fermion ones with an JW transformation. For any n-point
correlation function ⟨ϕ1 · · ·ϕn⟩, since the model is quadratic, all correlation functions can
be expressed in terms of two-point functions using Wick’s theorem [50]. Wick’s theorem
gives the practical rule to express a product of creation and annihilation operators as a
sum of expectation value of two. In general form, Wick theorem is written as

⟨ϕ1 · · ·ϕn⟩ =
n∑
j=2

(−1)j ⟨ϕ1ϕj⟩ ⟨ϕ2 · · ·ϕj−1ϕj+1 · · ·ϕn⟩ (3.1)

where ϕj ’s can be any function of creation and annihilation operators. It is more convenient
to calculate the correlation matrices for Majorana fermions, with definitions γi = ci+c†

i and
γ̄i = i(c†

i − ci) for Majorana fermions. It is useful to write the later two point correlation
in a block matrix form denoted by Γ as:

Γ =
 ⟨γ.γ⟩ − I ⟨γ.γ̄⟩
⟨γ̄.γ⟩ ⟨γ̄.γ̄⟩ − I

 =
 K− I −iGT

iG K̄− I

 . (3.2)

Above, the expectation values have been written for a generic state. From eq. (3.2),
we have define

⟨γ̄jγk⟩ = iGjk, (3.3a)

⟨γjγk⟩ = Kjk, (3.3b)

⟨γ̄j γ̄k⟩ = K̄jk. (3.3c)

One can write G, K and K̄ in terms of correlation matrix of c-operators

1
i
⟨γ̄jγk⟩ =(c†

j − cj)(c
†
k + ck) = ⟨c†

jck⟩ − ⟨cjck⟩+ ⟨c†
jc

†
k⟩ − ⟨cjc

†
k⟩

=⟨c†
jck⟩ − ⟨cjck⟩+ ⟨c†

jc
†
k⟩+ ⟨c†

kcj⟩ − δjk
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⟨γjγk⟩ =(c†
j + cj)(c†

k + ck) = ⟨c†
jck⟩+ ⟨cjck⟩+ ⟨c†

jc
†
k⟩+ ⟨cjc†

k⟩

=⟨c†
jck⟩+ ⟨cjck⟩+ ⟨c†

jc
†
k⟩ − ⟨c

†
kcj⟩+ δjk

−⟨γ̄j γ̄k⟩ =(c†
j − cj)(c

†
k − ck) = −⟨c†

jck⟩+ ⟨cjck⟩+ ⟨c†
jc

†
k⟩ − ⟨cjc

†
k⟩

=− ⟨c†
jck⟩+ ⟨cjck⟩+ ⟨c†

jc
†
k⟩+ ⟨c†

kcj⟩ − δjk
Hence, we can write

K = F† + F + C−CT + I,

K̄ = −F† − F + C−CT + I,

G = −F† + F + C + CT − I,

(3.4)

where Cij = ⟨c†
icj⟩ and Fij = ⟨c†

ic
†
j⟩. The C is a Hermitian matrix and F is antisymmetric.

The K and K̄ are hermitian too, additionally, we can conclude that G is real. Knowing
these properties, we can prove that the Γ correlation matrix is Hermitian likewise. For
instance

(K− 1)∗ = FT + F∗ + C∗ −C† = −F− F† + CT −C = −K + 1,

(K̄− 1)∗ = −FT − F∗ + C∗ −C† = F + F† + CT −C = −K̄ + 1,

G∗ = −FT + F∗ + C∗ + C† − I = F− F† + CT + C− I = G.

Therefore, we can realize that Γ∗
ij = −Γij which means that Γ is pure imaginary. It would

be useful to have the C and F in terms of G, K and K̄

4C =K + K̄ + G + G†,

4F =K− K̄ + G−G†.
(3.5)

In the case where C and F are real then C − CT = 0 and F + F† = 0, from this and
equation (3.4), one gets

K = K̄ = 1,

G = 2F + 2C− I.
(3.6)

When all the correlation functions are real, then we have:

Γ =
 0 −iGT

iG 0

 , (3.7)

which means we need to deal with just one matrix G. For example, when we have a
Hamiltonian with real parameters the correlation functions for the ground state are all
real and the above equation is true. However, when one deals with dynamical problems we
do not have real correlations and one should use the equation (3.2). Since this matrix is
purely imaginary skew symmetric matrix the eigenvalues come in pairs of opposite sign
(ν,−ν).

So far, anything said about the correlation matrices was in the most general case. We
did not specify anything about the state of the system which these expectation values
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are calculated for. Since, there exist a canonical transformation that diagonalize the
Hamiltonian, we can analytically calculate the above expectation values in terms of the
eigenstates of η-operators.

3.1.1 Expectations for η’s vacuum

Using the notation introduced in eq. (2.44), we write c-operators (or γ-operators) in terms
of η’s. Then we calculate the correlations for the vacuum of η’s. For instance

⟨c†
icj⟩ = ⟨0| (h∗

liηl + gkiη
†
k)(g∗

mjηm + hnjη
†
n) |0⟩ = ⟨0|h∗

liηlhnjη
†
n |0⟩ = h∗

lihnjδnl = h∗
nihnj,

⟨c†
ic

†
j⟩ = ⟨0| (h∗

liηl + gkiη
†
k)(h∗

mjηm + gnjη
†
n) |0⟩ = ⟨0|h∗

liηlgnjη
†
n |0⟩ = h∗

lignjδnl = h∗
nignj.

(3.8)
As a result, we can write C0 = h†.h and F0 = h†.g, where superscript zero stands for
expectation values calculated in vacuum. From U†.U = I, we have gT .g∗ + h†.h = I.
Putting these relations in (3.4), we get

K0 =g†.h + h†.g + h†.h− hT .h∗ + I = g†.h + h†.g + h†.h− I + gT .g∗ + I

=g†.(h + g) + h†.(h + g) = (h† + g†).(h + g),

K̄0 =− g†.h− h†.g + h†.h− hT .h∗ + I = −g†.h− h†.g + h†.h− I + gT .g∗ + I

=− g†.(h− g) + h†.(h− g) = (h† − g†).(h− g).
Finally

G0 =− g†.h + h†.g + h†.h + hT .h∗ − I = −g†.h + h†.g + h†.h + I− gT .g∗ − I

=− g†.(h + g) + h†.(h + g) = (h† − g†).(h + g).

Therefore, for the vacuum of η-operators, we can write the expression (3.4) in terms of
elements of U matrix, which tells us that correlation matrix can be calculated much easier.

K0 =(h† + g†).(h + g),
K̄0 =(h† − g†).(h− g),
G0 =(h† − g†).(h + g).

(3.9)

From the equation (3.9), we can define V = h + g and W = h− g. When C and F are
real V and W are unitary matrices, V†.V = W†.W = I. In the end we can write for the
full system

G0 = W†.V. (3.10)

It is also not difficult to show that we have

K̄ = GK−1G†. (3.11)

In addition when all the correlations are real one can prove that det[G] = ±1.
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The formulation introduced so far relies on knowing the elements or expressions of
the transformation (2.49) which diagonalize the Hamiltonian. In most cases this can be
found by exact numerical methods. Moreover, since the M increase linearly with the size
of the system, then exact numerical methods are valid for big sizes. To be consistent, in
the following subsection, we are going to show some analytical examples of correlation
functions calculated for the PBC which we know the expression of the g and h matrices.
For simplicity we assume that coupling constants are Real then one could use the result of
(3.6) and (3.7). Particularly, we are going to look at the a general XY case of model and
the XX model.

3.1.1.1 Analytical examples

In the general XY case, to calculate the expectation values in (3.3) in respect to η-fermion
vacuum. Assuming that we are working in the case where N = −1 (see also [39]), with
the help of (2.87), we write the Majorana fermions in terms of η-fermions:

γl =c†
l + cl = 1√

L

L∑
k=1

e− 2πikl
L

(
cos θk2 η

†
k + i sin θk2 η

†
k + cos θk2 η−k + i sin θk2 η−k

)

= 1√
L

L∑
k=1

e− 2πikl
L ei

θk
2

(
η†
k + η−k

)
= 1√

L

L∑
k=1

(
e− 2πikl

L ei
θk
2 η†

k + e
2πikl
L e−i θk2 ηk

) (3.12)

γ̄l =i(c†
l − cl) = i√

L

L∑
k=1

e− 2πikl
L

(
cos θk2 η

†
k + i sin θk2 η−k − cos θk2 η−k − i sin

θk
2 η

†
k

)

= i√
L

L∑
k=1

e− 2πikl
L

(
e−i θk2 η†

k − ei
θk
2 η−k

)
= i√

L

L∑
k=1

(
e

2πikl
L ei

θk
2 ηk − e− 2πikl

L e−i θk2 η†
k

)
.

With these relations, it is easy to find the two point correlation functions of Majorana
fermions (as in (3.3))

⟨γlγn⟩ = 1
L

∑
k,q

⟨
(
e− 2πikl

L ei
θk
2 η†

k + e
2πikl
L e−i θk2 ηk

)(
e− 2πiqn

L ei
θq
2 η†

q + e
2πiqn
L e−i θq2 ηq

)
⟩

= 1
L

∑
k,q

e− 2πi(qn−kl)
L ei

θq−θk
2 ⟨ηkη†

q⟩ = 1
L

∑
k,q

e− 2πi(qn−kl)
L ei

θq−θk
2 δk,q

= 1
L

∑
k

e
2πik(l−n)

L = δl,n = ⟨γ̄lγ̄n⟩,

which is the same as the results as (3.6). For off-diagonal blocks of Γ we have:

⟨γlγ̄n⟩ = i

L

∑
k,q

⟨
(
e− 2πikl

L ei
θk
2 η†

k + e
2πikl
L e−i θk2 ηk

)(
e

2πiqn
L ei

θq
2 ηq − e− 2πiqn

L e−i θq2 η†
q

)
⟩

=− i

L

∑
k,q

e
2πi(kl−qn)

L e−i θq+θk
2 ⟨ηkη†

q⟩ = − i
L

∑
k,q

e
2πi(kl−qn)

L e−i θq+θk
2 δk,q

=− i

L

∑
k

e
2πik(l−n)

L
−iθk = −igl,n,
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⟨γ̄lγxn⟩ = i

L

∑
k,q

⟨
(
e

2πikl
L ei

θk
2 ηk − e− 2πikl

L e−i θk2 η†
k

)(
e− 2πiqn

L ei
θq
2 η†

q + e
2πiqn
L e−i θq2 ηq

)
⟩

= i

L

∑
k,q

e
2πi(kl−qn)

L ei
θq+θk

2 ⟨ηkη†
q⟩ = i

L

∑
k,q

e
2πi(kl−qn)

L ei
θq+θk

2 δk,q

= i

L

∑
k

e
2πik(l−n)

L
+iθk k→−k= i

L

∑
k

e
2πik(n−l)

L
−iθk = ign,l,

Therefore, we can put everything to gether to get:

Γ = ⟨
γ
γ̄

(γ γ̄
)
⟩ − 1 =

 0 −iGT

iG 0


with

Gl,n = 1
L

L∑
k=1

e
2πik(l−n)

L
−iθk .

Analytical results for XX chain has a very simple form, as it was explained in chapter
2. In fact the h, introduced in (2.49), is zero for this model, same as the matrix B of
(2.36). It also means that the F correlation does not exists anymore. Consequently:

K = K̄ = 1, G = 2C− I, (3.13)

which also means we can work only with the C = ⟨GSXX | c†c |GSXX⟩ correlation.

In the periodic chain of fermions in its ground state, We use the results of correlation
functions explained before (in previous example also in [39]) to obtain the correlation
matrix C with respect to ground state,

〈
c†
l cn
〉

=δl,n −
〈
cnc

†
l

〉
= 1
L

∑
k

e− 2πik
L

(l−n)
(

1− cos2(θk2 )
)

= 1
L

∑
k

e− 2πik
L

(l−n) sin2(θk2 )

= 1
L

∑
k

e− 2πik
L

(l−n) 1
2
(
1− cos θk

)
(3.14)

Since in XX model γ = 0 then we have sin(θk) = 0. One can write for the expression in
parenthesis as:

1
2(1− cos θk) = εk − J cosϕk + h

2εk
=

0 J cosϕk > h

1 J cosϕk < h
.

Using this result, we get

〈
c†
l cn
〉

= 1
L

L∑
k=1

e− 2πik
L

(l−n)Θ
(
h− J cosϕk

)
(3.15)

where Θ(x) is the Heaviside step function, meaning Θ(x) = 1 for x > 0 and zero otherwise.
Therefore, with this set of parameters, we have k∗ = [ L2π cos−1(h

J
)] which corresponds to

non-vanishing terms of the sum (we set nc = cos−1(h
J
)). Note that here, we will be doing
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the calculations for general nc (consequently h) which the ground state of the system is
not degenerate. Therefore, we can rewrite the (3.15) as:〈

c†
l cn
〉

= 1
L

k∗∑
k=1

e
2πik
L

(l−n) + 1
L

L∑
k=L−k∗

e
2πik
L

(l−n)

With a shift in dummy indices of the second term (k → k + L), this equation can be
written as〈

c†
l cn
〉

= 1
L

k∗∑
k=1

e
2πik
L

(l−n) + 1
L

0∑
k=−k∗

e
2πik
L

(l−n) = 1
L

+ 2
L

k∗∑
k=1

cos(2πik
L

(l − n))

= 1
L

+ 1
L

sin(qF (l − n))
sin π

L
(l − n) −

1
L

where qF = nc+ π
L

= 2π
L

(k∗+ 1
2).To calculate above we have used ∑N

n=0 cosnθ = 1
2 + sin(N+ 1

2 )θ
2 sin θ

2
.

Using this result for correlation matrix, one can write:

Cij = 1
L

sin(qF (i− j))
sin π

L
(i− j) ; i ̸= j,

Cii =nc
π

+ 1
L
.

(3.16)

which is the analytic expression for the correlation matrix of XX model in the ground
state with periodic boundary conditions. To find the correlation matrix of an infinite chain
in its ground state we just use the result of (3.16) with L→∞. In particular, in this limit
we have qF ∼ nc and sin π

L
(i− j) ∼ π

L
(i− j). Elemnts of C simplifies to:

Cij =sin(nc(i− j))
π(i− j) ; i ̸= j

Cii =nc
π

(3.17)

In the OBC, it is also easy to do same calculations for XX case, details of the calculation
are not presented here. Using the results of section 2.4.2, I can write:〈

η†
kηq
〉

= δk,qΘ
(
h− J cos( πk

L+ 1)
)
.

The fermionic two-point correlation C can be obtained by

Cmn = 1
2(L+ 1)

[sin(qF (n−m))
sin(α(n−m)) −

sin(qF (n+m))
sin(α(n+m))

]
; n ̸= m. (3.18)

Where α = π
2(L+1) and qF = nc + α and nc = cos−1(h

J
). For the diagonal elements n = m,

we have

Cnn = nc
π

+ 1
2(L+ 1) −

1
L+ 1

sin(2qFn)
sin(2αn) = nc

π
+

0 n even
1

L+1 n odd
. (3.19)

Finally, a semi-finite system is the open chain with the limit L→∞ and its correlations
are given by:

Cnn =nc
π

Cnm =sinnc(n−m)
π(n−m) − sinnc(n+m)

π(n+m) .
(3.20)
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3.1.2 Correlations for excited eigenstates

In this section, we want to calculate the correlation matrices for excited eigenstates of
Hamiltonian as introduced in 2.3.4. The formulas in 3.1.1 can be also generalized to the
excited states. The generic excited state is defined as:

|ψ⟩ = |k1, ..., kj⟩ = η†
k1 ...η

†
kj
|0⟩ , (3.21)

Having η-operators allows us to write the correlation matrix of interest in terms of U (and
U†). For instance.

⟨c†
icj⟩ψ = ⟨0|

∏
kj∈E

ηkj
∑
k,l

(h∗
liηl + gkiη

†
k)
∑
n,m

(g∗
mjηm + hnjη

†
n)
∏
kj∈E

η†
kj
|0⟩ , (3.22)

⟨c†
ic

†
j⟩ψ = ⟨0|

∏
kj∈E

ηkj
∑
k,l

(h∗
liηl + gkiη

†
k)
∑
n,m

(h∗
mjηm + gnjη

†
n)
∏
kj∈E

η†
kj
|0⟩ . (3.23)

Using the Wick theorem we can simplify these expression to get:

⟨c†
icj⟩ψ = (h†.h)i,j +

∑
kj∈E

(gkj ,ig∗
kj ,j
− h∗

kj ,i
hkj ,j),

⟨c†
ic

†
j⟩ψ = (h†.g)i,j +

∑
kj∈E

(gkj ,ih∗
kj ,j
− h∗

kj ,i
gkj ,j).

(3.24)

Therefore, using the definitions (3.4), we get

Kψ
ij =(h† + g†).(h + g)ij +

∑
kj∈E

gkj ,ig
∗
kj ,j

+
∑
kj∈E

gkj ,ih
∗
kj ,j
−
∑
kj∈E

h∗
kj ,i
gkj ,j −

∑
kj∈E

h∗
kj ,i
hkj ,j

−
∑
kj∈E

g∗
kj ,i
gkj ,j −

∑
kj∈E

g∗
kj ,i
hkj ,j +

∑
kj∈E

hkj ,ig
∗
kj ,j

+
∑
kj∈E

hkj ,ih
∗
kj ,j

=(h† + g†).(h + g)ij −
∑
kj∈E

(h∗
kj ,i

+ g∗
kj ,i

)(gkj ,j + hkj ,j) +
∑
kj∈E

(hkj ,i + gkj ,i)(g∗
kj ,j

+ h∗
kj ,j

),

K̄ψ
ij =(h† − g†).(h− g)ij +

∑
kj∈E

gkj ,ig
∗
kj ,j
−
∑
kj∈E

gkj ,ih
∗
kj ,j

+
∑
kj∈J

h∗
kj ,i
gkj ,j −

∑
kj∈E

h∗
kj ,i
hkj ,j

−
∑
kj∈E

g∗
kj ,i
gkj ,j +

∑
kj∈E

g∗
kj ,i
hkj ,j −

∑
kj∈E

hkj ,ig
∗
kj ,j

+
∑
kj∈E

hkj ,ih
∗
kj ,j

=(h† − g†).(h− g)ij −
∑
kj∈E

(h∗
kj ,i
− g∗

kj ,i
)(hkj ,j − gkj ,j) +

∑
kj∈E

(hkj ,i − gkj ,i)(h∗
kj ,j
− g∗

kj ,j
),

Gψ
ij =(h† − g†).(h + g)ij +

∑
kj∈E

gkj ,ig
∗
kj ,j

+
∑
kj∈E

gkj ,ih
∗
kj ,j
−
∑
kj∈E

h∗
kj ,i
gkj ,j −

∑
kj∈E

h∗
kj ,i
hkj ,j

+
∑
kj∈E

g∗
kj ,i
gkj ,j +

∑
kj∈E

g∗
kj ,i
hkj ,j −

∑
kj∈E

hkj ,ig
∗
kj ,j
−
∑
kj∈E

hkj ,ih
∗
kj ,j

=(h† − g†).(h + g)ij +
∑
kj∈E

(g∗
kj ,i
− h∗

kj ,i
)(hkj ,j + gkj ,j) +

∑
kj∈E

(gkj ,i − hkj ,i)(h∗
kj ,j

+ g∗
kj ,j

).

We can write them in a shorter version

Kψ
ij =(h† + g†).(h + g)ij − 2iℑ

[ ∑
kj∈E

(h∗
kj ,i

+ g∗
kj ,i

)(gkj ,j + hkj ,j)
]
, (3.25)
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K̄ψ
ij =(h† − g†).(h− g)ij − 2iℑ

[ ∑
kj∈E

(h∗
kj ,i
− g∗

kj ,i
)(hkj ,j − gkj ,j)

]
, (3.26)

Gψ
ij =(h† − g†).(h + g)ij + 2ℜ

[ ∑
kj∈E

(g∗
kj ,i
− h∗

kj ,i
)(hkj ,j + gkj ,j)

]
. (3.27)

Then after some algebra one can show that

C{k1,...,kl} = h†.h + gT .I′.g∗ − g†.I′.h, (3.28)
F{k1,...,kl} = h†.g + gT .I′.h∗ − h†.I′.g, (3.29)

where

I ′
kk′ =

{
δkk′ : k ∈ {k1, ..., kl}
0 : otherwise

(3.30)

Then one can also show that

G{k1,...,kl} = (h† − g†)(h + g)− 2Re[(h† − g†).I′.(h + g)], (3.31)
K{k1,...,kl} = (h† + g†)(h + g)− 2iIm[(h† + g†).I′.(h + g)], (3.32)
K̄{k1,...,kl} = (h† − g†)(h− g)− 2iIm[(h† − g†).I′.(h− g)]. (3.33)

As an example, if all the modes are excited then the state would be |ϕ⟩ = ∏
all kj η

†
kj
|0⟩.

Therefore for the correlation matrices we would get

Kϕ =
(
hT + gT

)
.
(
h∗ + g∗

)
= 2× 1−

(
h† + g†

)
.
(
h + g

)
= 2× 1−K0, (3.34)

K̄ϕ =
(
hT − gT

)
.
(
h∗ − g∗

)
= 2× 1−

(
h† − g†

)
.
(
h− g

)
= 2× 1− K̄0, (3.35)

and
Gϕ =

(
gT − hT

)
.
(
h∗ + g∗

)
=
(
g† − h†

)
.
(
h + g

)
= −G0. (3.36)

Looking at these expressions, there is an interesting similarity between these correlations
and those of ground state. First, we know that in all the quadratic fermionic models, the
spectrum is symmetric. Therefore, the energy of highly excited eigenstate would be the
opposite sign of the ground state energy. This can be achieved by changing η to η†. Or,
we can change A to −A and B to −B. Now, to keep the convention the same ( after
the diagonalizatio, first comes the positive eigenvalues and then the negative ones), we
would need to put g→ h∗ and h→ g∗ in the unitary matrix (2.49) which diagolize the
Hamiltonian. This new unitary matrix U′ has the relation:

U′ =
 0 1

1 0

 .
 g h

h∗ g∗

 . (3.37)
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With this transformation, we can see the relation between correlation matrices (3.34-3.36).
Another argument could be the relation between C and F matrix for vacuum and highly
excited eigenstate. For instance, η†

j |ϕ⟩ = 0, for all j’s then

⟨c†
icj⟩ϕ = ⟨ϕ| (h∗

liηl + gkiη
†
k)(g∗

mjηm + hnjη
†
n) |ϕ⟩ = ⟨ϕ| gkiη†

kg
∗
mjηm |ϕ⟩ = gmig

∗
mj.

Therefore, it can be verified that

Cϕ = 1−C0, and Fϕ = −F0.

When substitute in (3.4), then we would reach the expression (3.34)-(3.36).

The above observation is called Particle-Hole Duality and it suggest the following
relations between the matrices corresponding to the excited state {k1, ..., kl} and the one
with the complement modes excited, i.e. {kl+1, ..., kN}:

G{k1,...,kl} + G{kl+1,...,kN} = 0 (3.38)
K{k1,...,kl} + K{kl+1,...,kN} = 2I (3.39)
K̄{k1,...,kl} + K̄{kl+1,...,kN} = 2I. (3.40)

The above relations suggest similar physics for the two complement excited states or
equivalently, particles and holes.

3.1.3 Relation of R matrix and correlation matrices

The matrix R can be written in terms of correlation matrices of section 3.1 [13, 14]. For
instant, in the simple case where entries of A and B are real in Hamiltonian (2.35), we have
R = I+G

I−G where G being the correlation matrix with the elements Gij = ⟨(c†
i − ci)(c

†
i + ci)⟩

as define in (3.3). To prove the latter, we use the results of (3.9):

I + G =(hT − gT )(h + g) + I = −gTh− gTg + hTh + hTg + I

=2(hT − gT )h
I−G =I− (gT − hT )(h + g) = gTh + gTg− hTh− hTg + I

=− 2(hT − gT )g

Therefore,
I + G
I−G

= (I−G)−1(I + G) = −g−1h = R. (3.41)

In a general case where g and h are matrices with complex entries then we have a
complicated relation between correlations and R matrix. For instance we start by calculate
the elements of G (3.3) for the state (2.53).

Gij = ⟨0| (c†
i − ci)(c

†
j + cj) |0⟩ = ⟨c†

icj⟩+ ⟨c†
ic

†
j⟩ − ⟨cicj⟩ − ⟨cic

†
j⟩ (3.42)
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To calculate each of the expectation values above, first we use the Fermionic coherent
state defined as

|ξ⟩ = |ξ1ξ2 · · · ξN⟩ = e−
∑N

k=1 ξkc
†
k |0⟩c , (3.43)

where ξk are Grassmann variables. For more details on fermion coherent state see Appendix
A and [13, 58]. To proceed, we can use the Identity resolution of Grassmann variables

I =
∫ ∏

l

dξ̄ldξle−ξ̄.ξ |ξ⟩⟨ξ| (3.44)

Then, we use (3.43), and reorder each term by moving every c operator to the left.

⟨cicj⟩ =|C|2c⟨0| e− 1
2R

∗
mncmcncicje

1
2Rlkc

†
l
c†
k |0⟩c = |C|2

∫ ∏
dξ̄l′dξl′ξiξje−ξ̄rξre

1
2Rlk ξ̄lξ̄k− 1

2R
∗
mnξmξn ,

⟨c†
icj⟩ =|C|2c⟨0| e− 1

2R
∗
mncmcnc†

icje
1
2Rlkc

†
l
c†
k |0⟩c = δij − |C|2

∫ ∏
dξ̄l′dξl′ξj ξ̄ie−ξ̄rξre

1
2Rlk ξ̄lξ̄k− 1

2R
∗
mnξmξn ,

⟨cic†
j⟩ =|C|2c⟨0| e− 1

2R
∗
mncmcn(δij − c†

jci)e
1
2Rlkc

†
l
c†
k |0⟩c = |C|2

∫ ∏
dξ̄l′dξl′ξiξ̄je−ξ̄rξre

1
2Rlk ξ̄lξ̄k− 1

2R
∗
mnξmξn ,

⟨c†
ic

†
j⟩ =|C|2c⟨0| e− 1

2R
∗
mncmcnc†

ic
†
je

1
2Rlkc

†
l
c†
k |0⟩c= |C|

2
∫ ∏

dξ̄l′dξl′ ξ̄iξ̄je−ξ̄rξre
1
2Rlk ξ̄lξ̄k− 1

2R
∗
mnξmξn ,

With this method, we need to solve the Grassmann integration containing combination of ξ
and ξ̄. To solve the integrals above, we introduce a new Grassmann variable ηT =

(
ξ̄ ξ

)
.

Then we can write the integral as. ⟨· · · ⟩ = |C|2
∫

Dη (ηJ1ηJ2)e
1
2η

TAη with A =
R −I

I −R∗

.

Using equation (A.8), we get Pf[A] =
√

det[I + R†R] and

A−T =


−R−1 −R−1(R∗ −R−1)−1R−1 (

R∗ −R−1)−1R−1

−R−1(R∗ −R−1)−1 (
R∗ −R−1)−1

=


R∗(I−R∗R

)−1 −
(
I−R∗R

)−1

(
I−RR∗)−1 (

I−R∗R
)−1R


(3.45)

In our case, the set J as introduced in (A.8), Appendix A, contains only two indexes
(J = {J1, J2}), therefore Pf [(A−T )JJ ] = (A−T )J1J2 . This means we can look for the
solution each expectation value in the submatrices of A−T . To reduce the calculations we
just calculate the correlation matrices C = ⟨c†

icj⟩ and F = ⟨c†
ic

†
j⟩

C = I−Q, F = R∗QT where Q = (I−R∗R)−1 (3.46)

Using this result and equation (3.4), we get:

G = I + Q(R∗ − I) + (R − I)QT ,

K = (1
2I + R∗)QT + QT (1

2I−R)−Q + I

K̄ = (1
2I−R∗)QT + QT (1

2I + R)−Q + I

(3.47)

Since we are interested in a relation to write the vacuum in exponential form (2.53). Then
it is useful to mention R = F∗(I−C)−1. The result above for the case where R is a real
matrix, we get equation (3.41).
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It can also be concluded that the same relation is valid among the correlation matrices
and R matrix for an excited eigenstate (see sections 2.3.4 and 3.1.2).

Gψ = I + Qψ(Rψ∗ − I) + (Rψ − I)QψT ,

Kψ = (1
2I + Rψ∗)QψT + QψT (1

2I−Rψ)−Qψ + I

K̄ψ = (1
2I−Rψ∗)QψT + QψT (1

2I + Rψ)−Qψ + I

(3.48)

where Qψ = (I−Rψ∗Rψ)−1 and Rψ is defined in (2.64).
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4

Density matrix formulation
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4.1 Density matrix formulation
A density matrix is a matrix that describes the statistical state of a system in quantum
mechanics. The probability for any outcome of any well-defined measurement upon a
system can be calculated from the density matrix for that system. The Entanglement
entropy of a state can be expressed in terms of the eigenvalues of density matrix.

In this part, we use the Grassmann variables to write the coherent state for fermions.
Then, we can drive the expression of the reduced density matrix (RDM) and entanglement
entropy for the desired states using the Grassmann integrals (see Appendix A). A coherent
state for fermions is defined as

|ξ⟩ = |ξ1ξ2 · · · ξN⟩ = e−
∑N

k=1 ξkc
†
k |0⟩c , (4.1)

where |0⟩c is annihilated by all the ck operators. One can verify that

ci |ξ⟩ = ξi |ξ⟩ , ⟨ξ| c†
i = ⟨ξ| ξ̄i, c⟨0|ξ⟩ = 1. (4.2)

4.1.1 Density matrix for vacuum state

Using the above expressions and (2.53), we start by writing the density matrix for the
vacuum state

ρ = |C|2e
1
2
∑

i,j
Rijc

†
i c

†
j |0⟩c c⟨0| e

1
2
∑

i,j
−R∗

ijcicj , (4.3)

and C = 1
4
√

det[I+R†R]
. Now we write the matrix form of density operator in terms of

Grassmann variables using (A.16).

ρ(ξ, ξ′) = ⟨ξ| ρ |ξ′⟩ = |C|2 e
1
2
∑

i,j
Rij ξ̄iξ̄j e− 1

2
∑

i,j
R∗
ijξ

′
iξ

′
j . (4.4)

To calculate the reduced density matrix, we divide the system into two parts (sets) 1 and
2 where the full system is given by 1+2. we trace out fermions in the subsystem 2 to find
the RDM for subsystem 1, ρ

1
= tr

2
ρ. In other words, we are calculating the entanglement

of the fermions of subsystem D with the rest of the system. To trace out the unwanted
parts, we use equation (D.54b).

ρ
1
(ξ, ξ′) =

∫ ∏
l∈2

dξ̄ldξl e
−
∑
n∈2

ξ̄nξn

⟨ξ1, · · · , ξk,−ξk+1, · · · ,−ξL| ρ |ξ′
1, · · · , ξ′

k, ξk+1, · · · , ξL⟩ , (4.5)

where indexes {1, · · · , k} ∈ 1 and {k+ 1, · · · , L} ∈ 2. Since all the terms in the expression
above are quadratic in Grassmann variables, we can write them in the same argument1.
Also, we can move out those variables that are not in the integral. Therefore, we are left
with

ρ
1
(ξ, ξ′) =|C|2e

1
2 (R11)ij ξ̄iξ̄j−

1
2 (R∗

11)jiξ′
jξ

′
i

∫ ∏
l∈2

dξ̄ldξl e−ξ̄nξn
[
e− 1

2 (R12)inξ̄iξ̄n− 1
2 (R21)niξ̄nξ̄i

× e
1
2 (R22)mnξ̄mξ̄ne− 1

2 (R∗
22)nmξnξm+ 1

2 (R∗
12)jmξ′

jξm+ 1
2 (R∗

21)mjξmξ′
j

] (4.6)

1 eAeB = eA+B
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where in the above Einstein summation convention is used, and indexes i, j ∈ 1 where
indexes n,m ∈ 2. Equivalently, we divides R into four submatrices R11, R12, R21 =
−R12

T and R22, according to whether the sites i,j,n,m belong to the part we are tracing
out or not. Although these submatrices do not need to have the same size, R11 and R22

are square matrices. Those parts that are at the back of integral we denote by F({ξ′
i}, {ξ̄j}).

Going back to the reduced density matrix, we can rewrite it in the Gaussian form of

ρ
1
(ξ, ξ′) = F({ξ′

i}, {ξ̄j})
∫ ∏

l∈2
dξ̄ldξl e

1
2

(
ξ̄ ξ

)
A

ξ̄
ξ

+ζξ+κξ̄

.
(4.7)

where matrix A can be thought of as a block matrix

A =
R22 −I

I −R∗
22


In addition ζ = −ξ′R12

∗ and κ = −ξ̄R12. Now to calculate the partial trace we have to
define new Grassmann variables

Now, for reduced density matrix we have:

ρ
1
(ξ, ξ′) = F({ξ′

i}, {ξ̄j})
∫

Dη e
1
2η

TAη+λTη
. (4.8)

Using the equation (A.7), we can solve the integral. After the integration we have:

ρ
1
(ξ, ξ′) = F({ξ′

i}, {ξ̄j}) pf[A]e
1
2λ

TA−1λ. (4.9)

Based on formulas for block matrices we have:

A−1 =


−(I−R22R∗

22)−1R22R∗
22R−1

22

(
I−R22R∗

22

)−1

−
(
I−R∗

22R22
)−1

(I−R∗
22R22)−1R22

 .
Putting it all together, we get for the reduced density matrix

ρ
1
(ξ, ξ′) =

√
det[I + R†

22R22]√
det[I + R†R]

e
1
2

(
ξ̄ ξ′

)
Ω

 ξ̄
ξ′


(4.10)

where Ω matrix is given by

Ω =
R11 0

0 −R∗
11

+
R12 0

0 R∗
12

A−1
RT

12 0
0 R†

12

 (4.11)

or equivalently

Ω =


R11 + R12

[
R22 − (R∗

22)−1
]−1

RT
12 −R12R−1

22

(
R−1

22 −R∗
22

)−1
R†

12

R∗
12

(
R−1

22 −R∗
22

)−1
R−1

22 RT
12 −R∗

11 + R∗
12

(
R−1

22 −R∗
22

)−1
R†

12

 .
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One can verify that the trρ =
√

det[I+R†
22R22]√

det[I+R†R]

√
det[Ω] = 1, where we have put Pf[A] =√

det[A]. Be noted that Pf[· · · ] = ±
√

det[· · · ] and if we write the coefficients in terms of
Pfaffian then there is minus sign in case the system size is even and subsystem is odd.

In a general case where R is a complex matrix we have

⟨ξ| ρ |ξ′⟩ = |C|2 e
∑

i,j

1
2 Xij ξ̄iξ̄je

∑
i,j

Yij ξ̄iξ′
je
∑

i,j
− 1

2 X ∗
ijξ

′
iξ

′
j ; (4.12)

with

X = R11 −R12QR∗
22RT

12 and 2Y = R12QR†
12 + R∗

12Q∗RT
12, (4.13)

where Q =
(
I + R22

†R22
)−1

and |C|2 =
√

det[I+R†
22R22]√

det[I+R†R]
2. If we assume that R is real

(R∗ = R), we could get a more compact form for equation (4.10).

ρ
1
(ξ, ξ′) = |C|2 e

∑
i,j

1
2 Xij ξ̄iξ̄je

∑
i,j

Yij ξ̄iξ′
je
∑

i,j
− 1

2 Xijξ′
iξ

′
j ; i, j ≤ k (4.14)

with
X = R11 −QR22QT and Y = QQT , (4.15)

where Q = R12(I−R22)−1, and |C|2 =
√

det[I+RT
22R22]√

det[I+RTR]
.

The form above is really useful, one can reconstruct the operator form of the reduced
density matrix. To derive the operator form for ρ

1
from equation (4.14), using the relations

cicj |ξ⟩ = ξiξj |ξ⟩ and ⟨ξ| c†
ic

†
j = ⟨ξ| ξ̄iξ̄j, one can replace ξ̄iξ̄j with c†

ic
†
j and ξi′ξ′

j with cicj in
the left and right exponentials equation (4.14). For the cross terms, one first diagonalizes
the matrix Y then ξ̄iξ

′
j can be rewritten with the relation

Yij ξ̄iξ′
j → ln(Y)ijc†

icj.

Therefore we have the operator form of RDM as

ρ
1

= |C|2 e
∑

i,j

1
2 Xijc†

i c
†
je
∑

i,j
ln(Y)ijc†

i cje
∑

i,j
− 1

2 X ∗
ijcicj . (4.16)

Next, we can write the (4.16) as:

ρ
1

= |C|2 e

1
2

(
c† c

)
M1

c
c†


e

1
2

(
c† c

)
M2

c
c†


e

1
2

(
c† c

)
M3

c
c†


e

1
2 tr ln(Y)

, (4.17)

where M1, M2 and M3 are given by

M1 =
0 X

0 0

 , M2 =
ln(Y) 0

0 − ln(Y)

 , M3 =
 0 0
−X ∗ 0

 . (4.18)

2 we have used the expansion (A + B)−1 = A−1 −A−1BA−1 + A−1BA−1BA−1 + · · ·
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These three matrices can be infused together into one matrix M.

Therefore, it was possible to have a compact operator form for reduced density matrix
as:

ρ
1

= |C ′|2 e
1
2

(
c† c

)
M

c
c†


, where eM = eM1 eM2 eM3 . (4.19)

Where |C ′|2 = |C|2 e
1
2 tr ln(Y). For the simple case where R matrix is real, we can write

eM = T , where T =
Y −X Y−TX ∗ X Y−T

−Y−TX ∗ Y−T

 . (4.20)

equivalently, one can write M = ln(T ). Finally, since the Fermionic operators appear qua-
dratic in the exponents above, ρ

1
can be diagonalized, using Bogoliubov transformations.

The fermionic coherent state and Berezin integration on Grassmann variables proven
to be a effective method to calculate RDM and correlations. When it is possible to write
the state of the system in the Gaussian form of (2.51), then calculations in fermion
coherent state are very useful. Although complicated at the first sight, the are many
more complicated calculations that we have been able to preform with this method, as an
example see [17] (equivalently chapter 7) or appendix D.

4.1.2 Density matrix for excited eigenstates

A typical excited eigenstate created by action creation operators on vacuum of η as (7.27).

|ψ⟩ = |k1, k2, · · · , kN⟩ =
∏
kj∈E

η†
kj
|0⟩ . (4.21)

Using equation (2.60) and the definition of the fermionic coherent state, we can write the
density matrix for the excited eigenstate |ψ⟩ as

ρψ = |Cψ|2e
1
2
∑
i,j

Rψijc
†
i c

†
j

|0⟩c c⟨0| e
− 1

2
∑
i,j

Rψij
∗
cicj

, (4.22)

and Cψ is given as (2.60). Similar to the density matrix for vacuum state we write the
matrix form of density operator in terms of Grassmann variables using (A.16).

ρψ(ξ, ξ′) = ⟨ξ| ρψ |ξ′⟩ = |Cψ|2 e
1
2R

ψ
ij ξ̄iξ̄j e− 1

2R
ψ
ij

∗
ξ′
iξ

′
j . (4.23)

The rest of the calculations in this part and the next are analogous to the subsection
4.1.1. For the next step, we divide the system into two subsystems 1 and 2 and trace out
fermions in part 2.

ρψ
1
(ξ, ξ′) =|Cψ|2e

1
2 (Rψ

11)ij ξ̄iξ̄j−
1
2 (Rψ

11
∗
)jiξ′

jξ
′
i

∫ ∏
l∈2

dξ̄ldξl e
1
2

(
ξ̄ ξ

)
Aψ

ξ̄
ξ

+ζψξ+κψ ξ̄
(4.24)
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where we have divided the Rψ into four submatrices Rψ
11, Rψ

12, Rψ
21 and Rψ

22, according to
the parts we are tracing out or not. The matrix Aψ can be thought of as a block matrix

Aψ =
Rψ

22 −I
I −Rψ

22
∗


In addition ζψ = −ξ′Rψ

12
∗ and κψ = −ξ̄Rψ

12. Now to calculate the partial trace we define
new Grassmann variables ηT =

(
ξ̄ ξ

)
and

λT =
(
κ ζ

)
=
(
ξ̄ ξ′

)−Rψ
12 0

0 −Rψ
12

∗

 . (4.25)

We denote those parts that are at the back of integral by Fψ({ξ′
i}, {ξ̄j}). Now, for the

reduced density matrix we have:

ρψ1(ξ, ξ′) = Fψ({ξ′
i}, {ξ̄j})

∫
Dη e

1
2η

TAψη+λTη = Fψ({ξ′
i}, {ξ̄j}) Pf[Aψ]e

1
2λ

TAψ−1
λ. (4.26)

We used the equation (A.7) to solve the integral. Putting it all together, we get for the
reduced density matrix

ρψ1(ξ, ξ′) =

√
det

[
I + Rψ

22
†Rψ

22

]
√

det
[
I + Rψ†Rψ

] e
1
2

(
ξ̄ ξ′

)
Ωψ

 ξ̄
ξ′


(4.27)

where Ωψ matrix is given by

Ωψ =
Rψ

11 0
0 −Rψ

11
∗

+
Rψ

12 0
0 Rψ

12
∗

(Aψ
)−1

Rψ
12
T 0

0 Rψ
12

†

 (4.28)

One can verify that the trρψ =

√
det[I+Rψ

22
†
Rψ

22]√
det[I+Rψ†Rψ ]

√
det[Ωψ] = 1. One can reconstruct the

operator form of the reduced density matrix for an excited state by going through the
same process as previous subsection. Therefore, we get

ρψ
1

= Cψ e
∑

i,j

1
2 Xψ

ijc
†
i c

†
je
∑

i,j
ln(Yψ)ijc†

i cje
∑

i,j
− 1

2 Xψ
ij

∗
cicj . (4.29)

with
Xψ = Rψ

11 −Rψ
12QψRψ

22
∗Rψ

12
T (4.30a)

2Yψ = Rψ
12QψRψ

12
† + Rψ

12
∗Qψ∗Rψ

12
T
, (4.30b)

Qψ =
(
I + Rψ

22
†Rψ

22

)−1
and Cψ =

√
det

[
I + Rψ

22
†Rψ

22

]
√

det
[
I + Rψ†Rψ

] (4.30c)
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4.2 Majorana representation of reduced density matrix
In this section, we write the reduced density matrix of a state which follows Wick’s theorem.
Then because of Gaudin’s theorem, most of the states can be written in a Gaussian form
so one can make the following ansatz for the reduced density matrix of the domain D:

ρD = 1
ZD

eO, (4.31)

where we assumed O is in the quadratic Majorana operator form and ZD = ∏
k 2 cosh dk

2

is the normalization constant. By definition, if ρD is the reduced density matrix the
correlation functions inside the domain should match those that one calculates using the
state of the full system. First, we write the reduced density matrix as follows:

ρD =
∏
k

e− dk
2 + 2 sinh dk

2 δ
†
kδk

2 cosh dk
2

. (4.32)

Then it is easy to show that

⟨δ†
kδk′⟩ = δkk′

1 + e− dk
2

, ⟨δkδk′⟩ = 0. (4.33)

Using the above we can calculate the Γ correlation function which has the following form:

Γ = tanh W
2 . (4.34)

At this stage we can also write the equation (4.32) for the eigenvalues of the Γ matrix, i.e.
ν’s as follows:

ρD =
∏
k

(1− νk
2 + νkδ

†
kδk

)
=
∏
k

(1 + νk
2 δ†

kδk + 1− νk
2 δkδ

†
k

)
(4.35)

Finally the reduced density matrix can be also written as:

ρD = [det I − Γ
2 ] 1

2 e

1
2 (γ γ̄). ln I+Γ

I−Γ .

γ
γ̄


, (4.36)

where we have

det[I − Γ
2 ] = det K. det[K̄−G.K−1.GT

2 ], (4.37)

One can also come back and write the argument of the exponential in the original fermion
representation as follows:

ρD = [det I − Γ
2 ] 1

2 e

1
2 (c† c)M

 c
c†

,
, (4.38)
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where

M =
 P Q
−Q∗ −P∗

 = 1√
2

I iI

I −iI

 .W.
1√
2

 I I

−iI iI

 , (4.39)

and I have renamed the following

W =
W11 W12

W21 W22

 = ln I + Γ
I − Γ

. (4.40)

Since we have:

1√
2

I iI

I −iI

 . 1√
2

 I I

−iI iI

 =
I 0

0 I

 . (4.41)

We can take these matrices inside the ln and then define

Γ̃ = 1√
2

I iI

I −iI

 .Γ. 1√
2

 I I

−iI iI

 . (4.42)

Then finally we will have:

ρD = [det I− Γ
2 ] 1

2 e

1
2 (c† c) ln I+Γ

I−Γ

 c
c†

,
, (4.43)

When all the couplings are real like when we are dealing with the eigenstate of a
Hamiltonian with real couplings the reduced density matrix can be written as:

ρD = det[12(I−G)]eH, (4.44)

H = 1
2(c† c)

 M N
−N −M

 c
c†

+ 1
2Tr ln (Fs), (4.45)

where H is the entanglement Hamiltonian andM N
-N -M

 = ln
Fs − FaF−1

s Fa FaF−1
s

−F−1
s Fa F−1

s

 , (4.46)

where Fa = F−FT
2 and Fs = F+FT

2 and as before F = I+G
I−G . When the G matrix is real and

symmetric one can write everything with respect to the C matrix as follows:

ρD = det[I−C]ec
†
i (ln F)ijcj , (4.47)

where F = C
I−C .
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4.3 Density matrix for a general state
To study the entanglement content of a general defined in subsection 2.3.5, first one should
create the density matrix for such a state. The density matrix of state |φ⟩ (2.71) has the
form

ρφ =
∑
r,s

ara
∗
s |Er⟩ ⟨Es| =

∑
r

|ar|2 |Er⟩ ⟨Er|+
∑
r ̸=s

ara
∗
s |Er⟩ ⟨Es|

=
∑
r

|ar|2ρr +
∑
r ̸=s

ara
∗
sϱ
rs

(4.48)

The first term is the sum of the density matrix of excited eigenstates and the second term
is the sum of cross density terms ϱrs. We already studied the excited density matrices
in subsection 4.1.2, in this part we want to focus on the cross terms ϱrs. We can use the
same method Introduced in subsections 4.1.2 and 4.1.1 to write the (reduced) cross density
matrix for a general state.

ϱrs = Crse
1
2R

r
ijc

†
i c

†
j |0⟩c c⟨0| e

− 1
2R

s
ij

∗cicj (4.49)

where Er and Es are two unequal sets of excited modes. Essentially, these two sets do not
have the same length. However, we have assumed that the state |φ⟩ is an eigenstate of
parity operator. Also

Crs = 1

(det[I + Rr†Rr])
1
4 (det[I + Rs†Rs])

1
4
. (4.50)

Now we write the matrix form of this cross density operator in terms of Grassmann
variables using (A.16).

ϱrs(ξ, ξ′) = ⟨ξ| ϱrs |ξ′⟩ = |Crs|2 e
1
2R

r
ij ξ̄iξ̄j e− 1

2R
s
ij

∗ξ′
iξ

′
j . (4.51)

Similar to the calculations of subsections 4.1.1 and 4.1.2. For the next step, we divide the
system into two subsystems 1 and 2 and trace out fermions in part 2.

ϱrs
1
(ξ, ξ′) =Crse

1
2 (Rr

11)ij ξ̄iξ̄j−
1
2 (Rs

11
∗)jiξ′

jξ
′
i

∫ ∏
l∈2

dξ̄ldξl e

1
2

(
ξ̄ ξ

)
Ars

ξ̄
ξ

+ζsξ+κr ξ̄

.
(4.52)

where matrix Ars is a block matrix made from submatrices of Rr and Rs.

Ars =
Rr

22 −I
I −Rs

22
∗


In addition ζs = −ξ′Rs

12
∗ and κr = −ξ̄Rr

12. We have divided our Rr and Rs matrices into
four submatrices according to the parts we are tracing out or not. If we denote those parts
that are at the back of integral by F rs({ξ′

i}, {ξ̄j}). Now, to calculate the partial trace we
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define new Grassmann variables ηT =
(
ξ̄ ξ

)
and λT =

(
κ ζ

)
. Using equation (A.7),

for reduced density matrix we have:

ϱrs
1

(ξ, ξ′) = F rs({ξ′
i}, {ξ̄j})

∫
Dη e

1
2η

TArsη+λTη = F rs({ξ′
i}, {ξ̄j}) Pf[Ars]e

1
2λ

T(Ars)−1λ.

(4.53)
Putting it all together, we get for the reduced cross density matrix

ϱrs1 (ξ, ξ′) =

√
det
[

I+Rs
22

†Rr
22

]
4

√
det
[

I+Rr†Rr
]

4

√
det
[

I+Rs†Rs
]e

1
2

(
ξ̄ ξ′

)
Ωrs

 ξ̄
ξ′


(4.54)

where Ωrs matrix is given by

Ωrs =
Rr

11 0
0 −Rs

11
∗

+
Rr

12 0
0 Rs

12
∗

(Ars
)−1

Rr
12
T 0

0 Rs
12

†

 (4.55)

One can verify that the trϱrs = 0. To reconstruct the operator form of the reduced
cross density matrix for an excited state we go through the same process as in previous
subsections. Therefore, we get

ϱrs
1

= Crs e
∑

i,j

1
2 X rs

ij c
†
i c

†
je
∑

i,j
ln(Yrs)ijc†

i cje
∑

i,j

1
2 Zrs

ij cicj . (4.56)

with
X rs = Ωrs

11, Zrs = Ωrs
22 and 2Yrs = Ωrs

12 −Ωrs
21
T (4.57a)

Crs =

√
det

[
I + Rs

22
†Rr

22

]
4

√
det

[
I + Rr†Rr

]
4

√
det

[
I + Rs†Rs

] (4.57b)
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Entanglement
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Entanglement is a type of correlation between subsystems, which cannot be explained by
classical physics. It is the central concept of quantum information theory and corresponds to
the possibility of transmitting quantum information, that cannot be simulated by classical
channels. For instance quantum teleportation [59] or quantum cryptography [60]. The
problem of measuring and quantifying quantum correlations, or entanglement, in manybody
quantum systems is a field of research on its own, that benefits both from condensed
matter and quantum information developments. Here, I only discuss the von Neumann
entropy and Rényi entanglement entropy as a measure for entanglement. Nevertheless,
there are many other measures and a detailed review of them can be found in references
[12, 61, 62, 63, 64]. In quantum many-body physics, entanglement entropy can be used to
describe the properties (such as universality class or central charge) of the quantum phase
transition in the model [65, 66].

First to answer the question “Is a state entangled or not?", we need a mathematical
definition for entanglement versus separability. This is very simple for pure states: a pure
state |ψ⟩ is called separable if and only if it can be written as |ψ⟩ = |φ1⟩⊗|φ2⟩ |⟩⊗· · ·⊗|φN⟩,
otherwise it is entangled. In other words, an entangled state is defined to be one whose
quantum state cannot be factored as a product of states of its particles; Entanglement can
happen when we have two or more particles, for example for a quantum system with two
spins we can have:

Not Entangled:


|ψ1⟩ = |↑⟩ ⊗ |↑⟩

|ψ2⟩ = |↓⟩⊗(|↑⟩±|↓⟩)√
2

Entangled:


|ψ3⟩ = 1√

2(|↑↑⟩ ± |↓↓⟩)

|ψ4⟩ = 1√
2(|↑↓⟩ ± |↓↑⟩)

(5.1)
Note that throughout most of this thesis, we talk about the bipartite entanglement of a
pure state.

I only consider the bipartition entanglement in manybody system or equivalently,
dividing the system into two distinct regions A and B. If the total system is in a pure state
then a measure of the entanglement between A and B is associated with the reduced density
matrix of one of the two blocks, S(A or B). In studying the properties of entanglement
entropy it is worth mentioning its dependence on the properties of the subsystems A
and/or B. In a 1-dimensional system, the entanglement entropy of an eigenstate of the
system (ground state or excited state) behaves as:

▶ Logarithmic law, which the entanglement grows logarithmically with the size of
subsystem, S(l) ≈ log(l).

▶ Area law, which the value of entanglement grows with the boundary points of the
subsystem, S(l) ≈ #boundary points
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▶ Volume law, which the entanglement grows linearly with the size of subsystem,
S(l) ≈ αl

In the rest, I explain better the formulation of measures of the entanglement which
has been used here. Also, we present formulas that one can calculate the entanglement
entropy for the eigenstates of free fermions in terms of correlation matrices of the state.
These methods are efficient and computationally easy, which is why they are vastly used.
Some simple cases have been used as examples for better understanding of concepts.

5.1 Rényi Entanglement Entropy
The Rényi entanglement entropy is defined as follows:

Sα = 1
1− α ln trρα. (5.2)

where ρ stands for the reduced density matrix of the subsystem. For a general quantum
manybody state, the difficulty of calculation of the entanglement grows exponentially with
the size of the subsystem. One can find a basis in which RDM is diagonal, however, it
would still be computationally disadvantageous. However, it is possible to have a special
structure for the RDM to simplify the entanglement calculation. For instance, having a
Gaussian form for RDM simplifies the calculation, or being able to write the RDM in
terms of correlation matrices [65, 67, 68, 69].

The first simplification can be the trρα in(5.2) which can be calculated easily by using
the trace formula

tre
1
2

(
c† c†

)
M

 c
c†


= det[I + eM] 1

2 . (5.3)

Using the result of chapter 4 and writing the RDM in terms of correlation matrix Γ, then
we have:

trρα =
(

det[
(
I − Γ

2

)α
+
(
I + Γ

2

)α
]
) 1

2
(5.4)

Finally we have:

Sα = 1
1− α

∑
ν

ln[(1− ν
2 )α + (1 + ν

2 )α], (5.5)

where the sum is over all the positive eigenvalues of the purely imaginary skew-symmetric
matrix Γ.

The von Neumann entanglement entropy (SvN ), commonly called entanglement entropy,
is given by the limit α→ 1+ of Rényi EE,

SvN(A) = lim
α→1+

Sα. (5.6)
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To find the expression for von Neumann entropy, we use the fact that Sα is differentiable
in the region α > 1, and hence the von Neumann entanglement entropy can be obtained
as [39]:

SvN(A) = lim
α→1+

∂

∂α
Sα = −tr

A
[ρ
A

log ρ
A
]. (5.7)

There are many properties common to both Rényi entropy and the entanglement entropy,
for more details see [70, 71]. The von Neumann entanglement entropy can also be computed
with the following relation:

SvN = −
∑
ν

(1− ν
2 ) ln[1− ν2 ] + (1 + ν

2 ) ln[1 + ν

2 ]. (5.8)

When all the couplings in the Hamiltonian are real, using (3.6) and (3.7), we can again
write everything with respect to the matrix G as follows:

Sα = 1
1− αtr ln

(
I −
√

GTG
2

)α
+
(
I +
√

GTG
2

)α
]
)

(5.9)

Finally, when the matrix G is symmetric we can write

Sα = 1
1− αtr ln[

(
I −C

)α
+ Cα]. (5.10)

The above formulas can be used to calculate bipartite entanglement entropy of the ground
state or any excited eigenstates of the quadratic Hamiltonians.



Parte II

Publication



71

6

Bipartite entanglement entropy of the excited states of the free
fermions
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Bipartite entanglement entropy of quantum many-body systems exhibits a wide variety
of interesting properties with a myriad of applications in high-energy and condensed
matter physics. Some of the earliest studies were the calculation of the entanglement
entropy of the ground state (GS) of the coupled harmonic oscillators and the establishment
of the area-law in the same models in [72, 73, 74]. In Ref [75], the same quantity was
calculated for the ground state of the conformal field theories (CFT) and the famous
logarithmic-law with the central charge as the coefficient of the logarithm was derived.
These studies were followed with many other interesting results which paved the way to
better understanding of the bipartite entanglement entropy of the ground state of the
free fermions [13, 14, 76], coupled harmonic oscillators [77, 78, 79], quantum spin chains
[65, 67, 80], CFTs [81] and topological systems[82, 83]. To review various applications of
the bipartite entanglement entropy of the ground state in many-body quantum systems
and quantum field theories see [12, 84, 85, 69, 86, 87, 88, 89] and [8, 90, 91] respectively.
Although the investigation of the bipartite entanglement entropy of the ground state
of quantum systems has a long history the same is not true for the excited states. The
bipartite entanglement entropy of the excited states in the quantum spin chains was first
studied with exact methods in [92], see also [93]. Then the entanglement entropy of the
low-lying excited states in CFTs was calculated in [94, 95]. For recent numerical calculations
regarding the entanglement entropy of the excited states in the quantum spin chains and
free fermions see [96, 97, 98, 99, 100, 101, 102, 47, 103, 104, 105, 106, 107, 108, 109, 110].
For further results on the entanglement entropy of the low-lying excited states in CFTs see
[111, 112, 113, 114, 115, 116, 117]. Recently, there have also been analytical calculations
regarding the quantum entanglement content of the quasi-particle excitations in massive
field theories and integrable chains[118, 119].

It is widely believed that one expects universality and quantum field theory for the
ground state (and low-lying excited states) of the quantum many-body systems at and
around quantum phase transition point. This has been one of the reasons that most
of the studies were focused on the bipartite entanglement entropy of the ground states.
Nevertheless, some typical behaviors (volume-law) have been already observed for the
excited states too, see Refs [97, 98, 99]. Some further analytical and numerical results were
also obtained for the average of the entanglement entropy in [102, 106, 107] which support
some sort of universality. In this chapter, we would like to study the entanglement content
of the excited states of the generic translational invariant one dimensional free fermions.
The quantity of interest is the von Neumann entropy which is defined for a system by
partitioning it to A and Ā, where A has l contiguous sites, and Ā has L− l sites where we
will occasionally send L to infinity. The von-Neumann entropy is

SvN = −trρl ln ρl, (6.1)

where ρl is the reduced density matrix of the part A. Although here the focus is on the von
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Neumann entropy, one can almost trivially extend these results to Rényi entropies. For
the ground state of the gapped systems SvN saturates with the size of the subsystem[80],
this is called an area-law. For the short-range critical one dimensional systems we have
logarithmic-law [75, 81], i.e.

SvN = c

3 ln
[
L

π
sin[πl

L
]
]

+ const, (6.2)

where c is the central charge of the underlying CFT. When the SvN changes linearly with
l as happens typically for the excited states, we call it a volume-law. Most notably for one
dimensional free fermions, we prove the followings: (1) All the Hamiltonians (independent
of having a gap or not) have a lot of non-low lying excited states that can be described
by CFT and have an arbitrary integer central charge. For free fermions sometimes we
can also have excited states with half-integer central charges. (2) The degenerate excited
states depending on the chosen subspace basis can follow volume-law, logarithmic-law and
sometimes even an area-law. (3) For free fermions (and corresponding spin chains) there
is a set of Hamiltonians that the ground state of every generic free fermion is one of the
eigenstates of these Hamiltonians. In other words, one can find the ground state of a generic
Hamiltonian as one of the eigenstates of these Hamiltonians. Excited states with integer
central charges have been realized before in the context of the XX chain in [92], see also [93].
However, the results of this part can be extend to the generic translational invariant free
fermions and coupled harmonic oscillators [16]. In addition, our simple method not only
explains the existence of these kinds of excited states it also gives a natural way to make
some statements regarding the average entanglement entropy studied in [102, 106, 107].
In particular, combining the result of [102] with a duality relation introduced in [120]
we discover a method to calculate the average bipartite entanglement entropy over all
the eigenstates of a generic free fermion Hamiltonian using a single eigenstate of the
XX-chain with just a simple hopping coupling. Using this mapping instead of studying
an exponential number of states one can just work with a single state which makes the
previously considered unmeasurable quantity quite accessible for the experimental study.

This chapter is organized as follows: In section II, we first define the Hamiltonian of
generic translational invariant free fermions. Then for later arguments, we present some
integrals of motion of these Hamiltonians. To clarify the argument, we then consider the
XX chain and prove some statements regarding the entanglement content of this model.
After that, we extend our arguments to the general free fermions. Then we comment on the
average entanglement over the excited states of free fermions, the role of the degeneracies,
and how to measure specific averaging introduced in [102]. I encourage the interested
reader to look at [16], where we have studied the bipartite entanglement entropy of the
excited states for generic coupled harmonic oscillators as well.
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6.1 Generic free fermions
In this section we discuss some generic properties of the entanglement entropy of the
excited states of the one dimensional free fermions. The Hamiltonian of a translational
invariant (periodic) free fermions with time-reversal symmetry can be written as

H =
R∑

r=−R

∑
j∈Λ

arc
†
jcj+r + br

2 (c†
jc

†
j+r − cjcj+r) + const, (6.3)

with Λ = {1, 2, · · · , L}. Using the Majorana operators γj = cj + c†
j and γ̄j = i(c†

j − cj) one
can write H = i

2
∑R
r=−R

∑
j∈Λ trγ̄jγj+r, where tr = −(ar + br) and t−r = −(ar − br). It is

very useful to put the coupling constants as the coefficients of the following holomorphic
function f(z) = ∑

r trz
r, see[121]: Then the Hamiltonian can be diagonalized by going to

the Fourier space and then Bogoliubov transformation as follows:

H =
∑
k

|f(k)|η†
kηk + const, (6.4)

where ηk = 1
2(1 + f(k)

|f(k)|)c
†
k + 1

2(1 − f(k)
|f(k)|)c−k with f(k) := f(eik), where k := 2π

L
j with

j = 1, 2, ..., L. When the system is critical it is well-known that the number of zeros of
the complex function f(k) on the unit circle is twice the central charge of the underlying
CFT. This will be our guiding principle in most of the upcoming discussions. The local
mutually commuting integrals of motions can be written as follows:

I+
n =

∑
k

cos(nk)|f(k)|η†
kηk, n = 0, 1, ..., L− 1

2 , (6.5)

I−
m =

∑
k

sin(mk)η†
kηk, m = 1, ..., L− 1

2 . (6.6)

The interesting and crucial fact is that the second set of integrals of motions in the real
space can be written as

I−
m = i

2
∑
j∈Λ

(c†
jcj+m − c

†
j+mcj), (6.7)

which is independent of the parameters of the Hamiltonian. The above considerations
are also correct if one uses Jordan-Wigner transformation and find the quantum spin
chain equivalent of the above Hamiltonians and integrals of motion, see Appendix A. For
example, all the periodic quantum spin chains that can be mapped to the free fermions
commute with the following integrals of motion

I−
m(XY ) =∑
j∈Λ

[
σxj σ

z
j+1...σ

z
j+m−1σ

y
j+m − σ

y
jσ

z
j+1...σ

z
j+m−1σ

x
j+m

]
, (6.8)
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which is independent of the parameters of the Hamiltonian.

To introduce the main idea we first start with the XX-chain with the following
Hamiltonian

HXX = −
∑
j∈Λ

(c†
jcj+1 + c†

j+1cj). (6.9)

We are interested in the structure of particular excited states in the spectrum of the above
Hamiltonian. The local commuting integrals of motions after a bit of rearrangement are

I+
n (XX) = −2

∑
k

cos(nk)η†
kηk, n = 0, 1, ..., L− 1

2 , (6.10)

I−
m(XX) = 2

∑
k

sin(mk)η†
kηk, m = 1, ..., L− 1

2 . (6.11)

In the real space I−
n (XX) is (6.7) and I+

n (XX) has the following form:

I+
n (XX) = −

∑
j∈Λ

(c†
jcj+n + c†

j+ncj). (6.12)

The Hamiltonian and the integrals of motion share a common eigenbasis. That means, for
example, the ground state of I+

n (XX) appears as the excited state of HXX . We use this
basic fact to prove our statements. Following [121], and references therein, it is easy to see
that for I+

n (XX) we have f(z) = −(zn + z−n) which have 2n zeros on the unit circle and
so its ground state is critical and in the limit of large L it can be described by a CFT with
the central charge c = n. This can be also checked by calculating the entanglement entropy
analytically (using the FH theorem [92]) and numerically (using the Peschel method [14],
see appendix B) by hiring the correlation matrix Cjk = ⟨c†

jck⟩. For the ground state of
infinite size I+

n (XX) we have 1

Cjk = 1
π(j − k)

n∑
m=1

(−1)m+n sin
(
π(2m− 1)(j − k)

2n

)
, (6.13)

and Cjj = 1
2 . The above C matrix can be also found as the correlation matrix of one of

the excited states with energy zero of the Hamiltonian (6.9). The correlation matrix of the
ground state of the infinite size I−

m(XX) can be also calculated easily and it is 1

Cjk = −i
2π(j − k)

[m/2]∑
n=[−m/2]+1

(
e

2inπ
m

(j−k) − ei
(2n−1)π

m
(j−k)

)
, (6.14)

and Cjj = 1
2 . The central charge of the underlying CFT is c = m. In the Figure 2 we

show the logarithmic behavior (and the corresponding coefficient) of the entanglement
entropy of the ground state of I−

m(XX) for m = 1, 2, 32. Based on the above arguments
1 We note that this sum can be simplified formally but for numerical calculations the above form is more

useful
2 We note that although the two correlation matrices (6.13) and (6.14) are different they have the same

set of eigenvalues
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Figure 2 – Top: bipartite von Neumann entropy with respect to the logarithm of the size of the subsystem
for the ground state of I−

m(XX) with m = 1, 2, 3. Bottom: bipartite von Neumann entropy
with respect to the size of the subsystem for the ground state of I−

m(XX) with m = L
8 , L

4 , L
2 ,

and L = 200

one can conclude that there are infinite conformal excited states with logarithmic scaling
of the entanglement in the spectrum of HXX with the central charge c = m, where m can
be any integer number. In the above, we looked to the finite m when L goes to infinity.
However, it is clear that if m is comparable to L, then one would expect for large L
probably a volume-law instead of a logarithmic behavior. This is indeed correct as it
was shown in the Ref [93] for I+

n (XX). The entanglement entropy of these excited states
follows a volume-law with a subleading term which is logarithmic. In the Figure 2 we
show the linear behavior of the entanglement entropy of the ground state of I−

m(XX) for
m = L

8 ,
L
4 ,

L
2

2. In the L→∞ there are an infinite number of this kind of energy excited
states too. It is just enough to take n = αL where 0 < α < 1. Note that in these cases the
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Figure 3 – Bipartite von Neumann entropy with respect to the logarithm of the size of the subsystem
for the ground state of I+

m with m = 1, 2, 3 produced out of the critical Ising parameters.

corresponding Hamiltonians I+
n (XX) are not local Hamiltonians. We note that there are

also excited states that follow an area-law. For example, the states |11...1⟩ and |00...0⟩
have energy zero and trivially follow an area-law. In the case of I−

m as we will discuss soon
this observation is more pronounced.

For generic free fermions, the arguments are similar: the Hamiltonian H = I+
0 commutes

with I−
m which means that the ground state of these integrals of motion should appear in

the excited states of H. This means that even if the Hamiltonian is gapped (such as the
gapped XY-chain) with the area-law property for the GS, there are still infinite excited
states in the spectrum that are conformal invariant with the central charge c = m and
follow the logarithmic behavior. Of course, there are also an infinite number of excited
states that follow the volume-law too. Interestingly, one can also argue that although
the Hamiltonians I−

m have critical ground states, they also have an infinite number of
excited states that follow an area-law. This simply because independent of the parameters
in H = I+

0 the Hamiltonians I−
m commute with it. Clearly, we have infinite possibilities

to produce Hamiltonians I+
n with gapped ground states that follow an area-law. If one

starts with a critical Hamiltonian H with half-integer central charge (for example an Ising
critical chain) then it is easy to see that the Hamiltonians I+

m will have ground states
with all the possible half integer numbers, i.e. c = n+ 1

2 . That means, for example, the
Hamiltonian of the critical Ising chain has excited states with all the possible integer
and half-integer numbers. In the Figure 3 we show the logarithmic behavior (and the
corresponding coefficients) of the entanglement entropy of the ground state of the I+

n ,
associated to the critical transverse field Ising chain, for n = 1, 2, 3.
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Figure 4 – Various averagings of the entanglement entropy of the eigenstates of free fermions (XX-chain)
in a periodic chain with L = 28 sites. Results are plotted as a function of the linear subsystem
size l. In the inset s = SvN (L/2)

L
2 ln 2

is plotted as a function of the system size for L ≤ 30. As one

can see, VHBR (blue square) and WA (yellow diamond) averages converge to the number
0.5378 reported in [102]. However, the MAX (red triangle) and MIN (green triangle) do not
converge to the same value.

6.1.1 VHBR averaging and a proposal for measurement

In the case of the periodic free fermions, we expect a lot of degeneracy in the excited
states. As it was discussed in more detail in the Appendix C the number of independent
energies over the size of the Hilbert space decays exponentially with respect to the size
of the system which indicates an enormous number of degeneracies. The way that one
defines the excited state might be significant in getting area, logarithmic or volume law
for the entanglement entropy. Recently in [102, 106] it was observed that if one takes all
the eigenstates produced by the creation operators η†

k as:

|ψ⟩ = (
∏
kn∈E

η†
kn

) |0⟩ , (6.15)

and calculates the bipartite entanglement entropy of a connected region the result is
universal and independent of the Hamiltonian. Here, we would like to comment that the
result can be different if one takes into account the degeneracies and different averaging
based on the degeneracies.

Averaging Types: Because of the huge degeneracy in the spectrum of periodic free
fermions it is clear that one has a lot of freedom in choosing an eigenstate with different
amount of entanglement. The more degeneracy means that there is more freedom in picking
a state with very large or very small entanglement content. The sum of two maximmaly
entangled states can be in principle a product state with zero entanglement. The reverse
is also true, the sum of two product states can be maximmaly entangled. When there is a
degeneracy in the spectrum it is not feasible to look for a state with max/min entanglement.
After creating all the eigenstates, we calculated the entanglement entropy using the Peschel
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formula [14] which is valid also for the excited eigenstates. Note that this is not the case
for an arbitrary state due to the lack of Wick’s theorem. After getting the entanglement
entropy for all the eigenstates, we averaged these entanglements for LA from 1 to L− 1 in
four different ways.

• Averaging over all the entanglement entropies without counting for degeneracies
(VHBR mean), as in [102, 106], and averages all the eigenstates without looking at
their energies.

• identify and group the degenerate states and average over the entanglement entropy
inside each degenerate group, then we average over all the averaged entanglement
entropies (WA mean).

• Identifying the degenerate states and group the states with the same energies and
group the states with the same energies. Then, finding the minimum value of the
entropy in any set of the degenerate eigenstates, and then calculating the average of
this minimum entropies (MIN mean).

• Similar to the lase case, finding the maximum value of entropy in any set of degenerate
eigenstates, and then calculating the average of this maximum entropies (MAX mean).

In Figure 4, we did the averaging for the XX chain in four different ways above. In Figure
4, one can see that the VHBR and the WA averages converge to the same value but the
MIN and the MAX averages converge to the different values. This clearly shows that the
averaging done in the [102, 106] is special.

Remarkably, the averaging and universality proposed in these papers have a good
chance to be measured experimentally. This is because of a recent duality proposed in [120].
In this work, it was shown that there is a one to one correspondence between bipartite
entanglement entropy of the excited states (produced by the η†

k) of the XX-chain and the
entanglement entropy of one eigenstate (the ground state for the case of l = L

2 ) but with
different partition. There are 2L possible multi interval bipartitions for the eigenstate of
the XX-chain which is identically equal to the one interval bipartite entanglement entropy
of 2L excited states. Using this method it is possible to regenerate the universal figure
proposed in [102], see Figure 4. Consider the XX-chain Hamiltonian with the eigenstates
|K⟩, where K = {k1, k2, ..., kM} ⊂ {0, ..., L− 1} are the excited modes. Then consider a
subset of sites A = {x1, x2, ..., xM} ⊂ {0, ..., L− 1}. Based on [120] if we consider S(A;ψ)
as the entanglement of the sites A with respect to the rest for the pure state |ψ⟩, then we
have

S(A;K) = S(K;A), (6.16)

for any entropy functional. We now discuss a few examples of the above equality. For the
half-filling to get the ground state, we need to fill all the negative modes which make
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half of the modes that are adjacent in the set K. This means the entanglement entropy
of the ground state for the set A is equal to the entanglement entropy of the half of the
system for an eigenstate with the modes A excited. Of course, if one averages over the
entanglement entropy of all the possible sets A one recover the average entanglement
entropy VHBR for half of the system. Now consider we are interested in the averaging
of VHBR for one site, in another word, A = {x1}. This can be calculated by finding the
average of the entanglement entropy of all the multi interval bipartitions of the state
K = {k1} with just one mode excited. The rest of the VHBR graph can be produced
similarly by calculating the average of the entanglement entropy of all the multi interval
bipartitions of one eigenstate.

The above remarkable observation means that one can calculate the average entan-
glement entropy by just calculating the entanglement entropy of all the multi interval
bipartitions for a single eigenstate. The entanglement entropy of different partitions in
the spin chains has been already studied theoretically and experimentally in [122, 123].
The method proposed and implemented in these works gives access to the entanglement
entropy of all the 2L different partitions for a particular state. Extension of this technique
to free fermions can make it an outstanding method to measure the universal average
entanglement entropy proposed in [102, 106]. It is important to mention that because of
the non-local nature of the JW transformation the average over the entanglement of all
the possible bipartitions of the GS in the free fermions and the equivalent spin chains are
not equal [124].

Conclusions
We showed that independent of the gap a generic translational invariant free-fermion
Hamiltonian in one dimension has infinite eigenstates that follow logarithmic-law of
entanglement and can be described by CFT. We argued that because of the huge degeneracy,
even a Hamiltonian with a critical GS can in principle have a lot of excited states with
an area-law behavior. Similar conclusions are valid also for the excited states of the
corresponding spin chains. We also proposed a method to measure the recently proposed
universal average entanglement entropy over all the exponential number of eigenstates of
a generic free fermion Hamiltonian by averaging over multi interval bipartite EE of just a
single eigenstate of the XX-chain. See [16] for the the same discussion of generic HOs in
one dimension. It will be interesting to explore in more detail the averaging over the multi
interval bipartite EE of the eigenstates of the generic free fermions and also spin chains.
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7

Entanglement entropy in quantum spin chains with broken parity
number symmetry



Capítulo 7. Entanglement entropy in quantum spin chains with broken parity number symmetry 82

There exist many quantum spin chains which can be transformed into quadratic fermion
models using Jordan Wigner (JW) transformation, the spin-1/2 XY chain is just one
example of such spin chains. These fermionic models have been studied thoroughly in
the past, and it was shown that they are exactly solvable [24]. In the context of the
non-interacting fermions, the calculation of some quantities such as reduced density matrix
(RDM) [13, 15], entanglement [65, 67, 68, 69] and formation probabilities [125, 126, 127]
can be written in terms of correlation functions, which reduces the adversity of such
calculations. The connection to the free fermion models also makes it possible to study
the Rényi entanglement entropy for excited eigenstates of free fermions and related spin
chains [92, 94, 95, 93, 102, 107, 16, 128, 129].

Most of the above mentioned studies were based on the bulk properties, however,
there are also studies regarding the entanglement entropy in systems with boundaries
and impurities. In the presence of boundaries analytical and numerical calculations of
the entanglement entropy can be more challenging due to the lack of the translational
symmetry. The entanglement entropy of a few quantum chains in the presence of the
boundaries has been studied with analytical and numerical techniques, see for instance
[130, 131, 132, 133, 134, 84, 111, 135]. An interesting consequence of presence of the
boundary is the breach of connection between spin chains and quadratic fermion models,
specially in subsystem entanglement [124, 135]. An spin chain (containing L spins) with
arbitrary boundary magnetic fields can be modeled as: bulk Hamiltonian plus boundary
terms,

HSpinChain = Hbulk +Hboundary . (7.1)

The Hboundary resembles the effect of boundary on far end sites or spins. For instance,
a general boundary condition produced by external magnetic fields reads as Hboundary=
B⃗1 .S⃗1 + B⃗

L
.S⃗

L
, where S⃗1, S⃗L are spin operators at the beginning and end of the chain, and

B⃗L, B⃗1 denote the preferred direction of alignment of boundary magnetic fields. While
such a non uniform boundary condition can be physically valid for a spin chain, the
fermionization of such a spin chain would end up in a non-physical fermion model. A
fermion model which violates the parity symmetry will break the locality. Locality forbids
a Hamiltonian that does not commute with fermionic parity symmetry [136, 137, 138].
However, as far as one is concerned with spin model this violation is not a problem.

Some spin models, such as the XXZ chain, with arbitrary direction of boundary
magnetic fields (ADBMF) have been already exactly solved by the thermodynamic Bethe
ansatz method [139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151]. However,
calculation of some quantities such as the entanglement entropy seems out of reach at
this moment. In this work we take advantage of a method proposed in [152, 153], see
also [154, 155, 156] to transform a generic quantum spin chain; with Hbulk that can be
mapped to the Hamiltonian of free fermions; with non uniform magnetic field at the
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boundaries into a quadratic fermion Hamiltonian. It is done by adding auxiliary spins
to the system with coupling to the boundary spins and enlarging the Hilbert space of
the original model. Afterward, we would be able to fermionize the spin system via JW
transformation and make use of the general formulation of quadratic fermion Hamiltonians
to study the quantities of interest. The quadratic (or bi-linear) form of Hamiltonian in
fermionic operators is crucial since the Hamiltonian can be diagonalized exactly and
the correlation functions can be reduced to the expectation values of pairs of fermionic
operators (Wick theorem [50]). To retrieve the eigenstates of original model, we can use
particular projection of new model’s eigenstates. In [152], the same method was used
to study a fermionic model with linear operator terms, which breaks the parity. In this
case, the author couples the auxiliary fermions to every other in the system, and gets a
quadratic Hamiltonian.

Starting from the enlarged bi-linear fermionic representation of the Hamiltonian, similar
to [152, 154, 156], the degeneracy of (at least) two is expected. This degeneracy results in
degenerate ground states with opposing parities, which allows us to find a superposition
for the ground state with broken parity number. However, for such an eigenstate, we would
not be able to use conventional methods to find the RDM, entanglement and so forth. We
study the aspects of this state and how it is related to the ground states of the original
boundary magnetic field (BMF) Hamiltonian. Also, the comparison of the correlation of
this state with those of the parity symmetry states is investigated. Such an investigation
enables us to make an ansatz for RDM based on the correlation matrices. This ansatz
was first proposed in [156] for a special type of parity broken state and special type of
subsystem. Here, we generalize the previous results and provide a proof for consistency of
this ansatz. In addition, the RDM has been calculated in different methods. We also show
that all of these results can be extended to arbitrary enigenstates of the Hamiltonian (7.1).

Having the RDM in terms of correlation matrices facilitates the calculation of entan-
glement. For the parity broken state the behavior of entanglement entropy with respect to
parity number is intriguing. An interesting observation is that based on the way one breaks
the parity of the ground state entanglement can be minimized or unaffected. Besides, we
show that with an adjustment to the Peschel method [13, 65, 66, 15, 67], it is possible to
get the entanglement of parity broken state in terms of entanglement of parity protected
ground states. With these results, we will be able to study the effect of boundary conditions
on the entanglement of subsystem, in particular, change in the direction of magnetic field
at boundaries on the value of entanglement entropy.

It is worth mentioning that one can treat the enlarged Hamiltonian as a model of
interest and study its different properties independent of the quantum spin chain with
boundaries. This might be an interesting approach to study a phenomena like spontaneous
breaking of parity number symmetry. Having this in mind most of our studies and results
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go beyond just the quantum spin chains with ADBMF. We find the correlations, reduced
density matrix and entanglement for generic eigenstates of the enlarged Hamiltonian.
Quite surprisingly, the general features of the results are quite independent of the bulk
Hamiltonian.

The remainder of this chapter is structured as follows: In section 7.1 we first summarize
the set up and the main results of this chapter. In section 7.2, we start by general quadratic
Hamiltonian that one can derive after the addition of extra sites. We, provide a general
discussion on diagonalization of such a system, and the connection to the eigenstates of our
original model, the BMF Hamiltonian. In section 7.3, we use the result of diagonalization of
quadratic Hamiltonian to find the correlation matrices for the generic eigenstates including
the most interesting ones, i.e. states with ±1 parity and the one with no parity. Section 7.4
contains study of the reduced density matrix (RDM). We first present a general formulation
of RDM using Berezin integration of Grassmann variables, followed by the RDM in terms of
correlation matrices. We address the RDM not only for typical eigenstates of Hamiltonian,
but also eigenstates which break the parity. With the results of former sections, we study
the entanglement in section 7.5. Notably, we dig to the behavior of entanglement for a
state which defies the parity symmetry. In section 7.6 we give an interesting physical
interpretation of the parity-broken state based on three-part system. This gives a simple
way to reproduce some of our results in especial cases. Finally, in section 7.7, we look
at some interesting examples of systems with no parity symmetry. The first being free
fermion model with no bulk term, and the second being the XY -spin chain with arbitrary
boundary magnetic fields.

7.1 Set-up
Consider the spin chain Hamiltonian

HSpinChain = Hbulk + B⃗1 .S⃗1 + B⃗
L
.S⃗

L
, (7.2)

where S⃗1 and S⃗L, are spin operators at the beginning and end of the chain, and B⃗L, B⃗1 are
arbitrary boundary magnetic fields. We consider here bulk Hamiltonians, i.e. Hbulk , that
can be mapped to quadratic free fermions via Jordan-Wigner (JW) transformation. The
above Hamiltonian does not have quadratic form after JW transformation and a priory is
not clear that can be solved exactly. However, using the ancillary spins, S0 and SL+1 one
can transform the above Hamiltonian to

H = Hbulk +Bx
1S

x
0S

x
1 +By

1S
x
0S

y
1 +Bz

1S
z
1 +Bx

LS
x
LS

x
L+1 +By

LS
y
LS

x
L+1 +Bz

LS
z
L (7.3)

The above Hamiltonian after JW transformation has a quadratic form and can be solved
exactly. The Hamiltonian (7.5) is considered with this goal in mind. The eigenstates and
eigenvalues of the original Hamiltonian can be found with proper projections (see section
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7.2). The idea of using ancillary sites to solve boundary spin chains is already explored
before in [152, 153, 154, 155, 156], however, in this work we solve the problem in its most
general form without restricting to a particular Hamiltonian. The eigenstates, eigenvalues
and correlation functions are found in the most general cases in sections 7.2 and 7.3.

Interestingly all the eigenstates of the Hamiltonian (7.3) have at least the degeneracy
of two due to the presence of a zero mode. In the fermionic language the vacuum, i.e. |0⟩η,
and the state with the zero mode excited, i.e. η†

0 |0⟩η, are degenerate. This means one can
define

|β⟩ = 1√
1 + |β|2

(
|0⟩η + βη†

0 |0⟩η
)
; (7.4)

as the most generic ground state of this Hamiltonian1. In particular, the ground state of
the boundary quantum spin chain can be derived out of the especial cases of β = ±1. Due
to its generality in sections 7.2 and 7.3 we study some basic properties of this state such
as parity and correlation functions. This state has also an interesting interpretation as
three part system which we will explore in section 7.6.

In section 7.4 we give two different forms for the reduced density matrix of the
generic |β⟩ state. We first find the reduced density matrix in fermionic coherent basis.
The presented form can be used to calculate the Rényi entanglement entropy as it was
shown in section 7.5. We also think that this form is useful to calculate the formation
probabilities in the configuration basis which are although interesting for their own sake,
we are not going to explore them in this chapter. The second method is a generalization
of the results of [156] for generic eigenstates of the generic Hamiltonians with arbitrary
β. It is an extension of a method which is based on making an ansatz for the reduced
density matrix and then fix the exact form by matching the correlation functions [14].
Our result for β = ±1 gives also the reduced density matrix of the quantum spin chain
with arbitrary boundary magnetic fields. Using the results of this section in section 7.5 we
write an exact formula for the entanglement entropy of the |β⟩ state which its complexity
grows polynomially with the size of the subsystem. As before, this also solves the problem
of the calculation of the entanglement entropy of the eigenstates of the Hamiltonian (7.2).

In section 7.6 we show that the |β⟩ state has a very interesting property. It can
be written like a three-part system which helps to understand the entanglement of the
ancillary sites with the rest of the system using this simple interpretation. This property
makes studying the Hamiltonian (7.3) and its entanglement content interesting for its
own sake independent of the original motivation of solving the quantum spin chain with
1 Note that the same can be done with all the eigenstates. Our results can be extended for the |β⟩ states

made of each eigenstates.
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arbitrary boundary magnetic fields. This has been the main motivation to start with the
fermionic version of the enlarged Hamiltonian in section 7.2.

All of the discussions up to section 7.7 are independent of the Hamiltonian and also
valid for arbitrary eigenstates of the Hamiltonians (7.2) and (7.3). In section 7.7 we give
two explicit examples. The first one is a slight generalization of the Hamiltonian (7.3)
without a bulk term. In the first sight this seems oversimplification but interestingly a lot
of entanglement properties of the generic Hamiltonian have similar features which was
the main motivation for its presentation. To give a non-trivial example we also study the
entanglement entropy in the XY chain. The boundary entropy of this model is already
studied in [156], however, here we fill a few holes such as the presentation of the exact
extra zero modes present in the Ising chain which their form is essential to calculate the
entanglement entropy exactly.

7.2 The Hamiltonian
In this section, we introduce a general bi-linear fermionic Hamiltonian which is related to
spin chain Hamiltonians with boundary magnetic field (7.1). We first study the general
properties of this model and point out the evident zero mode of the model. In subsection
7.2.3, we tend to present the diagonalization procedure using the standard methods. Later,
in subsection 7.2.5, we look into the particular eigenstates of the Hamiltonian which
does not respect the parity number symmetry. Finally, subsection 7.2.6 presents a set of
selection rules to retrieve the eigenvalues of the boundary magnetic field (BMF) model.
Interestingly the structure that unfold is very similar to the ones in [156], see also [154]
with a slightly different notation.

7.2.1 General properties

We are going to study the quadratic fermionic Hamiltonian of the form:

H = H0 +Hb (7.5)

where
H0 =

L∑
i,j=1

[
c†
iAijcj + 1

2c
†
iBijc

†
j + 1

2ciB
∗
jicj

]
− 1

2tr(A∗), (7.6)

and
Hb =

L∑
j=1

[
α0
j (c0cj − c†

0cj) + αL+1
j (cjc†

L+1 + cjcL+1) + H. C.
]
. (7.7)

As we mentioned in the introduction, Hb part can be related to the boundary terms. Note
that the above Hamiltonian is a bit more general than just the extension of a quantum
chain with boundaries because the added extra sites 0 and L+ 1 are coupled to all the
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sites. Note also that we are not bounded here to any particular dimension. That means all
of the upcoming results, as far as we do not talk about spin chains, are valid in arbitrary
dimensions. Here, A matrix should be Hermitian and B matrix should be anti-symmetric.
The Hamiltonian can be written as:

H = 1
2
(

c† c
)

M

 c
c†

 , (7.8)

where
(

c† c
)

stands for
(
c†

0 · · · c†
L+1 c0 · · · cL+1

)
. The matrix M in (7.8) should

look like below.

M =



0 −α0
1 · · · −α0

L 0 0 −α0
1

∗ · · · −α0
L

∗ 0
−α0

1
∗ −αL+1

1
∗

α0
1

∗ −αL+1
1

∗

... A ...
... B ...

−α0
L

∗ −αL+1
L

∗
α0
L

∗ −αL+1
L

∗

0 −αL+1
1 · · · −αL+1

L 0 0 αL+1
1

∗ · · · αL+1
L

∗ 0
0 α0

1 · · · α0
L 0 0 α0

1
∗ · · · α0

L
∗ 0

−α0
1 αL+1

1 α0
1 αL+1

1
... −B∗ ...

... −A∗ ...
−α0

L αL+1
L α0

L αL+1
L

0 −αL+1
1 · · · −αL+1

L 0 0 αL+1
1

∗ · · · αL+1
L

∗ 0



.

(7.9)

For later use, we define the following spin operators at positions 0 and L+ 1,

σx0 = c0 + c†
0 and σxL+1 = (1− 2c0c

†
0)

L∏
l=1

(1− 2c†
l cl)(cL+1 + c†

L+1). (7.10)

These operators commute with each other and the Hamiltonian (7.5); i.e.[
H, σxL+1

]
= [H, σx0 ] =

[
σx0 , σ

x
L+1

]
= 0. (7.11)

The above relations are important in upcoming sections.

7.2.2 Zero mode eigenstates

The M matrix in (7.8) has at least two eigenvectors with zero eigenvalues. These eigen-
vectors correspond to the modes with zero energy. Later on in this chapter, we present a
formulation (section 7.2.3) which simplifies the effort to find the correlations (section 7.3),
reduced density matrix (section 7.5) and other properties of the system such as entangle-
ment. To use such a formulation, one needs to identify and write the zero eigenvectors in
a correct form (see the following subsection).

Due to the form of the M matrix (7.9), we expect to have two zero modes. These
zero modes do not depend on the parameters and interactions of the system. They can be
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written as:

∣∣∣u1
0

〉
=



√
aeiθ1

0
...
0√

1
2 − ae

iϕ1

√
aeiθ1

0
...
0

−
√

1
2 − ae

iϕ1



,
∣∣∣u2

0

〉
=



√
1
2 − ae

iθ2

0
...
0

−
√
aeiϕ2√

1
2 − ae

iθ2

0
...
0

√
aeiϕ2



. (7.12)

The orthogonality condition of these states requires the following equality to hold for the
parameters

θ1 − θ2 = ϕ1 − ϕ2. (7.13)

The above zero modes are independent of the parameters of the Hamiltonian. In the rest,
for the sake of simplicity, we take all the angles (θ1, θ2, ϕ1, ϕ2) to be zero and put a = 1

4 .
Taking other values does not change the upcoming results. Depending on the values of
coupling parameters there could arise more zero modes in spectrum of M matrix2.

7.2.3 Diagonalization

The diagonalization of general free fermion is well explained in section 2.3, and I will not
going through the same calculation again. In this subsection, I just briefly review the
diagonalization and find the eigenstates of the Hamiltonian. the Hamiltonian (7.8) can be
diagonalized in the following form:

H = 1
2
(

c† c
)

U†UMU†U

 c
c†

 = 1
2
(
η† η

) Λ 0
0 −Λ

 η

η†

 ; (7.14)

The matrix Λ is a diagonal matrix with non-negative entries and matrix U has the block
from:

U =
 g h

h∗ g∗

 . (7.15)

The Hamiltonian can also be written with respect to new fermionic operators (Bogoliubov
fermions) as

H =
∑
k

λkη
†
kηk −

1
2tr(Λ), where

 η

η†

 = U

 c
c†

 . (7.16)

2 See section 7.7.2.
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From (2.47) and special form of U matrix, we get the following constrains on the elements
of g and h matrices:

gk,L+1 = hk,L+1 and gk,0 = −hk,0 for k ̸= 0 (7.17)

To conclude the diagonalization part, we write the explicit expression of η operators:

ηk =
L+1∑
j=0

gkjcj + hkjc
†
j = gk0(c0 − c†

0) +
L∑
j=1

(gkjcj + hkjc
†
j) + gkL+1(cL+1 + c†

L+1); k ̸= 0,(7.18)

η0 = 1
2
(
c0 + cL+1 + c†

0 − c
†
L+1

)
. (7.19)

From above, we can also write the c-fermions in terms of η-operators as:

ck =
L+1∑
j=1

(g∗
j,kηj + hj,kη

†
j); k ̸= 0, L+ 1, (7.20)

c0 = 1
2η0 + 1

2η
†
0 +

L+1∑
j=1

(g∗
j,0ηj − gj,0η

†
j), (7.21)

cL+1 = 1
2η0 − 1

2η
†
0 +

L+1∑
j=1

(g∗
j,L+1ηj + gj,L+1η

†
j). (7.22)

This final result means that the following commutation (anticommutation) relations hold
(for k ̸= 0) [

σxL+1, ηk
]

=
[
σxL+1, η

†
k

]
= 0, (7.23){

σx0 , ηk
}

=
{
σx0 , η

†
k

}
= 0. (7.24)

Anticommutations (7.24) will be useful in subsection 7.2.6 for sectorization of eigenstates
of the Hamiltonian (7.5).

7.2.4 Eigenstates in configuration basis

As it was explained in section 2.3.3, the vacuum state |0⟩η is the state which is annihilated
by the action of all ηk operators,

ηk |0⟩η = 0, ∀ k. (7.25)

One can write the |0⟩η as a superposition of configurations of the c-fermions [13]. It is
called the configurational basis of such a state. For even size, if the parity of |0⟩η is +1
then we have:

|0⟩η =
(
det[I + R†R]

)− 1
4 e

1
2
∑

i,j
Rijc

†
i c

†
j |0⟩c (7.26)

where cj |0⟩c = 0 for all j, and the R matrix is an antisymmetric matrix defined as
g.R + h = 0. The (7.26) works only for the case where parity of the |0⟩η is +1, and/or the
matrix g is invertible. Otherwise, to use the above equation, one needs to do a canonical
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transformation to change the parity of the vacuum for η-fermions, and/or to make the g
invertible [53]. For more details see also section 2.3.3.

As a matter of fact, any eigenstate of Hamiltonian (7.5) (with parity +1) can be
written in configurational basis in an exponential form. Excited states are created by
exciting different modes on the vacuum (7.25) as:

|ψ⟩ = |k1, k2, · · · , kN⟩ =
∏
kj∈E

η†
kj
|0⟩ ; Eψ =

∑
kj∈E

λkj −
1
2tr(Λ), (7.27)

where the set E can be any subset of indices from 0 to L+1. We denote the set of indices of
excited modes as E and the set of indices which are not excited as Ē (Ē∪E = {0, 1, · · · , L+
1}). Assume that we can write the following excited state in the configurational form as:

|ψ⟩ = Cψe
1
2
∑

i,j
Rψijc

†
i c

†
j |0⟩c , (7.28)

where Cψ = (det[I + Rψ†Rψ])− 1
4 . For this excited state we have: The generalized formula

for the Rψ would be:
gRψ + h = 0, (7.29)

where g and h are generalized versions of g and h given by

gnm =

gnm if n ∈ Ē

h∗
nm if n ∈ E

hnm =

hnm if n ∈ Ē

g∗
nm if n ∈ E

(7.30)

Note that one should check for the necessary conditions to be able to use relation above
for excited states. For more details please look at secton 2.3.4. The (7.28) gives an excited
eigenstate in the configuration basis which is advantageous in the study of entanglement
in later sections.

7.2.5 Parity broken state

The quadratic Hamiltonian (7.5) commutes with the parity operator defined as P = (−1)N̂

where N̂ = ∑L+1
l=0 c

†
l cl is the fermion number operator. This means that the eigenstates of

the Hamiltonian have fixed parity P = ±1. One can have eigenstates that do not respect
the parity and these types of states are very interesting to study. For instance, these types
of states are related to the ground state of spin systems with boundary magnetic fields
which one example is given in section 7.7.2.

We define a parity broken state (β-defected parity state) as:

|β⟩ = 1√
1 + |β|2

(
|0⟩η + βη†

0 |0⟩η
)
; (7.31)
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where β can be a complex number. The expectation value of parity for such a state is
given by

P (β) = ⟨β|P |β⟩ =


|β|2−1
|β|2+1 P0 = −1,

1−|β|2
1+|β|2 P0 = +1,

(7.32)

where P0 is the parity of vacuum state. The first excited state after the vacuum is created
by η†

0 |0⟩ which inevitably has the same energy as the vacuum, while this excited state has
parity -P0. In fact β can be considered as a parameter which can be tuned to break the
parity.

We define the state |G±⟩ by taking β = ±1 as:

|G±⟩ = 1√
2
(
|0⟩η ± η

†
0 |0⟩η

)
. (7.33)

These states are especial cases of β-broken parity states and have interesting properties
which cares for special attention. As an example, these states are related to the ground
state of Hamiltonian with boundary magnetic field (see page 82). Other useful properties
of these two states are

σx0 |G±⟩ = ± |G±⟩ and σxL+1 |G±⟩ = δ± |G±⟩ . (7.34)

The δ± = ± can be calculated with respect to the expectation values of Majorana fermions
[156]. For instance, one can write:

δ+ = (i)L+1Pf[D], (7.35)

where

D =



0 ⟨γ̄0γ1⟩ ⟨γ̄0γ̄1⟩ · · · ⟨γ̄0γL+1⟩
⟨γ1γ̄0⟩ 0 ⟨γ1γ̄1⟩ · · · ⟨γ1γL+1⟩
⟨γ̄1γ̄0⟩ ⟨γ̄1γ1⟩ 0 · · · ⟨γ̄1γL+1⟩

... ... ... ...
⟨γL+1γ̄0⟩ ⟨γL+1γ1⟩ ⟨γL+1γ̄1⟩ · · · 0


. (7.36)

in above, Pf[D] is the Pfaffian of the matrix D, and Majorana fermions are defined as
γj = c†

j + cj and γ̄j = i(c†
j − cj). In (7.36), the ⟨· · · ⟩ stands for the expectation value with

respect to the vacuum state of the η-operators (|0⟩).

7.2.6 Eigenstates of boundary magnetic field model

Since the eigenstates of boundary magnetic field model is related to those of Hamiltonian
(7.5), we are going to present selection rules to get the desired eigenstates. In fact, Hilbert
space of Hamiltonian (7.5) is 4 times bigger than BMF Hamiltonian.
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The Hilbert space of Hamiltonian (7.5) can be divided into 4 sub-spaces. Each sub-
space can be identified using eigenvalues of operators σx0 and σxL+1 acting on states |G±⟩.
We can make the following argument: consider δ+ = 1, which means |G+⟩ belongs to
the sector marked by the pair (⟨G±|σx0 |G±⟩ , ⟨G±|σxL+1

|G±⟩). Then due to commutation
(anticommutation) relations (7.23) and (7.24) all the states

n∏
j=1

η†
kj
|G+⟩ , n is even. (7.37)

also belong to (+,+). Note that in the above expression 0 < kj < kj+1 < L + 1 which
means that the dimension of (+,+) sub-space is 2L. Next, in this case (δ+ = +1), the
state |G−⟩ and the following states belong to (−,−) sector,

n∏
j=1

η†
kj
|G−⟩ , n is even. (7.38)

For the two other sectors we have:
n∏
j=1

η†
kj
|G+⟩ , n is odd. (−,+),

n∏
j=1

η†
kj
|G−⟩ , n is odd. (+,−),

(7.39)

In the case of δ+ = −1, we have the following eigenstates for each sector,
n∏
j=0

η†
kj
|G+⟩ , n is even, (+,−), (7.40)

n∏
j=0

η†
kj
|G−⟩ , n is even, (−,+), (7.41)

n∏
j=1

η†
kj
|G+⟩ , n is odd, (−,−), (7.42)

n∏
j=1

η†
kj
|G−⟩ , n is odd, (+,+). (7.43)

As an example in the (+,+) sector, we can write:

|ϕk⟩ = |+⟩
0
⊗ |φk⟩ ⊗ |+⟩

L+1
, (7.44)

where |ϕk⟩ is an eigenstate of Hamiltonian (7.5), |+⟩
0,L+1

are eigenstates of σx at the
position 0 and L+ 1. The |φk⟩ is an eigenstate of the BMF model. Knowing |ϕk⟩, we can
obtain the |φk⟩.

The above argument means that to know the sector (+,+) we need to figure out the
value of δ+. The ground state of the Hamiltonian with boundary magnetic field is going to
be one of the following two states:

|G+⟩ δ+ = +1, (7.45)
η†
min
|G−⟩ δ+ = −1. (7.46)
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In above, η†
min

creates the mode with smallest non-zero energy.

It is interesting to mention that exist transformations which change the sign of boundary
couplings in the Hamiltonian (7.5). Such transformations could be TbL = σzL+1 and Tb1 = σz0
where they change the sign of x and y component of boundary couplings (−→b 1,

−→
b L or

equivalently α0
1, α

L+1
L ), without affecting the energy spectrum of the Hamiltonian:

T †
b1

T †
bL

H(b1,x, b1,y, b1,z, bL,x, bL,y, bL,z)TbLT
b1

= H(−b1,x,−b1,y, b1,z,−bL,x,−bL,y, bL,z). (7.47)

As a consequence, if the eigenstates of the BMF Hamiltonian (7.1) is found in one of the
sectors of the Hilbert space of the Hamiltonian (7.5), then other sectors are related to the
eigenstates of BMF Hamiltonians with different signs of boundary couplings. For example,
if a typical eigenstate of the BMF Hamiltonian like |φk⟩, is in the (+,+) sector, then from
(7.44) we have |+⟩

0
⊗ |φk⟩ ⊗ |+⟩

L+1
for the eigenstates of Hamiltonian (7.5). The action of

Tb1TbL on a state like |ϕk⟩ would be

Tb1TbL |ϕk⟩ = |−⟩
0
⊗ |φk⟩ ⊗ |−⟩

L+1
, (7.48)

which is equal to changing the sign of boundary couplings. Therefore, |φk⟩ would be an
eigenstate of BMF Hamiltonian with boundary couplings: −b1,x, −b1,y, −bL,x and −bL,y.
Equivalently, spectrum of of BMFH with negative couplings at boundary can be found in
the (−,−) sector of Hamiltonian (7.5).

7.3 Correlation functions
In this section, we would like to calculate the correlation matrix for different eigenstates of
the system. It is more convenient to calculate the correlation matrices for Majorana fermions.
For instance, one can use Majorana fermion correlations to calculate the entanglement in
the system (for particular eigenstates). We introduce Majorana fermions as γi = ci + c†

i

and γ̄i = i(c†
i − ci). We symbolize the correlation matrices as:

⟨γ̄jγk⟩ = iGjk, ⟨γjγk⟩ = Kjk, ⟨γ̄j γ̄k⟩ = K̄jk. (7.49)

It is useful to write the later two point correlation in a block matrix form denoted by Γ
as:

Γ =
 K − I −iGT

iG K̄ − I

 . (7.50)

One can easily find all the different elements of the Γ matrix. It is possible to write G, K
and K̄ in terms of correlation matrices of c-fermions

K = F† + F + C−CT + I,

K̄ = −F† − F + C−CT + I,

G = −F† + F + C + CT − I,

(7.51)



Capítulo 7. Entanglement entropy in quantum spin chains with broken parity number symmetry 94

where Cij = ⟨c†
icj⟩ and Fij = ⟨c†

ic
†
j⟩. The C is a Hermitian matrix and F is antisymmetric.

Therefore, K and K̄ are Hermitian, and we can conclude that G is real. Knowing these
properties, we can prove that the Γ correlation matrix is Hermitian too. All the analysis so
far are valid for arbitrary eigenstates of the Hamiltonian (7.5). In the rest, the correlations
for vacuum and zero mode excited eigenstate (ZME state or η†

0 |0⟩η) will be presented in
details. The calculation of correlations of excited quasi-particle eigenstates is presented in
appendix D.

7.3.1 Correlations for vacuum state

Using the notation introduced in (7.14), we calculate the correlations for the vacuum of
η’s. In this case, we can write C0 = h†.h and F0 = h†.g, where superscript zero stands for
the expectation values calculated in the vacuum state. Putting these relations in (7.51),
we get

K0 =(h† + g†).(h + g),
K̄0 =(h† − g†).(h− g),
G0 =(h† − g†).(h + g).

(7.52)

Therefore, for the vacuum of η-operators, we can find the correlations in terms of the
elements of U matrix, which means correlation matrix calculations are straightforward.
The above-mentioned correlation matrices have the form (i, j ̸= 0, L+ 1):

C0 =



1
2 −∑k=L+1

k=1 g∗
k,0hk,j

−1
4 −

∑k=L+1
k=1 g∗

k,0gk,L+1

−∑k=L+1
k=1 h∗

k,jgk,0 (h†.h)i,j
∑k=L+1
k=1 h∗

k,jgk,L+1

−1
4 −

∑k=L+1
k=1 g∗

k,L+1gk,0
∑k=L+1
k=1 g∗

k,L+1hk,j
1
2


(7.53)

F0 =



0 −∑k=L+1
k=1 g∗

k,0gk,j
1
4 −

∑k=L+1
k=1 g∗

k,0gk,L+1

∑k=L+1
k=1 gk,jg

∗
k,0 (h†.g)i,j −∑k=L+1

k=1 gk,jg
∗
k,L+1

−1
4 +∑k=L+1

k=1 g∗
k,L+1gk,0

∑k=L+1
k=1 g∗

k,L+1gk,j 0


.(7.54)
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Using the relation (7.51), for the correlation of Majorana fermions, we can write:

K0 =



1 0 0

0 (h† + g†).(h + g)i,j 2∑k=L+1
k=1 (h∗

k,j + g∗
k,j)gk,L+1

0 2∑k=L+1
k=1 g∗

k,L+1(hk,j + gk,j) 1


, (7.55)

K̄0 =



1 −2∑k=L+1
k=1 g∗

k,0(hk,j − gk,j) 0

−2∑k=L+1
k=1 (h∗

k,j − g∗
k,j)gk,0 (h† − g†).(h− g)i,j 0

0 0 1


, (7.56)

G0 =



0 −2∑k=L+1
k=1 g∗

k,0(hk,j + gk,j) −4∑k=L+1
k=1 g∗

k,0gk,L+1

0 (h† − g†).(h + g)i,j 2∑k=L+1
k=1 (h∗

k,j − g∗
k,j)gk,L+1

−1 0 0


(7.57)

To calculate the higher point correlation functions, one can use the Wick theorem, which
is computationally favorable.

7.3.2 Correlations for ZME state

From now on (for the sake of simplicity), we are going to indicate the ZME state by
|∅⟩ = η†

0 |0⟩. This state is degenerate with the vacuum, which is crucial for later studies.
For this eigenstate, we get (i, j ̸= 0, L+ 1):

C∅ =



1
2 −∑k=L+1

k=1 g∗
k,0hk,j

1
4 −

∑k=L+1
k=1 g∗

k,0gk,L+1

−∑k=L+1
k=1 h∗

k,jgk,0 (h†.h)i,j
∑k=L+1
k=1 h∗

k,jgk,L+1

1
4 −

∑k=L+1
k=1 g∗

k,L+1gk,0
∑k=L+1
k=1 g∗

k,L+1hk,j
1
2


(7.58)
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F∅ =



0 −∑k=L+1
k=1 g∗

k,0gk,j
−1
4 −

∑k=L+1
k=1 g∗

k,0gk,L+1

∑k=L+1
k=1 gk,jg

∗
k,0 (h†.g)i,j −∑k=L+1

k=1 gk,jg
∗
k,L+1

1
4 +∑k=L+1

k=1 g∗
k,L+1gk,0

∑k=L+1
k=1 g∗

k,L+1gk,j 0


. (7.59)

As a result, the correlation matrices C and F are only different in only two elements
from state |0⟩ to the state |∅⟩. It can be observed that the correlation matrices K, K̄ does
not change from state |0⟩ to |∅⟩. Form of the Majorana correlation matrices are presented
below as:

K∅ = K0
, K̄∅ = K̄0

, (7.60)

G∅ =



0 −2∑k=L+1
k=1 g∗

k,0(hk,j + gk,j) −4∑k=L+1
k=1 g∗

k,0gk,L+1

0 (h† − g†).(h + g)i,j 2∑k=L+1
k=1 (h∗

k,j − g∗
k,j)gk,L+1

1 0 0


. (7.61)

Similar to the result of previous subsection, for higher point functions, one make use of
the Wick theorem to calculate the quantity of interest.

7.3.3 Correlations for the general parity broken state

In this subsection we study the correlation function of general states that break the parity,
such as |β⟩ defined in (7.31). Calculating correlations (or any expectation value) with
respect to the state |β⟩, is not as trivial as the calculations for eigenstates, since we are
not able to use the Wick theorem. However, there could be many subtleties when we come
across quantities which are evaluated with respect to |β⟩.

For instance, such a subtlety could be calculation of one point function with respect
to the |β⟩:

⟨β| cj |β⟩ = Re[β]
1 + |β|2 δj,0 + iIm[β]

1 + |β|2 δj,L+1 (7.62)

The above means that one point correlation functions are not necessarily zero for the
state |β⟩. In general, we can say that ⟨β| Ô |β⟩ is not necessarily zero, if operator Ô has
odd number of fermionic operators. Nonetheless, if Ô does not depend on c0, c†

0, cL+1 and
c†
L+1 then we can write ⟨β| Ô |β⟩ = ⟨0| Ô |0⟩. With this condition, we can assume that the
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state |β⟩ obeys the Wick theorem. In the following, we denote the correlation matrices by
superscript β for the state |β⟩. These correlations have the form:

Cβ =



1
2 −

k=L+1∑
k=1

g∗
k,0hk,j

−1
4

1−|β|2
1+|β|2 −

k=L+1∑
k=1

g∗
k,0gk,L+1

−
k=L+1∑
k=1

h∗
k,jgk,0 (h†.h)i,j

k=L+1∑
k=1

h∗
k,jgk,L+1

−1
4

1−|β|2
1+|β|2 −

k=L+1∑
k=1

g∗
k,L+1gk,0

k=L+1∑
k=1

g∗
k,L+1hk,j

1
2


,(7.63)

Fβ =



0 −
k=L+1∑
k=1

g∗
k,0gk,j

1
4

1−|β|2
1+|β|2 −

k=L+1∑
k=1

g∗
k,0gk,L+1

k=L+1∑
k=1

gk,jg
∗
k,0 (h†.g)i,j −

k=L+1∑
k=1

gk,jg
∗
k,L+1

−1
4

1−|β|2
1+|β|2 +

k=L+1∑
k=1

g∗
k,L+1gk,0

k=L+1∑
k=1

g∗
k,L+1gk,j 0


.(7.64)

Based on the above calculations, the correlations for |β⟩ can be written in terms of
correlations of vacuum and ZME state. For rest of the correlation matrices, we have:

Kβ = K0
, K̄β = K̄0

, (7.65)

Gβ =



0 −2
k=L+1∑
k=1

g∗
k,0(hk,j + gk,j) −4

k=L+1∑
k=1

g∗
k,0gk,L+1

0 (h† − g†).(h + g)i,j 2
k=L+1∑
k=1

(h∗
k,j − g∗

k,j)gk,L+1

1−|β|2
1+|β|2 0 0


. (7.66)

For a higher point correlation like Ô, when operator Ô contains fermionic creation and
annihilation operators at position 0 or L+ 1, then the relation between ⟨Ô⟩0 and ⟨Ô⟩β
would not be trivial. For example, in some cases, one can have Wick theorem for the |β⟩
too. Some of the interesting cases are listed in table 1.

Results of this part can be extended to the zero parity state. Form of the correlation
matrices for the state |G±⟩ (7.33), can simply be obtained by putting β → ±1.
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Tabela 1 – Terms “even"and “odd"mean that the operator Ô contains even or odd products of c-operators.
Also, k, l ̸= 0, L + 1 and the Einstein summation rule is assumed. The notation ⟨· · · ⟩0 stands
for the expectation value calculated in the vacuum state.

Ô has no c(†)
0 and c

(†)
L+1

even odd

⟨β| c0Ô |β⟩ Re[β]
1+|β|2 ⟨Ô⟩0 g∗

k,0 ⟨0| ηkÔ |0⟩

⟨β| c†
0Ô |β⟩

Re[β]
1+|β|2 ⟨Ô⟩0 −g∗

l,0 ⟨0| ηlÔ |0⟩

⟨β| cL+1Ô |β⟩ iIm[β]
1+|β|2 ⟨Ô⟩0 g∗

k,L+1 ⟨0| ηkÔ |0⟩

⟨β| c†
L+1Ô |β⟩

−iIm[β]
1+|β|2 ⟨Ô⟩0 g∗

l,L+1 ⟨0| ηlÔ |0⟩

⟨β| c†
0c0Ô |β⟩ 1

2⟨Ô⟩0
2Re[β]
1+|β|2 ⟨(g

∗
l,0ηl − gl,0η

†
l )Ô⟩0

⟨β| c†
L+1cL+1Ô |β⟩ 1

2 ⟨0| Ô |0⟩
−2iIm[β]
1+|β|2 ⟨(g

∗
l,L+1

ηl + g
l,L+1η

†
l )Ô⟩0

⟨β| c†
0cL+1Ô |β⟩ 1

4
|β|2−1
|β|2+1⟨Ô⟩0 − g

∗
l,0
g
k,L+1⟨ηlη

†
kÔ⟩0

Re[β]
1+|β|2 ⟨g

∗
l,L+1

ηlÔ⟩0 + iIm[β]
1+|β|2 ⟨g

∗
l,0
ηlÔ⟩0

⟨β| c†
0c

†
L+1Ô |β⟩ 1

4
1−|β|2
1+|β|2 ⟨Ô⟩0 − g

∗
l,0
g
k,L+1⟨ηlη

†
kÔ⟩0

Re[β]
1+|β|2 ⟨g

∗
l,L+1

ηlÔ⟩0 −
iIm[β]
1+|β|2 ⟨g

∗
l,0
ηlÔ⟩0

Ô has no γ̄0 and γL+1

⟨β| γ0Ô |β⟩ 2Re[β]
1+|β|2 ⟨0| Ô |0⟩ 0

⟨β| γ̄0Ô |β⟩ 0 −2ig∗
k,0 ⟨0| ηkÔ |0⟩

7.4 Reduced Density matrix
In this section, we calculate the density matrix and reduced density matrix (RDM) of
the particular states introduced previously. We are going to use the configurational basis
result of 7.2.4 and coherent basis formulation to calculate the density matrix and RDM.
The RDM will be presented in both coherent basis and operator form. The operator form
of RDM is useful to calculate the entanglement content of the states, while the coherent
basis form of the RDM can be used to study the formation probabilities. In subsection
7.4.1, we start with the β-broken parity state (7.31). We calculate the total density matrix
and then the RDM in coherent basis and operator format. In subsections 7.4.2, 7.4.3 and
7.4.4 we present the same calculations for the states |0⟩η, |∅⟩ and |G±⟩, respectively.

7.4.1 β parity broken state

We start by calculating the reduced density matrix for the state |β⟩ defined in (7.31).
The total density matrix of a particular state |ψ⟩ is defined as ρ = |ψ⟩ ⟨ψ|. We prefer to
calculate the density matrix for the state |β⟩ explicitly in an exponential form using the
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definition (2.53). With the +1 parity for the state |0⟩η, the density matrix has the form

ρβ = |β⟩⟨β| = |Cβ|2e
1
2Rijc

†
i
c
†
j (1 + βM0kc

†
k) |0⟩c c⟨0| (1 + β∗M∗

0lcl)e
−

1
2R

∗
ij
cicj

, (7.67)

where |Cβ|2 =
(

(1 + |β|2)
√

det[I + R†R]
)−1

and M = h∗.R + g∗. To proceed, we use the
Fermionic coherent state defined as

|ξ⟩ = |ξ1ξ2 · · · ξN⟩ = e−
∑N

k=1 ξkc
†
k |0⟩c , (7.68)

where ξk are Grassmann variables. Therefore, we can write (following similar procedure as
[13])

⟨ξ| ρβ |ξ′⟩ = ρβ(ξ, ξ′) = |Cβ|2e
1
2Rij ξ̄iξ̄j (1 + βM0kξ̄k)(β∗M∗

0lξ
′
l + 1)e

−
1
2R

∗
nmξ

′
nξ

′
m

. (7.69)

To obtain the reduced density matrix (RDM), we divide the system into two parts
(subsystem) 1 and 2. Here, we denote parts of any matrix that correspond to the subsystem
1 (2) with the subscript 1 (2)3 . We trace out the subsystem 2 to find the RDM for subsystem
1, ρ1 = tr2ρ. In order to do so, we use the trace formula for operators in the coherent
basis. Therefore, we have:

ρβ1(ξ, ξ′) =
∫ ∏

l∈2
dξ̄ldξl e

−
∑
n∈2

ξ̄nξn

⟨ξ1, · · · , ξk,−ξk+1, · · · ,−ξL| ρβ |ξ′
1, · · · , ξ′

k, ξk+1, · · · , ξL⟩ ,

(7.70)
where ξ1, · · · , ξk belong to the subsystem 1 and ξk+1, · · · , ξL belong to the subsystem 2.
For the details of calculation, see appendix D. The final result after partial tracing the
(7.69) is:

ρβ1(ξ, ξ′) = Cβ
[( 1
β

+L1.ξ̄+L2.ξ
′
)( 1
β∗ +L3.ξ̄+L4.ξ

′
)
−Pf[W ]

]
e

1
2

(
ξ̄ ξ′

)
Ω


ξ̄

ξ′


, (7.71)

where the Cβ and the introduced matrices are given by:

Cβ =
|β|2

√
det

[
I + R22

†R22
]

(1 + |β|2)
√

det
[
I + R†R

] , (7.72a)

Ω =


R11 0

0 −R11
∗

+


R12 0

0 R12
∗

A−1


R12

T 0

0 R12
†

 , (7.72b)

3 For instance, the A12 stands for the sub-matrix of A that rows and columns belong to subsystem 1
and 2 respectively
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
L1 L2

L3 L4

 =


M1 0

0 M∗
1

+


M2 0

0 −M∗
2

A−1


RT

12 0

0 R†
12

 , (7.72c)

W =


M2 0

0 −M∗
2

A−T


MT

2 0

0 −M†
2

 , (7.72d)

A =


R22 −I

I −R∗
22

 . (7.72e)

It is useful also to have the RDM in the operator format (for example to calculate the
Rényi entanglement entropy). To derive the operator form for ρ1 from equation (7.71), we
rewrite the exponential term as

Exp
[

1
2

(
ξ̄ ξ′

)
Ω


ξ̄

ξ′


]

= Exp
[

1
2Xij ξ̄iξ̄j

]
Exp

[
Yij ξ̄iξ′

j

]
Exp

[
1
2Zijξ

′
iξ

′
j

]
(7.73)

with properly defined matrices X , Y and Z. Using the relations cicj |ξ⟩ = ξiξj |ξ⟩ and
⟨ξ| c†

ic
†
j = ⟨ξ| ξ̄iξ̄j, one can replace ξ̄iξ̄j with c†

ic
†
j and ξ′

iξ
′
j with cicj in the left and right

exponentials. The cross term can be rewritten Yij ξ̄iξ′
j → ln(Y)ijc†

icj. The final operator
form of RDM (7.71) is given as:

ρβ1(c, c†) = Cβ e

1
2

(
c† c

)
M


c

c†


e

1
2 tr ln(

1
2 Ω12−

1
2 ΩT21)

[
Pf[W ]−L3T 22L2

+
(
L1T 22c

† + (L1T 21 + L2)c+ 1
β

)(
L3T 22c

† + (L4 + L3T 21)c+ 1
β∗

)]
(7.74)

where

M = ln T ; T =


1
2Ω12 − 1

2Ω21
T + 2Ω11(ΩT

12 −Ω21)−TΩ22 2Ω11(ΩT
12 −Ω21)−T

2(ΩT
12 −Ω21)−TΩ22 2(ΩT

12 −Ω21)−T

,
(7.75a)
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Ω =


R11 0

0 −R11
∗

+


R12 0

0 R12
∗

A−1


R12

T 0

0 R12
†

 ; A =


R22 −I

I −R∗
22


(7.75b)

W =


M2 0

0 −M∗
2

A−T


MT

2 0

0 −M†
2

 (7.75c)


L1 L2

L3 L4

 =


M1 0

0 M∗
1

+


M2 0

0 −M∗
2

A−1


RT

12 0

0 R†
12

 . (7.75d)

Also, T 11, T 12, T 21 and T 22 stand for the sub-matrices (blocks) of matrix T . In the
above expression, to move the exponential with fermionic operators, we have used the
following relation, coming from Baker-Hausdorff formula,

F−1


c

c†

F = T


c

c†

 ⇒


c

c†

F = FT


c

c†

 ; F = e

1
2

(
c† c

)
M


c

c†


. (7.76)

In the expression of RDM, having all the creation and annihilation operators in the
argument of exponential is preferred (some of calculations would be simplified). For this
reason, we present another calculation of ρβ1 in the appendix D, where using a trick, we
managed to get the RDM with two exponentials. The above equations are valid for the
RDM of |β⟩-state, which also means, for any given bi partition, one can use (7.74). However,
it should be noted that the spin and fermion representations for solvable quantum chains
lead to different RDMs. For more details see section 7.4.5.

We can propose an ansatz to write the RDM for |β⟩ in term of correlation matrix.
Although computationally favorable, the down side of such an ansatz is that we could only
use it for a particular type of bipartition. while we can not apply Wick theorem to |β⟩,
one can use the Γβ matrix to calculate the RDM of a subsystem which starts from one
boundary. One has to make an adjustment to the Peschel method. Such a procedure for
β = ±1 has been shown in [156]; here we are extending that result.

Since the Γβ matrix is a skew symmetric matrix it can be written in a block form
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using an orthogonal matrix V as:

VΓβVT =


0 iν

−iν 0

 , (7.77)

where ν is a diagonal matrix. Then, we can define the following fermionic operators:
d†

d

 = 1√
2

W


γ

γ̄

 = 1
2


I iI

I −iI

V


γ

γ̄

 . (7.78)

Similar to the results in [156], one can make an ansatz for the RDM of the subsystem
1. To be precise, we are assuming that the subsystem 1 is a connected bipartite of the
system starting from site 0 to ℓ. The ansatz should have a form like below with respect to
the operators that diagonalize the Γβ matrix.

ρ
β

1(d, d†) = g(d0, d
†
0, d

†
0d0)×

ℓ∏
k=1

(1 + νk
2 d†

kdk + 1− νk
2 dkd

†
k

)
,

where g is an arbitrary function to be determined. From correlation matrices (section 7.3),
we can realize that

g(c0, c
†
0, c

†
0c0) = Re[β]

1 + |β|2 (c†
0 + c0) + 1

2I. (7.79)

This ansatz satisfies the expectations of the state |β⟩ including one point functions (7.62). It
is easy to show that c† +c =

√
2
(
W †

11d
† +W T

11d
)
, where W is the unitary transformation

which diagonalizes the matrix Γβ. Then, in terms of d and d† operators we have:

ρ
β

1(d, d†) = Re[β]
1 + |β|2

(√
2

2 d0 +
√

2
2 d

†
0 + 1

2I
)
×

ℓ∏
k=1

(1 + νk
2 d†

kdk + 1− νk
2 dkd

†
k

)
, (7.80)

The ansatz (7.80) respects the generalized Wick’s theorem, which means that this RDM
produces all the correlation functions correctly. As an example, one point function is not
necessarily zero for the |β⟩:

⟨d†
k⟩β = 1√

2
Re[β]

1 + |β|2 δk,0, (7.81)

⟨dk⟩β = 1√
2

Re[β]
1 + |β|2 δk,0. (7.82)

Based on (7.65), (7.66) and (3.2), the first row and column of matrix Γβ is zero which
evidently means it has a zero eigenvalue, ν0 = 0. From the earlier statement it can be
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inferred that the matrix which diagonalizes the Γβ -called W - has the following form:

W =


W 11 W 12

W 11
∗ W 12

∗

 ; W 11 =



1 0 · · · 0

0
...

ω

0


. (7.83)

The reason we have defined the W as above is that the d† and d should be related with a
conjugate transpose transformation. From (7.77), The W and V matrices are related by

W ∝

I iI

I −iI

V, which means we can write:


d†

d

 = 1√
2


W 11γ +W 12γ̄

W ∗
11γ +W ∗

12γ̄

 . (7.84)

We know that ⟨γ̄i⟩β = 0 and ⟨γi⟩β = δi,0, then we can write ⟨d†
k⟩β = (W 11)k,0. Making use

of the relation (7.83), we have ⟨d†
k⟩β ∝ δk,0. For the ⟨dk⟩β case, we use the fact that d and

d† are related by a conjugation, which means that ⟨dk⟩β ∝ δk,0 and the proof is complete.

Note that, the above calculation is also valid for states |G+⟩, |G−⟩ and any state
created from the action of η†’s on these states. Consequently, with a proper Γ matrix, a
similar ansatz to (7.80) can be used to study the entanglement for all the states belonging
to the four sectors created with |G±⟩ as introduced in subsection 7.2.6.

7.4.2 Vacuum state

As it was mentioned before the limit β → 0 in the |β⟩, gives the |0⟩η. Equivalently,
lim
β→0

ρβ = ρ0 = |0⟩
η η
⟨0| . Simply, we are going to apply this limit on the results of

subsection 7.4.1 to find the required quantities in this subsection. For instance, in the limit
β → 0, the only nonzero term in (7.71) is |Cβ|2 1

|β|2 . Therefore for the RDM of vacuum
state in the coherent basis we have:

ρ0
1(ξ, ξ′) =

√
det

[
I + R22

†R22
]

√
det

[
I + R†R

] e

1
2

(
ξ̄ ξ′

)
Ω


ξ̄

ξ′


, (7.85)
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where:

A =


R22 −I

I −R∗
22

 , (7.86a)

Ω =


R11 0

0 −R11
∗

+


R12 0

0 R12
∗

A−1


R12

T 0

0 R12
†

 . (7.86b)

The operator form of RDM reads as

ρ0
1(c, c†) =

√
det

[
I + R22

†R22
]

√
det

[
I + R†R

] e

1
2

(
c† c

)
M


c

c†


e

1
2 tr ln(

1
2 Ω12−

1
2 ΩT21)

,

(7.87)

where

M = ln T ; T =


1
2Ω12 − 1

2Ω21
T + 2Ω11(ΩT

12 −Ω21)−TΩ22 2Ω11(ΩT
12 −Ω21)−T

2(ΩT
12 −Ω21)−TΩ22 2(ΩT

12 −Ω21)−T

,
(7.88a)

Ω =


R11 0

0 −R∗
11

+


R12 0

0 R∗
12

A−1


RT

12 0

0 R†
12

 ; A =


R22 −I

I −R∗
22

 . (7.88b)

Since one can use Wick theorem for the state |0⟩η, the RDM can be written in terms
of Majorana fermions and their correlations (introduced in section 7.3) in subsystem 1.
The reduced density matrix can be written as [14]:

ρ0
1(γ, γ̄) = [detI− Γ0

1
2 ] 1

2 e

1
4

(
γ γ̄

)
ln I+Γ0

1
I−Γ0

1


γ

γ̄


, (7.89)

where the
(
γ γ̄

)
contains all the Majorana fermions of subsystem 1. The Γ0

1 stands for

the correlation matrix defined in section 7.3 calculated for the vacuum state and subsystem
1. The constant in (7.89) can be simplified as:

det[I− Γ0
1

2 ] = det[K0
1]det[K̄

0
1 −G0

1.K0
1

−1
.G0

1
T

4 ]. (7.90)
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7.4.3 ZME state

The ZME state can be obtained by the limit |∅⟩ = lim
β→∞

|β⟩. Therefore, the RDM ρ∅ = |∅⟩⟨∅|
in the operator form will be the large β limit of the results of the subsection 7.4.1.

ρβ1(c, c†) = C∅ e

1
2

(
c† c

)
M


c

c†


e

1
2 tr ln(

1
2 Ω12−

1
2 ΩT21)

[
Pf[W ]−L3T 22L2

+
(
L1T 22c

† + (L1T 21 + L2)c
)(

L3T 22c
† + (L4 + L3T 21)c

)]
(7.91)

where

W =


M2 0

0 −M∗
2

A−T


MT

2 0

0 −M†
2

 ; A =


R22 −I

I −R∗
22

 , (7.92a)

M = ln T ; T =


1
2Ω12 − 1

2Ω21
T + 2Ω11(ΩT

12 −Ω21)−TΩ22 2Ω11(ΩT
12 −Ω21)−T

2(ΩT
12 −Ω21)−TΩ22 2(ΩT

12 −Ω21)−T

,
(7.92b)

Ω =


R11 0

0 −R11
∗

+


R12 0

0 R12
∗

A−1


R12

T 0

0 R12
†

 , (7.92c)


L1 L2

L3 L4

 =


M1 0

0 M∗
1

+


M2 0

0 −M∗
2

A−1


RT

12 0

0 R†
12

 . (7.92d)

The above equation is lengthy and calculation of entanglement seem difficult with the
above RDM. However, since the ZME state has an opposite parity with respect to |0⟩η.
One can use the Tilda transformation introduced in the subsection 7.2.4 to write the ZME
state as:

|∅⟩ = C∅e
1
2
∑

i,j
R∅
ij c̃

†
i c̃

†
j ˜|0⟩c (7.93)

with properly defined R∅ matrix and constant C∅. The above Gaussian form for the ZME
state will simplify some of the calculations exceedingly. For instance, using the (7.93), it is
possible to write a shorter notation for RDM as:

ρ∅
1(c, c†) = C∅′

e

1
2

(
c† c

)
M∅


c

c†


, (7.94)
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where C∅′ is the normalization factor and M∅ = ln T ∅ which we have:

T ∅ =


1
2Ω∅

12 − 1
2Ω∅

21
T + 2Ω∅

11(Ω∅
12
T −Ω∅

21)−TΩ∅
22 2Ω∅

11(Ω∅
12
T −Ω∅

21)−T

2(Ω∅
12
T −Ω∅

21)−TΩ∅
22 2(Ω∅

12
T −Ω∅

21)−T

, (7.95a)

Ω∅ =

R∅
11 0

0 −R∅
11

∗

+

R∅
12 0

0 R∅
12

∗

A∅−1

R∅
12
T 0

0 R∅
12

†

 ; A∅ =

R∅
22 −I

I −R∅
22

∗

 .

(7.95b)

The Wick theorem can also be applied to ZME state. Likewise, it is possible to write
the RDM in terms of correlation matrices and Majorana fermions of subsystem 1. We can
write the RDM as:

ρ∅
1(γ, γ̄) =[detI− Γ∅

1
2 ] 1

2 e

1
4

(
γ γ̄

)
ln

I+Γ∅
1

I−Γ∅
1


γ

γ̄


.

(7.96)

In the above expression, the matrix Γ∅
1

is defined in subsection 7.3.2, and the subscript
stands for the correlation matrix for the subsystem.

7.4.4 Zero parity eigenstates

The zero parity eigenstates |G±⟩ are the cases where β = ±1. Using the results of (7.71)
and (7.74), the RDM matrix in coherent basis and operator form for |G±⟩ are given by
setting β = ±1.

7.4.5 Spin versus fermion representation

Although the previous considerations are advantageous numerically to study RDM’s, we
have to point out that the RDM for the spin representation and the fermionic representation
(of the Hamiltonian) are not identical, necessarily. Correspondingly, the entanglement
entropies could end up to be different. Based on the way of selecting the subsystem, RDM’s
(of spin and fermion representations) could be different or equal. This difference can be
expected due to the non-local structure of the Jordan-Wigner transformation [124]. In
general, we are interested in two scenarios for subsystem bipartition as demonstrated in
the figure 5.

For start, if our desired state (like |0⟩ and |∅⟩) is an eigenstate of parity operator,
then RDM has equal form in spin and fermion representations for types (a) and (b)
of subsystems in figure 5. Since the effect of the Jordan-Wigner strings disappears in



Capítulo 7. Entanglement entropy in quantum spin chains with broken parity number symmetry 107

these cases. This statement is true for any boundary as long as boundary terms do not
break the parity symmetry. If subsystem is not connected, then starting from fermionic
representation, to obtain a spin correlation function (like ⟨σxi σxj ⟩), one needs information
about the string of sites between two blocks of subsystem in the fermionic picture, while,
this is not necessary if one asks only for fermionic correlations.

(a)

(b)

(c)

ℓ

ℓ

Figure 5 – The three subsystem block configurations we consider here. (a) a block of length ℓ starting
from the boundary. (b) is a block of length ℓ at a distance from the boundary. The case (c)
shows a disconnected subsystem which does not start from any of boundary points.

In the related case to our study, which we are dealing with an open boundary case
and a state which does not respects the parity (like |β⟩), then the relation between spin
and fermion version of RDM is more peculiar. Essentially, the string of σz’s from Jordan-
Wigner transformation would break off the correspondence between spins and fermions for
a subsystem separated from the boundary, similar to (b) in figure 5. It is an anomaly of
parity broken state that the RDM of any interval starting from the boundary is the same
for spins and fermions. While not starting from one of the boundaries of the chain, other
techniques should be used to find the RDM of spin representation [135]. The arguments
that are presented in this part can be summarized in the table 2.

Tabela 2 – A handy representation of the statements in the section 7.4.5. In the below, ρspin stands for
the RDM in the spin representation and ρfermion is the RDM in the fermionic representation
of the Hamiltonian. The subsystem types are demonstrated in figure 5. In addition, we have
assumed the restriction on β ̸= 0,∞.

State

Subsystem
type (a) type (b) type (c)

|0⟩, |∅⟩ ρspin = ρfermion ρspin = ρfermion ρspin ̸= ρfermion

|β⟩ ρspin = ρfermion ρspin ̸= ρfermion ρspin ̸= ρfermion

7.5 Entanglement Entropy
Given the reduced density matrix ρ

A
describing knowledge of the state of a subsystem A,

the Rényi entanglement entropy is given by:

Sn(A) = 1
1− n log(tr

A
ρn
A

). (7.97)
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The Rényi entanglement entropy can be seen as the generalized version of von Neumann
entanglement measure. In the limit α → 1, Rényi EE produces the Von Neumann EE
(SvN),

SvN(A) = −tr
A
[ρ
A

log ρ
A
]. (7.98)

The difficulty of calculation of the entanglement grows exponentially with size of the
subsystem. One can find a basis which RDM is diagonal, however, it would still be
computationally disadvantageous.

It is possible to have special structure for the RDM to simplify the entanglement
calculation. For instance having a Gaussian form for RDM simplifies the calculation, or
being able to write the RDM in terms of correlation matrices. In the rest of this section,
we first present the result of entanglement for the vacuum state and the ZME state which
are basically the results in [65, 67, 68, 69]. We are going to give the entanglement in terms
of the eigenvalues of the correlation matrices and Gaussian form of the RDM. Next, we
will discuss the entanglement calculation for a general parity broken state such as |β⟩ and
the limiting cases of |G±⟩ which are new.

7.5.1 Vacuum and ZME state

Since the Wick theorem can be applied to the vacuum state we were able to write the
RDM as (7.87). Using the equations (7.87) and (7.97), we can trace the RDM and write
the Rényi entanglement for this state as

S0
n(A) = 1

1− n log
(

Cαdet
[
I + enM

]1
2
)
, (7.99)

where the constant C is given by

C =

√
det
[

I+R22†R22

]
√

det
[

I+R†R
] e

1
2 tr ln( 1

2 Ω12− 1
2 ΩT21). (7.100)

The matrices M and Ω are already defined in (7.88). This relation is computationally
favorable, since all we need to calculate is a determinant.

As it was written in section 7.4.2, we could have also express the RDM in terms
of correlation matrices of Majorana fermions (7.89). Therefore, it is possible to find the
entanglement in terms of the correlation matrix Γ0 (of the vacuum state) for the subsystem
A. Therefore, using the RDM (7.89) and the trace formula for Gaussian function of
fermions, the Rényi EE is given by

S0
n(A) = 1

2(1− n) log det
[
(
1 + Γ0

A

2 )n+(
1− Γ0

A

2 )n
]

= 1
(1− n)

∑
j

log
[
(
1 + ν0

j

2 )n+(
1− ν0

j

2 )n
]

(7.101)
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where the set of {±νk} are the eigenvalues of Γ0
A for the subsystem A. The above relation

is favorable because it is straightforward to find the correlation matrix for states that
obeys Wick theorem.

The entanglement for the ZME state can have a similar form. For instance, in subsection
(7.4.3), it was mentioned that through some canonical transformations it is possible to
write the RDM in Gaussian form (7.94). Similar to previous state, using the Gaussian
form of RDM and tracing that, we can get the Rényi entanglement for subsystem A same
as (7.99) but we have to use R∅ instead of R0. On the other hand, the Wick theorem
can be applied to the ZME state. Hence, it is possible to relate the EE to the correlation
matrices, similar to (7.101). We only need to use the Γ∅

A given in section 7.3.2.

Based on the form of Γ∅
A and Γ0

A, one can deduce that for any subsystem A which does
not include the last lattice point L+ 1, they have equal set of eigenvalues ({ν0} = {ν∅}).
It also means that the entanglement S0

α and S∅
α are equal. It means that the states |0⟩ and

|∅⟩ have the same entanglement properties for any given model (A and B matrices which
depend on the model).

7.5.2 General β-parity broken state

Unlike the vacuum and ZME states, there are not many computationally easy methods
to study the entanglement entropy for a state such as |β⟩. Namely, we can not use
the correlation matrix blindly for this state. In this subsection, we first focus on a
computationally favorable method to study the EE for such state. Then, we offer a relation
for special type of bipartition which relies on correlation matrix. For start, when n ∈ N
we can use Berezin integrations to find the ρβA

n. The steps of calculation are written in
appendix D. The Rényi entanglement entropy for n = 2 is given by:

tr(ρβA
2) =Cβ2Pf[B]

{( 1
|β|2

+ Pf[W ]
)2

+ Pf[W ]
(
CB−TCT |1,2 + CB−TCT |3,4

)

−
CB−TCT |2,4

β2 −
CB−TCT |1,3

β∗2 + 1
|β|2

(
CB−TCT |1,2 + CB−TCT |3,4 − CB−TCT |2,3

− CB−TCT |1,4
)

+ Pf[C.B−T
.CT ]

}
.

(7.102)
Where,

B =



Ω11 0 −Ω12 I

0 Ω11 I Ω12

−Ω21 −I Ω22 0

−I Ω21 0 Ω22


, C =



−L1 0 L2 0

−L3 0 L4 0

0 L1 0 L2

0 L3 0 L4


. (7.103)
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The Ω and L are given by (7.72). Also, the notation X|r,s stand for the element of the
matrix X at the position (r, s). The above expression can be used for any bipartition of
the system. However, we are restricted to the n = 2. From section 7.3.3, we expect to
see no β-dependence in the entanglement entropy when the subsystem does not contain
boundary points [124]. Despite that, the entanglement content would not be the same
from spin perspective to the fermion one. For the case of general parity broken state, if
subsystem is not a connected bipartition starting from boundary, then spin entanglement
and fermion entanglement do not agree.

In section 7.4.1, we proved that it is possible to have an ansatz to write the RDM in
the diagonal form of (7.80). Using this form of RDM one can write the Rényi EE as:

Sβn(A) = 1
1− n

l∑
j=1

log
(
(1 + νj

2 )n + (1− νj
2 )n

)
+ 1

1− n log[(1
2 + fβ)n + (1

2 − fβ)n], (7.104)

where fβ = Re[β]
1+|β|2 , and it is the eigenvalue of the zeroth part of RDM (7.80). In the

above νj’s are the eigenvalues of correlation matrix Γβ. The formula above simplifies the
entanglement studies, however, it is valid for a certain type of the subsystems. The set A
should be connected subsystem of the system containing the site 0 (first site). Otherwise,
we would not be able to get entanglement from correlations of the system.

It is crucial to mention that form of correlation Γβ, in (7.65) and (7.66), indicates that
the eigenvalues of Γβ

A for any subsystem 0 ∈ A and L+ 1 /∈ A are the same as Γ0
A. This

statement means that there is a relation between entanglements S0
n(A), S∅

n(A) and Sβn(A)
(only when n ̸= 1);

S0
n(A) = S∅

n(A) = Sβn(A) + 1
1− n log[ 21−n

(1
2 + fβ)n + (1

2 − fβ)n ]. (7.105)

7.5.3 Zero parity eigenstates

The Rényi entanglement for states |G±⟩ can be computed in different ways. One can use
the (7.102) in the limit β → 1. However, similar to section 7.4.4, it is possible to have an
ansatz to write the RDM in the diagonal form of (7.80). Using this form of RDM one can
write the Rényi EE as [156]:

S±
n (A) = 1

1− n

l∑
j=0

log
(
(1 + νj

2 )n + (1− νj
2 )n

)
− log 2. (7.106)

In the above ν± are the eigenvalues of correlation matrix Γ±. The above formula simplifies
the entanglement studies, however, it is valid for a certain type of the subsystems. The set
A should be connected subsystem of the system containing the site 0 (first site). Otherwise,
we would not be able to get entanglement from correlations of the system.

It is crucial to mention that form of correlation Γ±, in (7.65) and (7.66), indicates
that the eigenvalues of Γ±

A for any subsystem 0 ∈ A and L+ 1 /∈ A are the same as Γ0
A.
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This statement means that there is a relation between entanglements S0
n(A), S∅

n(A) and
S±
n (A);

S0
n(A) = S∅

n(A) = S±
n (A) + log 2. (7.107)

And it is correct for any valid choices of A and B matrices. In fact, one can extend this
argument to any excited state created from |0⟩, |∅⟩ and |G±⟩ with excitation of same
modes, as in

|ψ⟩ =
∏
kj∈E

η†
kj
|0⟩ , |ϕ⟩ =

∏
kj∈E

η†
kj
|∅⟩ , |χ±⟩ =

∏
kj∈E

η†
kj
|G±⟩ .

where set E does not contain mode zero. The general form of correlations for states above
can be found in appendix D. Based on the results of that appendix, we conclude that

Sψn (A) = Sϕn(A) = S
χ±
n (A) + log 2. (7.108)

7.6 Physical interpretation of the parity-broken state
In this section, we give a simple interpretation of the |β⟩ state which helps to understand
some simple cases of the results that we presented so far. This sate can be written as
follows:

|β⟩ = 1√
2(1 + |β|2)

(
(1 + β) |G+⟩+ (1− β) |G−⟩

)
. (7.109)

In the spin representation the above state can be written in an interesting form. Consider
δ+ = 1 then we can write

|β⟩ = 1√
2(1 + |β|2)

(
(1 + β) |+⟩0 |ϕ++⟩ |+⟩L+1 + (1− β) |−⟩0 |ϕ−−⟩ |−⟩L+1

)
, (7.110)

where |ϕ−−⟩ and |ϕ++⟩ are normalized states. The above form suggests that the whole
system can be considered as two qubit with one qubit at site 0 (L+1) and the other the rest
of the system. Interestingly, the entanglement structure of these three parts is independent
of the size of the system and one can easily calculate for example the entanglement of the
site 0 (L+ 1) with the rest, i.e. Sn(0) (Sn(L+ 1));

Sn(0) = Sn(L+ 1) = 1
1− n log[(1

2 + fβ)n + (1
2 − fβ)n], (7.111)

which is consistent with the equation (7.104). We note that one can generalize the above
argument for all the |β⟩ states that can be made out of the eigenstates. The extension to
δ+ = −1 is straightforward. Finally, there is one extra piece that one can add to this story
by considering the following mixed state:

ρβ = 1
2(1 + |β|2)

(
|1 + β|2 |G+⟩ ⟨G+|+ |1− β|2 |G−⟩ ⟨G−|

)
. (7.112)
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0

1 2 L-1 L

L+1

Figure 6 – In this figure the type of interaction among fermions at different sites, for A = B = 0 is
demonstrated. As one can see, there is no particle hoping among sites 1 to L and the only
allowed hoping is from sites 0 or L + 1 with the rest of sites.

One can easily show that the reduced density matrix of the above state is exactly equal to
the reduced density matrix of the |β⟩ state which is guarantied because of the especial
form of the state. This makes the preparation of states with the desired reduced density
matrix very easy. However, it is clear that in the mixed state scenario the von Neumann
entropy does not have entanglement interpretation anymore.

7.7 Examples
In this section, we provide a couple of examples to show how the general results that we
derived can be applied in specific cases. The first example which we are able to do the
entire calculation analytically is the Hamiltonian (7.5) with A = B = 0. There are a few
good reasons to study this Hamiltonian. First of all, for this Hamiltonian one can follow
all the calculations analytically and show the validity of all the presented results. Second,
it is a Hamiltonian that can be used to diagonalize a Hermitian Hamiltonian with linear
creation and annihilation operators which makes it worth studying. Finally interestingly
the entanglement structure that emerges from this Hamiltonian is entirely universal. In
other words the general Hamiltonians with generic parameters end up to have similar
entanglement structure. This is shown in the example of XY chain with arbitrary boundary
magnetic fields which is the second example of this section. The boundary conformal
entanglement entropy at the critical point in this case has been studied already in [156],
however, here we are more concentrated on general aspects of entanglement with respect
to the β parameter and boundary magnetic fields.

7.7.1 A = B = 0

We are going to focus on the entanglement properties here of the case where the A and B
matrices are zero. The coupling of fermions in the system has been demonstrated in figure
6. A detailed study is presented in Appendix D for diagonalization and correlations of this
special case.
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For the vacuum state and ZME state, which Wick theorem is applicable as it was stated
in section 7.5.1, we can relate the Rényi entanglement to the eigenvalues of correlation
matrix Γ introduced in (3.2). In a special type of system bipartition, we could also use the
Γ± to find entanglement for the |G±⟩ case. For any connected subsystem which contains
the site 0 (or site L+ 1), the (positive valued) eigenvalues of correlation matrices Γ0, Γ∅

and Γ± are given by the set:

{ν} =


{0,

√
1− (

∑ℓ

j=1 |αj |2)(
∑L

j=ℓ+1 |αj |2)

(
∑L

j=1 |αj |2)2 , 1, · · · , 1} ℓ ≤ L,

{1, · · · · · · , 1} ℓ = L+ 1.
(7.113)

The fact that we get the same eigenvalues for each of the states above was explained in
section 7.5. Based on the form of correlation matrices similar (up to a zero eigenvalue)
eigenvalues was expected. Using the eigenvalues above the entanglement will be given by
(ℓ ≤ L)

S0
n(ℓ) = S∅

n(ℓ) = 1
1− n log

(
(1
2 + 1

2

√
1− (

∑ℓ

j=1 |αj |2)(
∑L

j=ℓ+1 |αj |2)

(
∑L

j=1 |αj |2)2 )n

+(1
2 −

1
2

√
1− (

∑ℓ

j=1 |αj |2)(
∑L

j=ℓ+1 |αj |2)

(
∑L

j=1 |αj |2)2 )n
)

+ log 2, (7.114)

S±
n (ℓ) = S0

n(ℓ)− log 2. (7.115)

In case where all the αi’s are constant, we would get

S0
n(ℓ) = 1

1− n log
(

(1
2 + 1

2

√
L2−ℓL+ℓ2

L2 )n + (1
2 −

1
2

√
L2−ℓL+ℓ2

L2 )n
)

+ log 2, (7.116)

In the thermodynamic limit (L→∞), we simply get S0
n(ℓ) = S∅

n(ℓ) = log 2 and S±
n (ℓ) = 0.

For any connected bipartition of system with length ℓ which does not contain the 0th

and L+ 1th sites, eigenvalues of Γ0 and Γ∅ are given by

{ν} =


{ (
∑L

k=ℓ+1 |αk|2

(
∑L

k=1 |αk|2)2 , 1, 1, · · · , 1}; ℓ ≤ L,

{0, 1, 1, · · · , 1}; ℓ = L+ 1.
(7.117)

With this type of bipartition for the system, then the correlation matrix can be used to
calculate the entanglement for states |0⟩ and |∅⟩. While for the state |G±⟩ we can not,
despite the fact that the Γ± has the same eigenvalues.

In the case of general β-state, and when αi ∈ R, the von Neumann entanglement will
be:

Sβ
vN

(A) =− 1
2 log

[
(1
4 − fβ)ΣlΣL−l

4Σ2
L

]
− fβ log

(1 + 2fβ
1− 2fβ

)

−
√

Σ2
L−ΣlΣL+Σ2

l

2ΣL log
[ΣL +

√
Σ2
L − ΣlΣL + Σ2

l

ΣL −
√

Σ2
L − ΣlΣL + Σ2

l

]
.

(7.118)
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Where in the above Σl = ∑l
j=1 α

2
j and fβ = Re[β]

1+|β|2 . It is particularly interesting to see the
behavior of entanglement with respect to the β. As it was mentioned previously, parameter
β can be thought as a parameter which breaks the parity continuously. In figure 7, we
have demonstrated a typical behavior of EE for different values of β in complex plain
when all αi’s are real constants. As you can see, for real values of β, the entanglement
is maximum for β = 0,∞ and minimum for β = ±1, which the first one corresponds to
vacuum and ZME state and second one is the |G±⟩. On the other hand, for the purely
imaginary β, entanglement is constant and equal to S0

2 (l) for any value of β which is not
a trivial observation.

Figure 7 – Plot of von Neumann entanglement entropy with respect to β. We already expected that the
entanglement to be minimum for the case of β = ±1 which is apparent in the figure. In the
case where β is purely imaginary, we notice that the EE is again maximum and would not
change. This figure is valid for a connected subsystem starting from site 0, for a general set
of couplings in the Hamiltonian and size of the full system and subsystem.

7.7.2 Modified XY chain with boundary magnetic field

In this section, we consider the modified transverse field XY chain with arbitrary direction
of the boundary magnetic field. We are interested in the following XY Hamiltonian[156]
with open boundary conditions

HXY =J
L−1∑
i=1

[1 + γ

4 σxi σ
x
i+1 + 1− γ

4 σyi σ
y
i+1

]
− h

2

L∑
i=1

σzi

+ 1
2
(
b1,xσ

x
0σ

x
1 + b1,yσ

x
0σ

y
1 + b1,zσ

z
1 + bL,xσ

x
Lσ

x
L+1 + bL,yσ

y
Lσ

x
L+1 + bL,zσ

z
L

) (7.119)

where−→b1 = (b1 sin θ1 cosφ1, b1 sin θ1 sinφ1, b1 cos θ1) and−→bL = (bL sin θ1 cosφ1, bL sin θ1 sinφ1, bL cos θ1)
are constant vectors. Form of HXY suggests that we can diagonalize and find the eigenstates
analytically. Using the Jordan-Wigner transformation

c†
l =

l−1∏
j=0

σzjσ
+
l , (7.120)



Capítulo 7. Entanglement entropy in quantum spin chains with broken parity number symmetry 115

where σ±
n = σxn±iσyn

2 , we can map the Hamiltonian (7.119) to the free fermion Hamiltonian
(7.8), with properly chosen matrices M (see appendix D for a demonstration of this matrix).
The diagonalization process has been explained in details in section 7.2.3. The above
Hamiltonian is related to an XY chain with boundary magnetic fields as:

H
XY = J

L−1∑
i=1

[1 + γ

4 σxi σ
x
i+1 + 1− γ

4 σyi σ
y
i+1

]
− h

2

L∑
i=1

σzi + 1
2(−→b1.

−→σ1 +−→bL.−→σ L). (7.121)

In the above expression, we can think of −→b1 and −→bL as magnetic fields at boundaries of
our spin chain. If we add two auxiliary spins at positions 0 and L + 1, if they can only
interact with the x component of spins at position 1 and L, then we get (7.119). It is
apparent that HXY commutes with σx0 and σxL+1. Due to this fact it is possible to divide
the Hilbert space of HXY in four distinct sectors, labeled by the eigenvalues of σx0 and
σxL+1. Therefore, the eigenstates of Hamiltonian (7.121) would be found in one of these
sectors. This procedure has been explained in section 7.2.6.

7.7.2.1 Determination of BMF Hamiltonian eigenstates

The eigenstates of Hamiltonian (7.121) can be found with a correct projection in the
Hilbert space of (7.119), which was mentioned in the section (7.2.6). Here, we focus on the
XY-chain case and present (apparent) patterns to find the ground state of (7.121). Based
on results of (7.45) and (7.46), one can identify the ground state of BMF spin chain in
|G+⟩ or η†

min |G−⟩4 by finding the δ+. Numerical investigations suggests that the value of
δ+ does not depend on the parameters such as γ, h (fixing J = −1) and strength of the
magnetic field at boundaries. The size of the full system however changes the value of δ+;
For equal directions of boundary fields (−→b1 and −→bL) we get:δ+ = −1 L even,

δ+ = +1 L odd.
(7.122)

Nonetheless, the change in the directions of BMF’s at ends of the chain can affect the
value of δ+. Figure 8 shows the δ+ with respect to the change in the azimuthal and polar
angle of direction of the magnetic field at boundaries. If one eliminates the BMF at one
end of the system (either by putting θ1 = 0, π or b1 = 0), then changing the direction or
strength of BMF at the other end would not affect the δ+ outcome.

To be able to use the relation (7.74), one need to have the unitary transformation U,
which diagonalizes the Hamiltonian, in the form given by (7.15). Necessary condition is
to make sure that eigenstates of M corresponding to zero modes are written correctly,
they are orthogonal and satisfy the (2.47). We have already introduced the zero mode
of the system in section 7.2.2, which explains the 2-fold degeneracy of the ground state.
4 η†

min is the creation operator for the mode with the smallest non-zero energy.
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However, based on some values of coupling parameters (such as uniform external magnetic
field or direction of boundary fields) there could arise more zero modes in the spectrum
of M matrix. For instance, when γ = 1 and φ1, φL = π

2 (and general bulk and boundary
magnetic fields h, −→b1, −→bL), we would have extra zero mode and more degeneracy. For this
values, the extra zero modes eigenvectors of M would be (besides (7.12))

∣∣∣u3
0

〉
= 1√

4+2ζ2
1 +2ζ2

L
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; (7.123)

where ζ1,L = h−b1,L cos θ1,L
b1,L sin θ1,L

. This is an exact zero mode which comes from the fact that
BMF’s does not have any component in the x-direction. In general, there could be more
zero modes for large sizes. It does not seem easy to identify analytically all the points
where we face degeneracy more than the two mentioned. To study entanglement, one
should be careful with the zero modes. As an example, numerical investigations suggests
that for L >> 1, we would expect one more zero mode for h > 1 and independent from
BMF values.

7.7.2.2 Entanglement studies

Regarding the entanglement, we have looked into the entanglement properties of parity
broken state |β⟩. For instance, the behavior of von Neumann entanglement entropy is
plotted with respect to the parameter β in the figure 9 for fixed and equal angles of
boundary fields. Looking to the discussion of section 7.5.2, the entanglement entropy obeys
the relation

S0
n(A) = S∅

n(A) = Sβn(A) + 1
1− n log[ 21−n

(1
2 + fβ)n + (1

2 − fβ)n ], fβ = Re[β]
1 + |β|2 . (7.124)
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Since the relation above is general and does not depend on parameters of the model, it is
expected to see the same behavior of entanglement entropy with the change in the β as in
figure 7.

For most parts of this subsection, we are interested in case where the boundary
magnetic fields are the same in both edges, i. e., b⃗1 = b⃗L. Another compelling observation
would be the effect of the boundary field direction (same in both ends) on the entanglement
of a particular state such as |G+⟩. Results have been demonstrated in figure 10. For specific
angles of BMF in the xy-plane, we observe a huge change in the value of entanglement
entropy. For the small magnetic field (h < J as in figure 10a), there are two degenerate
ground states for BMF Ising model: one can write 1

2(|→→ · · · →⟩+ |←← · · · ←⟩) as the
ground state. When φ ≈ 0, the first spin prefers |→⟩ over the other possibility, |←⟩, which
lowers the boundary entanglement 5 . As φ→ π

2 ,
3π
2 , both possible state of x-spin for the

first spin would be equally probable, since the boundary magnetic field aligns the first spin
in the (positive or negative) y direction. This would result in increase in entanglement. As
the angle θ increases, the intensity of BMF interaction b⃗1.S⃗1 opposes the uniform magnetic
field h in the system. So, we would expect smaller jumps in the entanglement for bigger θ.

In the large magnetic fields (h > J as in figure 10c or the paramagnetic state) the
ground state is not degenerate, being all spins almost aligned in the direction of h. When
BMF in the xy-plan is small (θ ≈ 0, π), entanglement would not change much by change
in φ. Although almost constant, entanglement is a bit higher for small θ ∼ 0 rather than
θ ∼ π. As the intensity of BMF in xy-plan increases (for example θ = π

4 ), first few spins at
the beginning of the chain would get out of all parallel positioning and the entanglement
changes with the angle of φ.

Conclusions
In this chapter, we investigated a generic quantum spin chain Hamiltonian with arbitrary
boundary magnetic fields. As far as the bulk Hamiltonian can be mapped to free fermions
even though the boundary terms are not quadratic with respect to free fermions we were
able to diagonalize the Hamiltonian exactly. This was done using two ancillary extra sites
and later projection of the eigenstates. The extended Hamiltonian was studied in depth
and many properties of the Hamiltonian was studied including eigenstates in configuration
bases, the correlation function of eigenstates and the reduced density matrix. The extended
Hamiltonian always has at least one zero mode which guaranties the presence of degeneracy.
To get the eigenstates of the original spin chain one needs to go to the sector in which the
parity number symmetry is broken. We studied comprehensively these eigenstates and
found the correlation functions, reduced density matrix and the entanglement entropy.
5 Size of the subsystem has considered to be small so effect of boundary entanglement be more apparent
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Figure 8 – Different values of δ+ for difference in the directions of boundary fields b⃗1 =
(sin θ1 cos φ1, sin θ1 sin φ1, cos θ1) and b⃗L = (sin θL cos φL, sin θL sin φL, cos θL). We have de-
fined ∆φ = φL − φ1 and ∆θ = θL − θ1. The direction of boundary field at the first site is
fixed by θ1 = φ1 = π

200 and we change the angles at end point of the chain. On the right, we
have L = 9 and left hand side corresponds to L = 10. Rest of the parameters are: J = −1,
γ = 1/2 and h = 0.518.

Figure 9 – In above, the typical behavior of von Neumann entropy with respect to parameter β is plotted
for a subsystem of length ℓ starting from boundary of the chain. Size of the full system is
L = 30 and subsystem is l = 14. Rest of the parameters are: J = γ = 1, h = 1

2 , b
L,x,y

= 1,
b1,x,y

= 1 and b1,L,z = 0.

Interestingly the general features are independent of the parameters of the Hamiltonian and
one can get universal results for the reduced density matrix and entanglement for generic
eigenstates. The procedure used here can be extended for the other similar situations such
as local breaking of the parity number symmetry in quantum spin chains due to local
magnetic field impurity. It can be also useful to study local quantum quenches in quantum
spin chains.
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Figure 10 – In this figure, the von Neumann entropy is plotted with respect to the angles of BMF,
for three values of magnetic field, h = 1

2 , 1, 3
2 respectively. We have put b1,x = bL,x =

sin(θ) cos(ϕ), b1,y = bL,y = sin(θ) sin(ϕ) and b1,z = bL,z = cos(θ). Rest of parameters
are: L = 30, l = 2, β = +1, J = −1 and γ = 1. To better manifest the change in the
entanglement entropy, size of the subsystem is selected to be close to the beginning of the
chain. We observe that there is a change in the entanglement at φ = π

2 , 3π
2 . As mentioned

before, there is (one) more zero mode in the eigenvalues of M matrix in (7.9) for h > 1.
However, this is not an exact zero mode and for size L = 30, it is small but not zero.
Therefore, observation above is intact.
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Conclusion

This thesis aimed to lay out a circumstantial explanation of the means and methods of
studying XY spin chains and the quadratic fermion models and how these particular
families of spin chains are connected to the free fermions models. In part I, the tools
provided by quadratic fermion models allow us to calculate the correlation function of
either spins or fermions. With the help of these methods, different formulations of density
matrix and reduced density matrix were presented. Although these topics are not new
and important developments in this line of research was made 50-60 years ago, there is
still much to discover and unfold in these models. Moreover, after many decades since
the beginning, a comprehensive review of these models has not been presented in the
literature. In part II, contains the contributions of my PhD to this field of research, for
instance, chapter 6 explains the peculiar behavior of averaging entanglement entropy of
subsystems over all eigenstates in these models. The arguments and reasonings of this
chapter are mounted in the most general form possible. Chapter 7 provides a good example
of utilizing techniques of free fermions to study entanglement contents of an non-integrable
spin model. Actually, it provides a computationally simple method to study entanglement
in a spin chain with boundary magnetic field, previously thought to be cumbersome and
only investigated in special limits.

With any great solvable models, comes limitations. Although interesting fir its own
sake, a general quadratic fermion Hamiltonian, in d-dimensions, does not map to a spin
model. It is a problem because there has been no consistence definition for a fermionization
transformation in d > 1 dimensions. While in 1D, the family of XY spin chains are solvable,
not all the spin chains obtained by the inverse Jordan-Wigner transformation of a quadratic
fermion are practical to study. Another downside to point out is that the general quadratic
fermion models lack the possibility of studying interacting fermion models, except a small
number of cases. For the future references, one could look at the improvements in emerging
quantum simulations and quantum devices using the many-body relations available in free
fermions and spin chains. Existing connections among different quantities (correlation,
entanglement, full counting statistics) in free fermions can be useful in better quantum
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algorithms. Since these models can also be used as a playground to study symmetric field
theories and CFT’s. it oopens up the possibility to uncover new aspects of theoretical
physics.
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Grassmann algebra and integration
Grassmann numbers are defined by their anti-commutation. That is given two Grassmann
numbers ξi and ξj, we have

{ξn, ξm} = 0 (A.1)

In particular, this means that given an anti-commuting number ξl, it satisfies ξ2
l = 0,

known as nilpotent with degree 2. The complex conjugates of Grassmann variables, ξ̄, are
defined similarly:

{ξn, ξm} = {ξn, ξ̄m} = {ξ̄n, ξ̄m} = 0. (A.2)

It is of interest to point out that the most general function of a Grassmann variable ξ can
be written as

f(ξ) = a+ bξ, (A.3)

where a and b are normal constants, that is it is at most linear in ξ due to nilpotent
condition. I would like to present the integral over Grassmann variable as defined by
Berezin: ∫

dξn =
∫
dξ̄n = 0

∫
dξnξm =

∫
dξ̄nξ̄m = δnm. (A.4)

In the following, I listed some Gaussian integrals regarding the Grassmann variables.
For more details of see [58]. Consider the following notation: A is an antisymmetric matrix
with size 2n×2n, C is an arbitrary matrix with size r×2n and pf[M] is called the Pfaffian
of the matrix M. ∫ ∏

l

dξldξ̄l eξ̄Aξ = det(A) (A.5)

∫ ∏
l

dξldξ̄l eξ̄Aξ+λ̄ξ+ξ̄λ = det(A)e−λ̄A−1λ (A.6)

∫ ∏
l

dξl e
1
2ξ
TAξ+λTξ = pf[A]e

1
2λ

TA−1λ (A.7)

∫ ∏
l

dξl (
∏
i∈J

ξi) e
1
2ξ
TAξ =

0 J odd

pf[A] pf[(A−T )JJ ] J even
(A.8)

∫ ∏
l

dξl (Cξ)1 · · · (Cξ)r e
1
2ξ
TAξ =

0 r odd

pf[A] pf[CA−TCT ] r even
(A.9)
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Fermionic coherent states
In this section, I introduce the fermionic coherent state which is a very useful representation
to simplify some calculations. It is defined as

|ξ⟩ = |ξ1, ξ2, ..., ξN⟩ = e−
∑N

k=1 ξk c
†
k |0⟩, (A.10)

where ξk’s are Grassmann variables. It satisfies the following simple property

ci |ξ⟩ = ξi|ξ⟩, ⟨ξ|c†
i = ⟨ξ|ξ̄i. (A.11)

The overlap can be calculated easily as

⟨ξ|ξ′⟩ = eξ̄.ξ
′
. (A.12)

For coherent states the closure relation may be written as∫ ∏
i

dξ̄idξie
−ξ̄.ξ|ξ⟩⟨ξ| = 1. (A.13)

Using the above equation one can simply expand any state in the coherent basis as follows

|ψ⟩ =
∫ ∏

i

dξ̄idξie
−ξ̄.ξψ(ξ̄)|ξ⟩, (A.14)

where ψ(ξ̄) = ⟨ξ|ψ⟩. The other important formula is the trace of an arbitrary operator in
the coherent basis. It has the following form

trO =
∫ ∏

i

dξ̄idξie−ξ̄.ξ ⟨−ξ| O |ξ⟩ (A.15)

In the following we summarize some equations regarding the expectation values in the
coherent basis. The matrix element of a normal-ordered operator Ô(c†

i , ci) between two
coherent states is very simple:

⟨ξ| Ô(ci, c†
i ) |ξ′⟩ = eξ̄.ξ

′O(ξ′
i, ξ̄i). (A.16)
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Example: XY-spin and Fermionic Hamiltonian comparison
Here, we are going to elaborate more on the computational implantation of XY model.
We will discuss some examples with small sizes for a better demonstrarion.

A chain with two spins: In this example, we only consider two spins on a chain. The
Hamiltonian of this system will be as below.

H = −J
(1 + γ

4 σx1σ
x
2 + 1− γ

4 σy1σ
y
2

)
− h

2
(
σz1 + σz2

)
(E.1.1.1)

It obvious that for only particles, we do not need to distinguish between open and periodic
boundary conditions. This system has four states which in z-basis they would be |↑↑⟩,
|↑↓⟩, |↓↑⟩ and |↓↓⟩. Since, we are working in the z-basis, the Hamiltonan matrix would be

H =



−h 0 0 −Jγ
2

0 0 −J
2 0

0 −J
2 0 0

−Jγ
2 0 0 h


Next, we are going to diagonalize this Hamiltonian by solving the eigenvalue equation
det[H − λ1] = 0. It will yield the following eigenvalues and the associated eigenvectors:

λi =



−J
2

J
2

−1
2
√
γ2J2 + 4h2

1
2
√
γ2J2 + 4h2

, |λi⟩ →



1√
2 |↓↑⟩+ 1√

2 |↑↓⟩
1√
2 |↓↑⟩ −

1√
2 |↑↓⟩

Jγ√
2cλ(2h+cλ)

|↓↓⟩+
√

2h+cλ
2cλ
|↑↑⟩

Jγ√
2cλ(cλ−2h)

|↓↓⟩ −
√

cλ−2h
2cλ
|↑↑⟩

;

where cλ =
√

4h2 + J2γ2.

A chain with three spins: Unlike the previous example, in this case we need to note
the boundary conditions. Also, it is important to note the convention for ordering of rows
(Columns) here. The below chosed ordering is based on the Mathematica’s application
ordering convention,

|1⟩ = |↑↑↑⟩ , |2⟩ = |↑↑↓⟩ , |3⟩ = |↑↓↑⟩ , |4⟩ = |↑↓↓⟩
|5⟩ = |↓↑↑⟩ , |6⟩ = |↓↑↓⟩ , |7⟩ = |↓↓↑⟩ , |8⟩ = |↓↓↓⟩

(E.1.1.2)
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Hamiltonian matrix for an open chain (in z-basis) is

Hobc =



−3h
2 0 0 −Jγ

2 0 0 −Jγ
2 0

0 −h
2 −J

2 0 0 0 0 −Jγ
2

0 −J
2 −h

2 0 −J
2 0 0 0

−Jγ
2 0 0 h

2 0 −J
2 0 0

0 0 −J
2 0 −h

2 0 0 −Jγ
2

0 0 0 −J
2 0 h

2 −J
2 0

−Jγ
2 0 0 0 0 −J

2
h
2 0

0 −Jγ
2 0 0 −Jγ

2 0 0 3h
2


Eigenvalues and eigenstates are as below (For sake of simplicity and as an attempt to not
write complicated terms here we only write in symbolic terms!)

|E1⟩ =



0

−1

0

0

1

0

0

0



, E1 = −
h

2
|E2⟩ =



0

0

0

−1

0

0

1

0



, E2 =
h

2
|E3⟩ =



0

α1

β1

0

δ1

0

0

1



, E3 = λ3

|E4⟩ =



0

α2

β2

0

δ2

0

0

1



, E4 = λ4 |E5⟩ =



0

α3

β3

0

δ3

0

0

1



, E5 = λ5 |E6⟩ =



α4

0

0

1

0

β4

1

0



, E6 = λ6
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|E7⟩ =



α5

0

0

1

0

β5

1

0



, E7 = λ7 |E8⟩ =



α6

0

0

1

0

β6

1

0



, E8 = λ8

For the periodic boundary conditions, we have

Hpbc =



−3h
2 0 0 −Jγ

2 0 −Jγ
2

−Jγ
2 0

0 −h
2

−J
2 0 −J

2 0 0 −Jγ
2

0 −J
2

−h
2 0 −J

2 0 0 −Jγ
2

−Jγ
2 0 0 h

2 0 −J
2

−J
2 0

0 −J
2

−J
2 0 −h

2 0 0 −Jγ
2

−Jγ
2 0 0 −J

2 0 h
2

−J
2 0

−Jγ
2 0 0 −J

2 0 −J
2

h
2 0

0 −Jγ
2

−Jγ
2 0 −Jγ

2 0 0 3h
2


Eigenvalues and eigenstates for the PBC are

|E1⟩ =



0

−1

0

0

1

0

0

0



, E1 =
J − h

2
|E2⟩ =



0

−1

1

0

0

0

0

0



, E2 =
J − h

2
|E3⟩ =



0

0

0

−1

0

0

1

0



, E3 =
J + h

2
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|E4⟩ =



0

0

0

−1

0

1

0

0



, E4 =
J + h

2
|E5⟩ =



2h−J+α
Jγ

0

0

1

0

1

1

0



, E5 = −
h+ J + α

2

|E6⟩ =



2h−J−α
Jγ

0

0

1

0

1

1

0



, E6 = −
h+ J − α

2
|E7⟩ =



0

2h+J+Jγ2+β
γ(−2h+2J+β)

2h+J+Jγ2+β
γ(−2h+2J+β)

0

2h+J+Jγ2+β
γ(−2h+2J+β)

0

0

1



, E7 =
h− J − β

2

|E8⟩ =



0

− 2h+J+Jγ2−β
γ(2h−2J+β)

− 2h+J+Jγ2−β
γ(2h−2J+β)

0

− 2h+J+Jγ2−β
γ(2h−2J+β)

0

0

1



, E8 =
h− J + β

2

In this part, we are going to compare the free fermionic Hamiltonian (2.34) with equation
(2.2). For to fermions the fermionic Hamiltonian reads as

HXY = J

2
(
c†

1c2 + γc†
1c

†
2 + c†

2c1 + γc2c1
)
− h(c†

1c1 + c†
2c2) + h

For two particles, open and periodic boundary conditions have the same form. Before we
proceed further, it is necessary to talk about the eigen-states of this two-body Hamiltonian.
we start by XY-Hamiltonian eigen-state, |↓↓⟩ = |00⟩ then |↑↓⟩ = c†

1 |00⟩, and consequently

|↓↓⟩ = |00⟩
|↓↑⟩ = |01⟩ = −c†

2 |00⟩ , |↑↓⟩ = |10⟩ = c†
1 |00⟩

|↑↑⟩ = |11⟩ = c†
2c

†
1 |00⟩ = −c†

1c
†
2 |00⟩
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But why there is a mines sign? The reason is when we write |1 · · · 1⟩ it means c†
1 |0⟩ · · · c†

n |0⟩.
So in a term like c†

n · · · c
†
1 acting on |0 · · · 0⟩ we need to move the c†

i>1 to the right of c1

and that produces some mines signs. Using this analogy and the same computation logic ,
matrix representation of the above equation is (not normalized!)

HXY = −1
2



2h 0 0 Jγ

0 0 J 0

0 J 0 0

Jγ 0 0 −2h


Eigenvalues and corresponding eigenvectors are as follow

|E1⟩ = 1√
2
(
|10⟩+ |01⟩

)
, E1 = −J

2 and |E2⟩ = 1√
2
(
|01⟩ − |10⟩

)
, E2 = J

2

|E3⟩ = 2h + λ

γJ
|11⟩+ |00⟩ , E3 = −λ

2
and

|E4⟩ = 2h− λ

γJ
|11⟩+ |00⟩ , E4 = λ

2

where λ =
√
γ2J2 + 4h2. With these results, it is obvious that both these two-body

Hamiltonians (before and after the fermionic transformation) have the same spectrum and
eigen-states.

Next we will investigate the three body Hamiltonian (2.34) and compare the resulted
eigenvalue and eigenvectors with those of the original XY Hamiltonian (2.2). In general,
the fermionic Hamiltonian for three particles is

HXY =J2
(
c†

1c2 + c†
2c3 + γc†

1c
†
2 + γc†

2c
†
3 + c†

2c1 + c†
3c2 + γc2c1 + γc3c2

)
− h(c†

1c1 + c†
2c2 + c†

3c3)−
JN
2
(
c†

3c1 − c3c
†
1 + γc†

3c
†
1 − γc3c1

)
+ 3h

2
which N determines the boundary condition. It is zero for open chain and ±1 for periodic
one. First we probe the open fermmionic chain which we have

HO =



− 3h
2 0 0 −Jγ

2 0 0 −Jγ
2 0

0 −h
2 −J

2 0 0 0 0 −Jγ
2

0 −J
2 −h

2 0 −J
2 0 0 0

−Jγ
2 0 0 h

2 0 −J
2 0 0

0 0 −J
2 0 −h

2 0 0 −Jγ
2

0 0 0 −J
2 0 h

2 −J
2 0

−Jγ
2 0 0 0 0 −J

2
h
2 0

0 −Jγ
2 0 0 −Jγ

2 0 0 3h
2


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Eigenvalues and eigenstates are calculated in subsection 2.2.2 for this type of boundary.
Indeed, these calculation are much easier in the periodic boundary conditions. However,

we should note that in the fermionic system periodic boundary can be a little tricky. for
instance, N = ±1 and that means we have two matrices for this boundary conditions.

HN = +1
P =



− 3h
2 0 0 −Jγ

2 0 −Jγ
2 −Jγ

2 0

0 −h
2 −J

2 0 J
2 0 0 −Jγ

2

0 −J
2 −h

2 0 −J
2 0 0 Jγ

2

−Jγ
2 0 0 h

2 0 −J
2 −J

2 0

0 J
2 −J

2 0 −h
2 0 0 −Jγ

2

−Jγ
2 0 0 −J

2 0 h
2 −J

2 0

−Jγ
2 0 0 −J

2 0 −J
2

h
2 0

0 −Jγ
2

Jγ
2 0 −Jγ

2 0 0 3h
2


Eigenvalues and eigenstates are:

∣∣E+
1
〉

=



0

−1

0

0

1

0

0

0



, E+
1 = −

h+ J

2

∣∣E+
2
〉

=



0

1

1

0

0

0

0

0



, E+
2 = −

h+ J

2

∣∣E+
3
〉

=



0

0

0

−1

0

0

1

0



, E+
3 =

h+ J

2

∣∣E+
4
〉

=



0

0

0

−1

0

1

0

0



, E+
4 =

h+ J

2

∣∣E+
5
〉

=



−J−2h−α
Jγ

0

0

1

0

1

1

0



, E+
5 = −

J + h+ α

2
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∣∣E+
6
〉

=



0

2h−J−Jγ2+α
γ(2h+2J−α)

−2h+J+Jγ2−α
γ(2h+2J−α)

0

2h−J−Jγ2+α
γ(2h+2J−α)

0

0

1



, E+
6 =

J + h− α

2

∣∣E+
7
〉

=



2h−J−α
Jγ

0

0

1

0

1

1

0



, E+
7 = −

J + h− α

2

∣∣E+
8
〉

=



0

2h−J−Jγ2−α
γ(2h+2J+α)

− 2h−J−Jγ2−α
γ(2h+2J+α)

0

2h−J−Jγ2−α
γ(2h+2J)α)

0

0

1



, E+
8 =

J + h+ α

2

Also for N = −1 we have

HN = −1
P =



− 3h
2 0 0 −Jγ

2 0 Jγ
2 −Jγ

2 0

0 −h
2 −J

2 0 −J
2 0 0 −Jγ

2

0 −J
2 −h

2 0 −J
2 0 0 −Jγ

2

−Jγ
2 0 0 h

2 0 −J
2

J
2 0

0 −J
2 −J

2 0 −h
2 0 0 −Jγ

2

Jγ
2 0 0 −J

2 0 h
2 −J

2 0

−Jγ
2 0 0 J

2 0 −J
2

h
2 0

0 −Jγ
2 −Jγ

2 0 −Jγ
2 0 0 3h

2


So the eigenvalues and eigenstates are

∣∣E−
1
〉

=



0

0

0

−1

0

0

1

0



, E−
1 =

h− J

2

∣∣E−
2
〉

=



0

0

0

1

0

1

0

0



, E−
2 =

h− J

2

∣∣E−
3
〉

=



0

−1

0

0

1

0

0

0



, E−
3 =

J − h

2



APÊNDICE B. Appendix of Chapter 2 148

∣∣E−
4
〉

=



0

−1

1

0

0

0

0

0



, E−
4 =

J − h

2

∣∣E−
5
〉

=



0

2h+J+Jγ2+β
γ(−2h+2J+β)

2h+J+Jγ2+β
γ(−2h+2J+β)

0

2h+J+Jγ2+β
γ(−2h+2J+β)

0

0

1



, E−
5 =

h− J − β

2

∣∣E−
6
〉

=



2h+J+β
Jγ

0

0

1

0

−1

1

0



, E−
6 =

J − h− β

2

∣∣E−
7
〉

=



0

− 2h+J+Jγ2−β
γ(2h−2J+β)

− 2h+J+Jγ2−β
γ(2h−2J+β)

0

− 2h+J+Jγ2−β
γ(2h−2J+β)

0

0

1



, E−
7 =

h− J + β

2

∣∣E−
8
〉

=



2h+J−β
Jγ

0

0

1

0

−1

1

0



, E−
8 =

−h+ J + β

2

Where α = (4h2 − 4hJ + J2 + 3J2γ2) 1
2 and β = (4h2 + 4hJ + J2 + 3J2γ2) 1

2 .

This two Hamiltonian (periodic boundary condition) have sixteen eigenvalues and
corresponding eigenstates. However, before the JW transformation, we had 8 eigenvalues
with the same number of particles and boundary condition. It is necessary to identify
which of these states are irrelevant, and to do so, we make a comparison with results of the
same system before the JW transformation. To determine which eigenstates are favorable
and which are not let us act on them with N̂ .

N̂
∣∣∣E+

i

〉
=

+
∣∣∣E+

i

〉
i = 3, 4, 5, 7

−
∣∣∣E+

i

〉
i = 1, 2, 6, 8
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N̂
∣∣∣E−

i

〉
=

+
∣∣∣E−

i

〉
i = 1, 2, 6, 8

−
∣∣∣E−

i

〉
i = 3, 4, 5, 7

The logic behind the selection of relevant states is simple, we want those states which
respect the Parity. For instance,

N̂
∣∣∣E±

i

〉
= ±

∣∣∣E±
i

〉
(B.1)

and the rest are unrelated.

Another question which needs to be addressed is that the real ground state lies in
which sector of Hilbert space? The answer is it depends on the parameters. It can be seen
by comparing the eigenvalues E±

i with those of periodic Hamiltonian in subsection 2.2.2,
for −1 < h < 1, the ground state is alternatively lies in one of the N = ±1 sectors. This
mechanism is also called vacua competition between the two parity sectors (see figure 11).
In this region, the first excited state is going to be the other sector’s ground state (

∣∣∣E+
5

〉
).

However, this is not the whole picture. By doing the same calculation for different
number of particles and comparing the results of fermionic mapping with those of XY-
model, an interesting case happens. For h < −1, the ground state with N = −1 for even
number of particles (N = +1 for odd number of particles) is not physical because it has
the wrong parity (B.1) and it is ruled out. Analogously, for h > 1 the ground state with
N = −1 for both even and odd number of particles is ruled out. We will elaborate on the
phase transition in the XY-model and this change in ground state, later in this review.
Aside from that, It is apparent that there is no specific order for states to be one from
N = −1 and the next one from the other sector. Never the less, half of them are from
mines sector and the other half are from the positive sector.
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-2
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h

N=-1

N=+1

(a) L = 3 and J = 1

-2 -1 0 1 2

-2

-1

0

1

2

γ

h N=+1

N=-1

N=-1

(b) L = 4 and J = 1

-2 -1 0 1 2

-2

-1

0

1

2

γ

h

N=+1

N=-1

(c) L = 5 and J = 1

-2 -1 0 1 2

-2

-1

0

1

2

γ

h N=-1

N=+1

N=+1

(d) L = 6 and J = 1

Figure 11 – This is an illustration of different regions of XY-model phase diagram (also the
fermionic system) for different L’s. in the blue regions the real ground state lies in
N = −1 sector and white region for the other sector. In these regions both ground
states of two sectors are physical. The orange (green) region corresponds to the
case where N = −1 (N = +1) ground state or vacuum is not a physical state and,
therefore, it does not appear in the XY spectrum. Graph is plotted for J = 1 and
(a) L = 3, (b) L = 4, (c) L = 5 and (d) L = 6.
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Details of calculations in section 2.2.5
Proof of commutation relations (2.31) from spin point of view.

{
c†
l , c

†
n

}
=
∏
j<l

σzjσ
+
l ,
∏
i<n

σzi σ
+
n

 =
∏
j<l

σzjσ
+
l

∏
i<n

σzi σ
+
n +

∏
i<n

σzi σ
+
n

∏
j<l

σzjσ
+
l (B.2)

If n = l then ∏σzi ∏σzi = 1 and σ+
l σ

+
l = 0 so terms in the right side of the above equation

vanishes. If n ̸= l, then we assume that n > l. With this assumption, and using the fact
that

{
σza, σ

+
b

}
= 0, in ∏

j<l σ
z
jσ

+
l

∏
i<n σ

z
i σ

+
n we move σzi to the left for all i < l. In the

second term, ∏i<n σ
z
i σ

+
n

∏
j<l σ

z
jσ

+
l , we move all the σzj ’s to the left (they all commute with

σ+
n ).

{
c†
l , c

†
n

}
=σ+

l

n−1∏
i=l

σzi σ
+
n +

n−1∏
i=l

σzi σ
+
n σ

+
l = −

n−1∏
i=l

σzi σ
+
l σ

+
n +

n−1∏
i=l

σzi σ
+
n σ

+
l = 0 (B.3)

Assuming l > n would have resulted the same, although in that case we had to move
σzj to the right. Using the same procedure, we can show that {cl, cn} = 0. For the other
anticommutation relation we have:

{c†
l , cn} ={

∏
j<l

σzjσ
+
l ,
∏
i<n

σzi σ
−
n } =

∏
j<l

σzjσ
+
l

∏
i<n

σzi σ
−
n +

∏
i<n

σzi σ
−
n

∏
j<l

σzjσ
+
l

If n = l :
=
∏
j<l

σzj
∏
i<n

σzi σ
+
l σ

−
n +

∏
i<n

σzi
∏
j<l

σzjσ
−
n σ

+
l =

∏
i

(σzi )2[σ+
n σ

−
n + σ−

n σ
+
n ] = 1

IF n ̸= l :

=
n−1∏
i=l

σ+
l σ

z
i σ

−
n +

n−1∏
i=l

σzi σ
−
n σ

+
l = −

n−1∏
i=l

σzi σ
+
l σ

−
n +

n−1∏
i=l

σzi σ
−
n σ

+
l = 0

(B.4)

Therefore, we have {c†
l , cn} = δn,l.
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[
N̂ , HXY

]
= −J [

L∏
n=1

σzn,
L∑
l=1

(1 + γ

4 σxl σ
x
l+1 + 1− γ

4 σyl σ
y
l+1

)
]

=
∑
l

1 + γ

4 [
∏
n

σzn, σ
x
l σ

x
l+1] +

∑
l

1− γ
4 [

∏
n

σzn, σ
y
l σ

y
l+1]

=
∑
l

1 + γ

4 [
∏
n

σzn, σ
x
l ]σxl+1 +

∑
l

1 + γ

4 σxl [
∏
n

σzn, σ
x
l+1]

+
∑
l

1− γ
4 σyl [

∏
n

σzn, σ
y
l+1] +

∑
l

1− γ
4 [

∏
n

σzn, σ
y
l ]σ

y
l+1

=
∑
l

1 + γ

4 σ′z
l [σzl , σxl ]σxl+1 +

∑
l

1 + γ

4 σxl σ
′z
l+1[σzl+1, σ

x
l+1]

+
∑
l

1− γ
4 σyl σ

′z
l+1[σzl+1, σ

y
l+1] +

∑
l

1− γ
4 σ′z

l [σzl , σ
y
l ]σ

y
l+1

=
∑
l

i
1 + γ

4 σ′z
l,l+1

(
σyl σ

z
l+1σ

x
l+1 + σxl σ

z
l σ

y
l+1

)
−
∑
l

i
1− γ

4 σ′z
l,l+1

(
σxl σ

z
l+1σ

y
l+1 + σyl σ

z
l σ

x
l+1

)
=−

∑
l

1 + γ

4 σ′z
l,l+1

(
σyl σ

y
l+1 − σ

y
l σ

y
l+1

)
+
∑
l

1− γ
4 σ′z

l,l+1

(
σxl σ

x
l+1 − σxl σxl+1

)
= 0

(B.5)
where σ′z

l,l+1 = ∏L
n=1

n̸=l,l+1
σzn and in the last line we have used the relation σaσb = δa,b + iεabcσ

c.

Here, we go through the fermionization calculations part by part, using the relations
(2.31) and (2.33). For start, let us transform the second part of the XY Hamiltonian (2.2).

h

2

L∑
l=1

σzl =h2

L∑
l=1

(c†
l cl − clc

†
l ) = h

2

L∑
l=1

(2c†
l cl − 1) = h

L∑
l=1

c†
l cl −

hL

2

For the interaction parts, we replace σxl σxl+1 = (cl − c†
l )(cl+1 + c†

l+1) and σyl σ
y
l+1 = −(c†

l +
cl)(cl+1 − c†

l+1). However, we should be very careful about the boundary. First, we only
calculate this transformation up to site L− 1,

J

2

L−1∑
l=1

[1 + γ

2 σxl σ
x
l+1 + 1− γ

2 σyl σ
y
l+1

]
= −J2

L−1∑
l=1

[1 + γ

2 (c†
l − cl)(cl+1 + c†

l+1)

+ 1− γ
2 (c†

l + cl)(cl+1 − c†
l+1)

]
= −J2

L−1∑
l=1

[
c†
l cl+1 − clc†

l+1 + γc†
l c

†
l+1 − γclcl+1

]
.

Now for the boundary sites L and 1 we have:
J

2
(1 + γ

2 σxLσ
x
L+1 + 1− γ

2 σyLσ
y
L+1

)
= J

2
(1 + γ

2 σxLσ
x
1 + 1− γ

2 σyLσ
y
1

)
=J2

[1 + γ

2
∏
j<L

σzj (c
†
L + cL)(c1 + c†

1)−
1− γ

2
∏
j<L

(cL − c†
L)(c1 − c†

1)
]

=JN̂2
[1 + γ

2 σzL(c†
L + cL)(c1 + c†

1)−
1− γ

2 σzL(cL − c†
L)(c1 − c†

1)
]

=JN̂2
[
c†
Lc1 + c†

1cL + γc†
Lc

†
1 − γcLc1

]
.
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In the third line we have used the relations σzLc
†
L = c†

L and σzLcL = −cL. Due to interchange
of N̂ with cL and c†

l a minus sign is also produced,
{
N̂ , c(†)

l

}
= 0, which shows that this

Hamiltonian is Hermitian.

XY model symmetry and transformation calculation

AXX =1
4

[
(γ + 1) sin4(α)n4

x + 2 sin2(α)n2
x

(
(1− 3γ) sin2(α)n2

y + (γ + 1)

× [cos2(α)− sin2(α)n2
z]
)
− 8(γ − 1) sin3(α) cos(α)nxnynz

+ (γ + 1)
(
cos2(α)− sin2(α)n2

y

)
2 + 2 sin2(α)n2

z[(1− 3γ) cos2(α)

+ (γ + 1) sin2(α)n2
y] + (γ + 1) sin4(α)n4

z

]
(B.6)

AY Y =− 1
4γ cos4(α) + cos4(α)

4 − 1
4γ sin4(α)n4

x + 1
2γ sin2(α) cos2(α)n2

x

+ 1
4 sin4(α)n4

x −
1
2 sin2(α) cos2(α)n2

x + 3
2γ sin4(α)n2

xn
2
y

+ 1
2 sin4(α)n2

xn
2
y − 2γ sin3(α) cos(α)nxnynz − 2 sin3(α) cos(α)nxnynz

− 1
2γ sin4(α)n2

xn
2
z + 1

2 sin4(α)n2
xn

2
z −

1
4γ sin4(α)n4

y

− γ

2 sin2(α) cos2(α)n2
y + 1

4 sin4(α)n4
y + 1

2 sin2(α) cos2(α)n2
y

+ 1
2γ sin4(α)n2

yn
2
z −

1
2 sin4(α)n2

yn
2
z −

1
4γ sin4(α)n4

z

+ 3
2γ sin2(α) cos2(α)n2

z + 1
4 sin4(α)n4

z + 1
2 sin2(α) cos2(α)n2

z

(B.7)

AZZ =− γ sin2(α) cos2(α)n2
x + sin2(α) cos2(α)n2

x + 4γ sin3(α) cos(α)nxnynz
+ γ sin4(α)n2

xn
2
z + sin4(α)n2

xn
2
z + γ sin2(α) cos2(α)n2

y

+ sin2(α) cos2(α)n2
y − γ sin4(α)n2

yn
2
z + sin4(α)n2

yn
2
z

(B.8)

AXY = AY X =− γ sin4(α)nxn3
y + γ sin4(α)n3

xny + sin2(α) cos2(α)nxny
− sin4(α)nxnyn2

z − sin3(α) cos(α)n2
xnz + sin3(α) cos(α)n2

ynz

− γ sin(α) cos3(α)nz + γ sin3(α) cos(α)n3
z

(B.9)
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AXZ = AZX =3
2γ sin3(α) cos(α)n2

xny −
1
2 sin3(α) cos(α)n2

xny

− 3
2γ sin4(α)nxn2

ynz + 1
2 sin4(α)nxn2

ynz −
1
2γ sin4(α)nxn3

z

+ 1
2γ sin4(α)n3

xnz + 3
2γ sin2(α) cos2(α)nxnz −

1
2 sin4(α)nxn3

z

+ 1
2 sin4(α)n3

xnz −
1
2 sin2(α) cos2(α)nxnz + 1

2γ sin(α) cos3(α)ny

− 1
2γ sin3(α) cos(α)n3

y + 1
2 sin(α) cos3(α)ny −

1
2 sin3(α) cos(α)n3

y

− 3
2γ sin3(α) cos(α)nyn2

z + 1
2 sin3(α) cos(α)nyn2

z

(B.10)

AY Z = AZY =1
2γ sin(α) cos3(α)nx −

1
2γ sin3(α) cos(α)n3

x

− 1
2 sin(α) cos3(α)nx + 1

2 sin3(α) cos(α)n3
x

+ 3
2γ sin3(α) cos(α)nxn2

y + 1
2 sin3(α) cos(α)nxn2

y

+ 3
2γ sin4(α)n2

xnynz + 1
2 sin4(α)n2

xnynz −
3
2γ sin3(α) cos(α)nxn2

z

− 1
2 sin3(α) cos(α)nxn2

z + 1
2γ sin4(α)nyn3

z −
1
2γ sin4(α)n3

ynz

− 3
2γ sin2(α) cos2(α)nynz −

1
2 sin4(α)nyn3

z + 1
2 sin4(α)n3

ynz

− 1
2 sin2(α) cos2(α)nynz

(B.11)

BX = 2nxnz sin[2](α)− 2ny cos(α) sin(α) (B.12)

BY = 2nynz sin[2](α) + 2nx cos(α) sin(α) (B.13)

BZ = cos[2](α) + (n2
z − n2

x − n2
y) sin[2](α) (B.14)

Example: Identification of spin chain spectrum after fermionization
Example: Let us consider an example of this Bogoliubov form of XY Hamiltonian and
compare the outcome with the results of appendix B and 2.2.2. In particular, we consider
the case with L = 3 in the weak field region. Therefore, k = 1, 2, 3, also, we first look at
the N = +1.

ϕ+
1 = π

3 λ+
1 = 1

2
√
J2 − 4Jh+ 4h2 + 3J2γ2

ϕ+
2 = π λ+

2 = (J + h)

ϕ+
3 = 5π

3 λ+
3 = 1

2
√
J2 − 4Jh+ 4h2 + 3J2γ2
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For N = −1 sector:

ϕ−
1 = 2π

3 λ−
1 = 1

2
√
J2 + 4Jh+ 4h2 + 3J2γ2

ϕ−
2 = 4π

3 λ−
2 = 1

2
√
J2 + 4Jh+ 4h2 + 3J2γ2

ϕ−
3 = 2π λ−

3 = (J − h)

Now, the ground state energy calculated via the bk vacuum (bk |0⟩b = 0, ∀k).

E+
G =− 1

2(λ+
1 + λ+

2 + λ+
3 ) = −J + h+ α

2
E-
G =− 1

2(λ−
1 + λ−

2 + λ−
3 ) = −J − h+ β

2

where α =
√
J2 − 4Jh+ 4h2 + 3J2γ2 and β =

√
J2 + 4Jh+ 4h2 + 3J2γ2. These are the

same as ground states calculated in the appendix B for the L = 3 (both sectors), namely
E-
G = E−

5 and E+
G = E+

5 . In addition, both of these ground states do appear in the
spectrum of the example XY spin Hamiltonians in section 2.2.2. For each sector, the first
excited state is the b†

i |0⟩ where b†
i is the fermionic creation operator with λi = min[λk].

For example, in N = −1 sector, λ−
3 < λ−

1 = λ−
2 . Therefore the first excited state in this

sector is b†
3 |0⟩ with energy E1 = −λ−

1 +λ−
2 +λ−

3
2 + λ−

3
2 . The same logic works for the rest of

spectrum. Equivalently, we can construct the spectrum in both sectors but states with
b†
kb

†
k′ |0⟩b (k ̸= k′) are physical.
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In the next three Appendices for the sake of completeness, we summarize first the
spin chain version of the fermionic integrals of motion that we introduced in the main
text. Then we introduce the method of correlations that can be used to calculate the
entanglement entropy in the free fermions. In the third subsection, we comment on the
degeneracies in the XX-chain and various averagings on the entanglement entropy of the
excited states.

Integrals of motion: spin chains
This section serves to pay more attention to the spin version of the integrals of

motion and the fermionic Hamiltonian defined in the main text. In most of the cases,
the integrals of motion do not have a simple form. However, one can still claim that
the Hamiltonian I−

m which is parameter independent in the spin version, commutes with
all the possible Hamiltonians and integrals of motion and so it provides bases which in
those bases the average of entanglement entropy is equal for the eigenstates of I−

m and
the Hamiltonian. We begin by writing the spin form of fermionic operators using the
Jordan-Wigner transformation

cj =
∏
l<j

σzl σ
−
j . (C.1)

where σ±
i = σxi ±σyi

2 . Substituting the above in the fermionic Hamiltonian we get

H =
∑
r>0

L−1∑
j=1

[−ar − br
2 σxj σzj+1 · · ·σzj+r−1σxj+r

+ −ar + br
2 σyj σzj+1 · · ·σzj+r−1σyj+r

]
−

L∑
j=1

a0
2
(
σzj − 1

)
− N̂

(−ar − br
2 σxLσz1 · · ·σzr−1σxr

+ −ar + br
2 σyLσz1 · · ·σzr−1σyr

)
,

(C.2)

where N̂ = ∏L
l=1 σ

z
l , is the parity of the spins down, i.e. the parity of the number of fermions.

Because of the string of σz, the JW transformation is non-local. The non-locality of the
JW transformation affects the boundary conditions through appearance of the operator
N̂ . The eigenvalues: N = +1 and − 1 correspond to anti-periodic and periodic boundary
conditions respectively. The operator N̂ should appear every time we go from spin format
to fermion format or vice versa. For instance, in the periodic boundary condition, one gets:

H(N = −1) =
∑
r>0

L∑
j=1

[−ar − br
2 σxj σzj+1 · · ·σzj+r−1σxj+r

+ −ar + br
2 σyj σzj+1 · · ·σzj+r−1σyj+r

]
−

L∑
j=1

a0
2
(
σzj − 1

)
.

(C.3)
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The above Hamiltonian when ar and br are nonzero just for r = 0, 1 becomes:

Hr = 0,±1(N = −1) = −a1

2

L∑
j=1

[
(1 + b1

a1
)σxj σxj+1

+ (1− b1

a1
)σyjσ

y
j+1

]
− a0

2

L∑
j=1

σzj + La0

2 ,

(C.4)

which is the Hamiltonian of the anisotropic periodic XY spin chain with −a1∓ b1 = J(1±γ)
2

and a0 = h.

For Integrals of motion I+
n and I−

m, we can find the spin form likewise. Using the
inverse Fourier transformation, we write them in the c-fermion form. The c-fermion form
of I−

m is already written in the main text; therefore, the spin form of this operator is

I−
m =− 1

4

L−1∑
j=1

[
σxj

j+m−1∏
l=j+1

σzl σ
y
j+m − σyj

j+m−1∏
l=j+1

σzl σ
x
j+m

]
+ N̂4

[
σxL

∏
l<m

σzl σ
y
m − σyL

∏
l<m

σzl σ
x
m

]
.

(C.5)
Putting N = −1, the boundary term absorbs in the sum and I−

m reads as:

I−
m(N = −1) = −1

4

L∑
j=1

[
σxj

j+m−1∏
l=j+1

σzl σ
y
j+m − σ

y
j

j+m−1∏
l=j+1

σzl σ
x
j+m

]
. (C.6)

For I+
n , the fermionic form would be

I+
n =

∑
j∈Λ

R∑
r=−R

(
ar
2
[
c†
jcj+r+n + c†

j+ncj+r
]

+ br
4
[
c†
jc

†
j+r+n + c†

j+nc
†
j+r − cjcj+n+r − cj+ncj+r

])
.

(C.7)
In the XY spin chain case this integral of motion can be written as

I+
r = 0,±1 =

∑
j∈Λ

(
J

4
[
c†
jcj+n+1 + c†

j+ncj+1 + c†
j+1cj+n + c†

j+n+1cj
]

+ h

2
[
c†
jcj+n + c†

j+ncj
]

+ Jγ

4
[
c†
jc

†
j+n+1 + c†

j+nc
†
j+1 − cjcj+n+1 − cj+ncj+1

])
,

(C.8)

where we have used the fact that ar = a−r and br = −b−r. I+
n commutes with both the

Hamiltonian (C.4) and I−
m. To write the above expression in the spin form, we need to

separate two possible cases: n > 1 and n = 1. Consequently, using the transformation
(C.1), the spin form of integrals of motion is:
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I+
r = 0,±1 =− J

L−n−1∑
j=1

[
(1+γ)

8 σxj σ
z
j+1 · · ·σzj+nσxj+n+1 + (1−γ)

8 σyjσ
z
j+1 · · ·σzj+nσ

y
j+n+1

]

− J
L−n+1∑
j=1

[
(1−γ)

8 σxj σ
z
j+1 · · ·σzj+n−2σ

x
j+n−1 + (1+γ)

8 σyjσ
z
j+1 · · ·σzj+n−2σ

y
j+n−1

]

− h

4

L−n∑
j=1

[
σxj σ

z
j+1 · · ·σzj+n−1σ

x
j+n + σyjσ

z
j+1 · · ·σzj+n−1σ

y
j+n

]
n > 1

(C.9)

+ JN̂
L∑

j=L−n

[
(1+γ)

8 σxj σ
z
j+1 · · ·σzj+nσxj+n+1 + (1−γ)

8 σyjσ
z
j+1 · · ·σzj+nσ

y
j+n+1

]

+ JN̂
L∑

j=L−n+2

[
(1−γ)

8 σxj+1σ
z
j+2 · · ·σzj+n−1σ

x
j+n + (1+γ)

8 σyj+1σ
z
j+2 · · ·σzj+n−1σ

y
j+n

]

+ hN̂
4

L∑
j=L−n+1

[
σxj σ

z
j+1 · · ·σzj+n−1σ

x
j+n + σyjσ

z
j+1 · · · σzj+n−1σ

y
j+n

]
,

I+
r = 0,±1 =− J

L−2∑
j=1

[
1+γ

8 σxj σ
z
j+1σ

x
j+2 + 1−γ

8 σyjσ
z
j+1σ

y
j+2

]
− h

4

L−1∑
j=1

[
σxj σ

x
j+1 + σyjσ

y
j+1

]
+ J

4
∑
j∈Λ

σzj

+ N̂J
[

1+γ
8 σxL−1σ

z
Lσ

x
1 + 1−γ

8 σyL−1σ
z
Lσ

y
1 + 1+γ

8 σxLσ
z
1σ

x
2 + 1−γ

8 σyLσ
z
1σ

y
2

]
(C.10)

+ N̂h4
[
σxLσ

x
1 + σyLσ

y
1

]
, n = 1.

These quantities commute with each other and the Hamiltonian. Note that these operators
commute with each other after fixing the N too. For example, with R = 1, we have:[

Hr = 0,±1(N = −1), I+
r = 0,±1(N = −1)

]
= 0, (C.11)[

Hr = 0,±1(N = −1), I−
r = 0,±1(N = −1)

]
= 0, (C.12)[

I−
r = 0,±1(N = −1), I+

r = 0,±1(N = −1)
]

= 0. (C.13)

In a general case of R, we write for I+
n :

I+
n =

R∑
r=−R

 L−n−r∑
j=1

[
(ar+br)

4 σxj σ
z
j+1 · · ·σzj+n+r−1σ

x
j+n+r + (ar−br)

4 σyjσ
z
j+1 · · ·σzj+n+r−1σ

y
j+n+r

]

− N̂
L∑

j=L−n−r+1

[
(ar+br)

4 σxj σ
z
j+1 · · ·σzj+n+r−1σ

x
j+n+r + (ar−br)

4 σyjσ
z
j+1 · · ·σzj+n+r−1σ

y
j+n+r

],
(C.14)
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for the case which n > R. In the case of n ≤ R one gets

I+
n =

R∑
r=0
r ̸=n

 L−n−r∑
j=1

[
ar+br

4 σxj σ
z
j+1 · · · σzj+n+r−1σ

x
j+n+r + ar−br

4 σyjσ
z
j+1 · · ·σzj+n+r−1σ

y
j+n+r

]

+
L+n−r∑
j=1

[
ar+br

4 σxj+nσ
z
j+n+1 · · ·σzj+r−1σ

x
j+r + ar−br

4 σyj+nσ
z
j+n+1 · · · σzj+r−1σ

y
j+r

]
(C.15)

− N̂
L∑

j=L−n−r+1

[
ar+br

4 σxj σ
z
j+1 · · ·σzj+n+r−1σ

x
j+n+r + ar−br

4 σyjσ
z
j+1 · · ·σzj+n+r−1σ

y
j+n+r

]

− N̂
L∑

j=L+n−r+1

[
ar+br

4 σxj+nσ
z
j+n+1 · · ·σzj+r−1σ

x
j+r + ar−br

4 σyj+nσ
z
j+n+1 · · ·σzj+r−1σ

y
j+r

]
+ an

2
∑
j∈Λ

σzj .

There is also the possibility to write the spin form of our quantities of interest in a
way that operator N̂ does not appear explicitly. As it can be seen, whenever a product
of two fermionic operators at sites i and j is written in the Pauli spin operators, there is
a string of σz between these two sites. As in equations (C.15) and (C.14), we placed the
string of spin-z operator in the smallest path between our lattice sites. However, In the
boundary terms, this smallest path is passing through the boundary. Therefore, we face
terms like · · ·σzLσz1 · · · accompanied with operator N̂ . If before the JW-transformation,
we rearrange our fermionic operators c(†)

i and c
(†)
j in a way that the operator with smaller

index comes on the left of the operator with a bigger index. In particular, one can write:

c†
L−ncm + c†

mcL−n −→
(
σxmσxL−n + σymσyL−n

) L−n−1∏
j=m+1

σzj , (C.16)

where n,m < L
2 . This way of writing the integrals of motion eliminates the operator N̂

and both of these methods are equivalent. For example for I+
n with n > R can be written

as

I+
n =

R∑
r=0

∑
1≤i<j≤L

[( (ar+br)
4 σxi σxj + (ar−br)

4 σyi σyj
) l−1∏
k=j+1

σzk

]
, (C.17)

which j = i± r + n, and since n > r for all r then j > i for all r.

Entanglement entropy in the free fermions: the method of correlations
For the free fermions one can use the matrix of correlations to calculate the entan-

glement entropy for relatively large sizes. In this subsection we provide the well-known
exact formulas that can be found in the reviews[69, 91]. The entanglement entropy for the
eigenstates of the free fermions (XX-chain) can be found using the following formula:

SvN = −
∑
j

λj ln λj + (1− λj) ln(1− λj), (C.18)
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where λj’s are the eigenvalues of the correlation matrix CA restricted to the subsystem A

with the elements Cij = ⟨c†
icj⟩.

Structure of degeneracies and average entanglement over excited
states of the XX-chain

In this appendix, we tend to present a detailed study of various averagings of entan-
glement entropy for a periodic free fermion system in excited states. By excited states, we
mean eigenstates of Hamiltonian produced by the action of η†

k on the vacuum state of the
XX-chain; Among these states, there are sets of degenerate states. In [102], the authors
calculated the entanglement entropy for all the states produced as explained above, and
then they took the average of all the entropies calculated without counting for degenerate
states. Here, we revisit the work of [102] by taking into account the degeneracies. First, we
identify the degenerate states and then preform various averagings on the entanglement
entropies.

Degenerate Energy States: The XX-chain can be solved exactly by diagonalizing the
Hamiltonian using the Fourier transformation, as written in the main text. Each excited
state can be produced by acting on the vacuum with a set of creation operators with
different modes. Each mode ηk has energy

|f(k)|; k = 1, 2, · · · , L, (C.19)

where L is the size of the system. For instance, states |ψm⟩ and |ψn⟩ can be degenerate
(Em = En) but they are made of different combinations of η†’s.

|ψm⟩ = η†
m1η

†
m2η

†
m3 · · · |0⟩,

|ψn⟩ = η†
n1η

†
n2η

†
n3 · · · |0⟩,

in a way that
{km1 , km2 , km3 , · · · } ≠ {kn1 , kn2 , kn3 , · · · }.

For instance in XX model, the energy of the modes with k = l and k = L− l is the
same, therefore the degeneracy in the eigenstates is expected. To unravel these groups
of degenerate eigenstates as accurate as possible (machine precision), we first calculated
the minimum energy gap (∆Emin) of the spectrum. Since in these types of Hamiltonians
the energy levels are not equally spaced, the ∆Emin helps us to have an idea for the
required precision value to decide whether two energies are equal or not. Not surprisingly,
as shown in the inset of the figure 12, this gap decreases exponentially with the size of
the system which makes the decision that two states are degenerate or not more difficult
by increasing the size of the system. After finding all the degeneracies, we sum over all
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e−0.46L+2.68

Figure 12 – In this figure, the ratio of independent energies to total number of energies is plotted versus
the system size. Nind

NT
decreases exponentially with size of the system. (Inset) Plot of ∆Emin

versus the size of the system. This quantity gives us a measure to set a precision for finding
the unequal energy levels of the spectrum. Note that for L even we have degeneracy even
in the level of the energy modes which is the main reason for stronger decay of Nind

NT
with

respect to the L odd case.

the non-degenerate states and call the number Nind. This number which we loosely call
the number of independent states is exponentially smaller than the dimension of the
Hilbert space. In other words, as shown in the figure 12, the ratio Nind

NT
decays exponentially

with the size of the system L. This indicates the presence of an enormous amount of
degeneracies in the spectrum of the XX-chain.
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Correlations for excited quasiparticle eigenstates
In section 7.3, we introduced the correlation functions and the method to produce these
matrices for the ground state. In this part, we are going to present the method to calculate
the correlations for excited quasiparticles (7.27) using the unitary transformation U which
diagonalize the Hamiltonian.

The quasiparticle excited state such as |ψ⟩ is defined by

|ψ⟩ = |k1, k2, · · · , kN⟩ =
∏
kj∈E

η†
kj
|0⟩

η
(D.1)

where set E could be any subset of modes. For this state, we start by calculating the
⟨ψ| c†

icj |ψ⟩ and ⟨ψ| c†
ic

†
j |ψ⟩

⟨c†
icj⟩ψ = ⟨0|

∏
kj∈E

ηkj
∑
k,l

(h∗
liηl + gkiη

†
k)
∑
n,m

(g∗
mjηm + hnjη

†
n)
∏
kj∈E

η†
kj
|0⟩ , (D.2)

⟨c†
ic

†
j⟩ψ = ⟨0|

∏
kj∈E

ηkj
∑
k,l

(h∗
liηl + gkiη

†
k)
∑
n,m

(h∗
mjηm + gnjη

†
n)
∏
kj∈E

η†
kj
|0⟩ . (D.3)

Using the Wick theorem we can simplify these expressions to get:

⟨c†
icj⟩ψ = (h†.h)i,j +

∑
kj∈E

(gkj ,ig∗
kj ,j
− h∗

kj ,i
hkj ,j),

⟨c†
ic

†
j⟩ψ = (h†.g)i,j +

∑
kj∈E

(gkj ,ih∗
kj ,j
− h∗

kj ,i
gkj ,j).

(D.4)

Therefore, using the definitions (7.51), we can write the K, K̄ and G for the state |ψ⟩ in
a short version as

Kψ
ij = (h† + g†).(h + g)ij − 2iℑ

[ ∑
kj∈E

(h∗
kj ,i

+ g∗
kj ,i

)(gkj ,j + hkj ,j)
]
, (D.5)

K̄ψ
ij = (h† − g†).(h− g)ij − 2iℑ

[ ∑
kj∈E

(h∗
kj ,i
− g∗

kj ,i
)(hkj ,j − gkj ,j)

]
, (D.6)

Gψ

ij =(h† − g†).(h + g)ij + 2ℜ
[ ∑
kj∈E

(g∗
kj ,i
− h∗

kj ,i
)(hkj ,j + gkj ,j)

]
. (D.7)

The prior expressions are useful for the study of entanglement in excited quasiparticle
states. One can use the Γψ to calculate the RDM for a given subsystem A using the
relation

ρ
ψ

A
(γ, γ̄) = [det

I− Γψ

A

2 ] 1
2 e

1
4

(
γ γ̄

)
ln

I+Γ
ψ

A

I−Γ
ψ

A


γ

γ̄


, (D.8)
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where γ and γ̄ are the Majorana fermions defined in section 7.3. Equivalently, it is possible
to use the preceding correlations to find the Rψ matrix (as in (7.28)), Rψ = Fψ∗(I−Cψ)−1,
which could lead to finding the RDM.

For excited states created from ZME state, we can do the same calculations. These
quasiparticle excited state are created as:∣∣∣ϕ∅

〉
= |n1, n2, · · · , nN⟩ =

∏
nj∈E

η†
nj
|∅⟩ , (D.9)

where nj ̸= 0. Having the correlation matrices for the above states allows us to study the
excited state entanglement for these states likewise. To write such matrices, we can use the
result of section 7.3.2. Correlations for the family of ZME excited states are demonstrated
in 166. The matrices Kϕ∅ and K̄ϕ∅ have the same form as (D.5) and (D.6), therefore, we
have not included their forms.

As it was explained in subsection 7.2.6, one could divide the Hilbert space of Hamilto-
nian (7.5) into four different towers which one of the these towers or sectors corresponds
to the eigenstates of boundary magnetic field Hamiltonian (7.1). We devote this part to
find the correlation functions for states in a given tower, given the ground state for the
tower (sector), can be found with |G±⟩. The base of calculation is similar to the above
cases, therefore here we only hand out the final result. For start, an excited state in one of
the sectors has the form ∣∣∣χ±

〉
=

∏
mj∈E

η†
mj

∣∣∣G±

〉
. (D.10)

In the preceding expression, set E contains excited modes acting on
∣∣∣G±

〉
and 0 /∈ E. For

a general case of E we can write the correlations as in page 167. Similar to the ZME and
the |G±⟩ case, the matrices Kχ± and K̄χ± have the same form as Kψ and K̄ψ in (D.5)
and (D.6).
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C
ϕ

∅
=

         

1 2
C

∅ 0,
j

+
∑ n
∈
E(g

n
,0
g

∗ n
,j

+
g

∗ n
,0
h
n
,j

)
C

∅ 0,
L

+
1

+
∑ n
∈
E(g

n
,0
g

∗ n
,L

+
1

+
g

∗ n
,0
g
n
,L

+
1
)

C
∅

i
,0

+
∑ n
∈
E(g

n
,i
g

∗ n
,0

+
h

∗ n
,i
g
n
,0

)
C

∅ i,
j

+
∑ n
∈
E(g

n
,i
g

∗ n
,j

−
h

∗ n
,i
h
n
,j

)
C

∅

i
,L

+
1

+
∑ n
∈
E(g

n
,i
g

∗ n
,L

+
1

−
h

∗ n
,i
g
n
,L

+
1
)

C
∅

L
+

1,
0

+
∑ n
∈
E(g

n
,L

+
1
g

∗ n
,0

+
g

∗ n
,L

+
1
g

n
,0

)
C

∅

L
+

1,
j

+
∑ n
∈
E(g

n
,L

+
1
g

∗ n
,j

−
g

∗ n
,L

+
1
h
n
,j

)
1 2

         ,
(D

.1
1)

F
ϕ

∅
=

         

0
F

∅

0,
j

+
∑ n
∈
E(g

n
,0
h

∗ n
,j

+
g
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Reduced density matrix calculations
In this appendix, we are presenting the calculations of (7.74) in details. Starting from
(7.70), we can write

ρβ1(ξ, ξ′) =
∫ ∏

l∈2
dξ̄ldξl e

−
∑
n∈2

ξ̄nξn

⟨ξ1, · · · , ξk,−ξk+1, · · · ,−ξL| ρβ |ξ′
1, · · · , ξ′

k, ξk+1, · · · , ξL⟩

=|Cβ|2e
1
2 (R11)ij ξ̄iξ̄j−

1
2 (R∗

11)jiξ′
jξ

′
i

∫ ∏
l∈2

dξ̄ldξl e−ξ̄nξnF({ξn}, {ξ′
i}, {ξ̄j}, {ξ̄m})

×
[
e− 1

2 (R12)inξ̄iξ̄n− 1
2 (R21)niξ̄nξ̄ie

1
2 (R22)mnξ̄mξ̄ne− 1

2 (R∗
22)nmξnξm+ 1

2 (R∗
12)jmξ′

jξm+ 1
2 (R∗

21)mjξmξ′
j

]
,

(D.17)
where in the above Einstein summation convention is used. To clarify the notation above,
the indices i, j belong to subsystem 1 and indices n,m to subsystem 2. Eventually, the
function F is given by

F({ξn}, {ξ′
i}, {ξ̄j}, {ξ̄m}) = 1 + β(M1)0j ξ̄j − β(M2)0mξ̄m + β∗(M∗

1)0iξ
′
i

+β∗(M∗
2)0nξn + |β|2(M1)0j(M∗

1)0iξ̄jξ
′
i + |β|2(M1)0j(M∗

2)0nξ̄jξn

−|β|2(M2)0m(M∗
1)0iξ̄mξ

′
i − |β|2(M2)0m(M∗

2)0nξ̄mξn. (D.18)

In (D.17) we have divided R into four submatrices R11, R12, R21 = −R12
T and R22,

according to the part we are tracing out (or not). Although these submatrices do not need
to have same size, R11 and R22 should be square matrices. We write the (D.17) in the
compact form:

ρ1(ξ, ξ′) = |Cβ|2e

1
2

(
ξ̄ ξ′

)
R11 0

0 −R∗
11



ξ̄

ξ′
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DηF(ξ′

i, ξ̄j ,η)e
1
2η

TAη+λTη. (D.19)

where Dη = dξ̄dξ and

ηT =
(
ξ̄ ξ

)
, λT =

(
−ξ̄R12 −ξ′R∗

12

)
, (D.20)

A =


R22 −I

I −R∗
22

 . (D.21)

It is much easier to solve the integration in (D.19) with this new variables. In the expression
of F , the first, second, forth and sixth terms do not depend on the variables of integration.
Therefore, for those terms we can write:

ρβ1(1st, 2nd, 4th, 6th, ξ, ξ′) = |Cβ|(det
[
A
]
)

1
2
(
1 + βM1ξ̄

)(
1 + β∗M∗

1ξ
′
)
e

1
2

(
ξ̄ ξ′

)
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ξ̄
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,

(D.22)
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where

Ω =


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0 −R11
∗

+
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0 R12
∗

A−1
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R12

T 0

0 R12
†

 . (D.23)

For the terms with linear Grassmann variables in the integration we first substitute
η → η + A−1λ in (D.19). Using the Berezin integration techniques in presented in [58],
we are left with

ρβ1(3rd, 5th, 7th, 8th, ξ, ξ′) = |Cβ|(det
[
A
]
)

1
2 (det
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W
]
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, (D.24)

with

F (ξ̄1, ξ
′
1) = |β|2Pf

[
W
]

+


−βM2 0

0 β∗M∗
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+|β|2


−M2 0

0 0

A−1λ×M∗
1ξ

′ + |β|2
(
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(
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∗

)
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 . (D.26)

Putting (D.22) and (D.24) together, after some algebraic manipulations, we get to (7.71).

We could have used another trick to solve the Berezin integrations to get RDM. This
method ends up in having two exponentials in the final result. The trick is to write the
linear Grassmann variable in the integration as exponentials, like:

(Mξ̄)k1 · · · (Mξ̄
)
kN

(
M∗ξ′

)
k1
· · · (M∗ξ′

)
kN

=
∫ ∏

i

dθ̄idθie
∑

kj
θkj (Mξ̄)kj+θ̄kj (M∗ξ)kj .

(D.27)
In the above relation, θ and θ̄ are Grassmann variables too.

If we start again from density matrix expression in coherent basis (7.69), and rewrite
it as:

ρβ(ξ, ξ′) =|Cβ|2e
1
2Rij ξ̄iξ̄j (1 + βM0kξ̄k + β∗M∗

0lξ
′
l + |β|2M0kM

∗
0lξ̄kξ

′
l)e

−
1
2R

∗
nmξ

′
nξ

′
m

=ρβ(1, ξ, ξ′) + ϱβ(2, ξ, ξ′) + ϱβ(3, ξ, ξ′) + ρβ(4, ξ, ξ′),
(D.28)

where the ρβ(1, ξ, ξ′) and ρβ(4, ξ, ξ′) are the density matrices corresponding to the vacuum-
vacuum state and excited-excited state, and the ϱβ(2, ξ, ξ′) and ϱβ(3, ξ, ξ′) are density cross



APÊNDICE D. Appendix of Chapter 7 170

terms corresponding to the vacuum-excited (and exited-vacuum) state terms. We are going
to partial trace each term separately and then put the results together afterwards. For the
first term in (D.28), we have:

ρβ1(1, ξ, ξ′) = Cβ

|β|2
e

1
2

(
ξ̄ ξ′

)
Ωβ


ξ̄

ξ′
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, (D.29)

where again

Cβ =
|β|2

√
det

[
I + R22

†R22
]

(1 + |β|2)
√

det
[
I + R†R

] , A =


R22 −I

I −R∗
22

 , (D.30a)
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∗
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0 R12
†

 . (D.30b)

For the last term in (D.28), we can write:

ρβ(4, ξ, ξ′) = |Cββ|2
∫

dθ̄dθeθ(Mξ̄)+θ̄(M∗ξ′)e
1
2Rij ξ̄iξ̄je− 1

2R
∗
ijξ

′
iξ

′
j . (D.31)

For the reduced density matrix we get

ρβ1(4, ξ, ξ′) =|Cββ|2
∫

dθ̄dθe
1
2 (R11)ij ξ̄iξ̄j−

1
2 (R∗

11)jiξ′
jξ

′
ieθ(M1.ξ̄)+θ̄(M∗

1.ξ
′)
∫ L+1∏

l=k+1
dξ̄ldξl e−ξ̄lξl

× e−θ(M2ξ̄)+θ̄(M∗
2ξ)
[
e−(R12)inξ̄iξ̄n+ 1

2 (R22)mnξ̄mξ̄ne− 1
2 (R∗

22)nmξnξm+(R∗
12)jmξ′

jξm
]

(D.32)
We denote the terms on the left of second integral as F(ξ̄, ξ, θ, θ̄). If we introduce new

Grassmann variables ηT =
(
ξ̄ ξ

)
and λT =

(
−ξ̄R12 − θ(M)0 −ξ′R∗

12 + θ̄(M∗)0

)
,

then we can write the integral as

ρβ
1
(4, ξ, ξ′) =

∫
dθ̄dθF(ξ̄, ξ′, θ, θ̄)

∫
Dη e

1
2η

TAη+λTη (D.33)

where A has been defined previously. Solving the first integral we get:

ρβ
1
(4, ξ, ξ′) = Cβe

1
2

(
ξ̄ ξ′

)
Ω


ξ̄

ξ′

 ∫
DΘe

1
2 ΘTωΘ+η′TJ Θ (D.34)
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where ΘT =
(
θ̄ θ

)
, DΘ = dθ̄dθ, η′T =

(
ξ̄ ξ′

)
, and Ω and Cβ are given by (7.72b) and

(7.72a) respectively. Finally, if we take the last integral in the equation (D.34), we get

ρβ
1
(4, ξ, ξ′) = CβPf[ω]e

1
2

(
ξ̄ ξ′

)
Ω′


ξ̄

ξ′


(D.35)

where
Ω′ = Ω + Jω−1J T (D.36a)

ω =


0 (M∗

2)0

−(M2)0 0

A−1


0 −(M2)T0

(M2)†
0 0

 , (D.36b)

J =


−R12 0

0 −R12
∗

A−1


0 M∗

2

−M2 0

−


0 M∗
1

M1 0

 . (D.36c)

To do the same calculation for cross term ϱβ(2, ξ, ξ′) in equation (D.28), we have

ϱβ(2, ξ, ξ′) = |Cβ|2βM0l ξ̄le
1
2Rij ξ̄iξ̄j−

1
2R

∗
ij
ξ′
i
ξ′
j (D.37)

If we use the equation (D.27) and write the ξ behind the exponential as (Mξ̄)0 =∫
dθeθ(Mξ̄)0 =

∫
dθeθM0lξ̄l , where θ is a new Grassmann variables. We can write the density

matrix as
ϱβ(2, ξ, ξ′) =|Cβ|2β

∫
dθeθ(Mξ̄)0e

1
2Rij ξ̄iξ̄je− 1

2R
∗
ijξ

′
iξ

′
j . (D.38)

Equivalently, If we introduce new Grassmann variables ηT =
(
ξ̄ ξ

)
then we can write

the integral as
ϱβ(2, ξ, ξ′) =

∫
dθF(ξ̄, ξ′, θ)

∫
Dη e

1
2η

TAη+λTη, (D.39)

where we have denoted the terms on the left of second integral by F(ξ̄, ξ, θ) and

λT =
(
−ξ̄R12 − θ(M2)0l′ −ξ′R∗

12

)
(D.40)

Taking the integration on η, we have:

ϱβ(2, ξ, ξ′) = C
β

β∗e

1
2

(
ξ̄ ξ′

)
Ω


ξ̄

ξ′

 ∫
dθeθζ (D.41)
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where Ω is the same as (7.72b) and Cβ is given by (7.72a). Then, we can take the integral
over the θ above and write the final result as

ϱβ(2, ξ, ξ′) = C
β

β∗

(
ΥA−1RT + Υ′

)
η′e

1
2η

′TΩη′

(D.42)

where η′T =
(
ξ̄ ξ′

)
, and Also we have

Υ =
[
M2 0

]
1×2L′

Υ′ =
[
M1 0

]
1×2l

R =


R12 0

0 R∗
12


2l×2L′

(D.43)

For the other cross density (third term in equation (D.28)) we have:

ϱβ(3, ξ, ξ′) = C
β

β

(
−ΥA−1RT + Υ′

)
η′e

1
2η

′TΩβη′

(D.44)

which

Υ =
[
0 M2

∗

]
1×2L′

Υ′ =
[
0 M1

∗

]
R =


R12 0

0 R∗
12


2l×2L′

(D.45)

Putting equations (D.29), (D.35), (D.42) and (D.44) together and moving and reordering
some parts we can write the RDM for the state |β⟩ as

ρβ
1
(ξ, ξ′) = Cβ

[ 1
|β|2

+ Pf[Ω2]e

1
2

(
ξ̄ ξ′

)
Jω−1J T


ξ̄

ξ′


+ Kβ


ξ̄

ξ′


]
e

1
2 (Ω11)ij ξ̄iξ̄j

e
Yij ξ̄iξ

′
je

1
2 (Ω22)ijξ

′
i
ξ′
j
,

(D.46)
where 2Y = Ω12 −Ω21

T and

Kβ =
(

1
β∗M1

1
β
M1

∗

)
+
(

1
β∗M2 − 1

β
M2

∗

)
A−1


R12

T 0

0 R12
†

 (D.47)

To write the RDM in operator format, we have to reorder it. Then, the final result is

ρβ1(c, c†) = Cβe
1
2 (Ω11)ijc

†
i
c
†
j

[ 1
|β|2

e
(ln Ω12−Ω21

T

2 )ijc
†
i
cj + (Kβ

1 )kc†
ke

(ln Ω12−Ω21
T

2 )ijc
†
i
cj

+ e
(ln Ω12−Ω21

T

2 )ijc
†
i
cj (Kβ

2 )lcl
]
e

1
2 (Ω22)ijcicj

+ CβPf[Ω2]e
1
2 (Ω′

11)ijc
†
i
c
†
j
e

(ln
Ω′

12−Ω′
21
T

2 )ijc
†
i
cj
e

1
2 (Ω′

22)ijcicj
.

(D.48)
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The Kβ
1 stands for the first block part of vector Kβ (and the same argument for Kβ

2 ). To
find a shorter notation for the ρβ1(c, c†) we use the relation [157]

e

1
2

(
c† c

)
M1


c

c†


e

1
2

(
c† c

)
M2


c

c†


e

1
2

(
c† c

)
M3


c

c†


= e

1
2

(
c† c

)
M


c

c†


(D.49)

where eM = eM1 eM2 eM3 . Therefore, we can write (D.48) as

ρβ1(c, c†) = Cβ
[ 1
|β|2

e

1
2

(
c† c

)
M


c

c†


e

1
2 tr ln Y

+ Pf[Ω2]e

1
2

(
c† c

)
M′


c

c†


e

1
2 tr ln(Y+Y)

+ (Kβ
1 )kc†

ke

1
2

(
c† c

)
M


c

c†


e

1
2 tr ln Y

+ e

1
2

(
c† c

)
M


c

c†


e

1
2 tr ln Y

(Kβ
2 )lcl

]
.

(D.50)
To move the exponentials to one side (left or right) of the (D.50), we use the relation
(7.76). Therefore, we can write the (D.50) as

ρβ1(c, c†) = Cβ e

1
2

(
c† c

)
M


c

c†


e

1
2 tr ln(

1
2 Ω12−

1
2 ΩT21)

[ 1
|β|2

+
(

Lβ
1 Lβ

2

)
c†

c


]

+ Cβ Pf[Ω2]e

1
2

(
c† c

)
M′


c

c†


e

1
2 tr ln(

1
2 Ω′

12−
1
2 Ω′

21
T )

(D.51)

where we have:

M = ln


1
2Ω12 − 1

2Ω21
T + 2Ω11(ΩT

12 −Ω21)−1Ω22 2Ω11(ΩT
12 −Ω21)−1

2(ΩT
12 −Ω21)−1Ω22 2(ΩT

12 −Ω21)−1

, (D.52a)

M′ = ln


1
2Ω′

12 − 1
2Ω′

21
T + 2Ω′

11(Ω′
12
T −Ω21

′)−1Ω′
22 2Ω′

11(Ω′
12
T −Ω′

21)−1

2(Ω′
12
T −Ω′

21)−1Ω′
22 2(Ω′

12
T −Ω′

21)−1

 (D.52b)
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Ω =


R11 0

0 −R11
∗

+


R12 0

0 R12
∗

A−1


R12

T 0

0 R12
†

 ; A =


R22 −I

I −R∗
22


(D.52c)

Ω′ = Ω + Jω−1J T , ω =


M∗

2(A−1)22M
†
2 −M∗

2(A−1)21M
T
2

−M2(A−1)12M
†
2 M∗

2(A−1)11M
T
2

 (D.52d)

J =


−R12 0

0 −R12
∗

A−1


0 M∗

2

−M2 0

−


0 M∗
1

M1 0

 , (D.52e)

Kβ =
(

1
β∗M1

1
β
M1

∗

)
+
(

1
β∗M2 − 1

β
M2

∗

)
A−1


R12

T 0

0 R12
†

 (D.52f)

Lβ
1 = 2Kβ

1 (ΩT
12 −Ω21)−1, Lβ

2 = 2Kβ
1 (ΩT

12 −Ω21)−1Ω22 + Kβ
2 . (D.52g)

Kβ
1 stands for the first block part of vector Kβ. Since, we can think of Kβ as a vector

made from two block vectors (and the same argument for Kβ
2 ).

Entanglement calculations of general β parity broken state
To calculate the n = 2 Rényi EE, we start by:

tr(ρβA
2) = tr(ρβAIρβA). (D.53)

We can use the Identity resolution and tracing formula of Grassmann variables to write:

I =
∫ ∏

l

dξ̄ldξle−ξ̄.ξ |ξ⟩⟨ξ| , (D.54a)

trO =
∫ ∏

i

dξ̄idξie−ξ̄.ξ ⟨−ξ| O |ξ⟩ . (D.54b)

Therefore, it is possible to calculate the trace of ρ2 in terms of Berezin integrals of
Grassmann variables:

tr(ρβA
2) =

∫ ∏
i

dξ̄idξi
∏
l

dη̄ldηle−ξ̄.ξe−η̄.η ⟨−ξ| ρβA |η⟩⟨η| ρ
β
A |ξ⟩ . (D.55)
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We can use the result of (7.71) to write the integrand in the expression above as:

tr(ρβA
2) =Cβ2

∫ ∏
i

dξ̄idξi

∏
l

dη̄ldηle
−ξ̄.ξe−η̄.η[( 1

β
−L1.ξ̄ + L2.η)( 1

β∗ −L3.ξ̄ + L4.η)− Pf[W ]
]

e

1
2

(
ξ̄ η

)
Ω′

ξ̄

η

[( 1
β

+ L1.η̄ + L2.ξ)(
1
β∗ + L3.η̄ + L4.ξ)− Pf[W]]e

1
2

(
η̄ ξ

)
Ω

η̄
ξ


,

(D.56)
By defining a new Grassmann variable such as:

θ =



ξ̄

η̄

η

ξ


, (D.57)

the integral (D.55) can be written in a simpler form as:

tr(ρβA
2) = Cβ2

∫
Dθf(θ)e

1
2θ

T.B.θ, (D.58)

where in the above Dθ = ∏
idθ̄idθi, and also

f(θ) =
[
( 1
β

+ C.θ|1)(
1
β∗ + C.θ|2) + Pf[W ]

][
( 1
β

+ C.θ|3)(
1
β∗ + C.θ|4) + Pf[W ]

]
.

The new B and C matrices are defined below

B =



Ω11 0 −Ω12 I

0 Ω11 I Ω12

−Ω21 −I Ω22 0

−I Ω21 0 Ω21


, C =



−L1 0 L2 0

−L3 0 L4 0

0 L1 0 L2

0 L3 0 L4


. (D.59)

The rest of matrices are given by (7.72). Before proceeding to solve the integral above,
we have to clarify couple of points here. First, the notation C.θ|r stand for the rth row of
the matrix product C.θ. Second, the f(θ) produce terms with product of odd number of
Grassmann variables such as C.θ|r or C.θ|r3C.θ|r2C.θ|r1 , the integration on these terms
will be zero automatically. Therefore, The above integral is straightforward to solve, and
the final result of tracing is given by (7.102).

In some cases B does not have an inverse for odd n. However, it is still possible to
take the Grassmann integrations.
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Exact diagonalization of A = B = 0

In the case where A and B are zero then the Hamiltonian (7.5) becomes

H =
L∑
j=1

[
α0
j (c0cj − c†

0cj) + αL+1
j (cjc†

L+1 + cjcL+1) + α0
j

∗(c†
jc

†
0 − c

†
jc0) + αL+1

j

∗(cL+1c
†
j + c†

L+1c
†
j)
]
.

(D.60)
This model can be related to a linear fermionic model such as the model discussed in [152]

H =
L∑
j=1

αjcj + α∗
jc

†
j. (D.61)

In fact, with a specific projection, one can find the eigenstates of (D.61) in the Hilbert
space of (D.60). We can write the new form of the M matrix (7.9)
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M
=

                                                                  

0
−
α

0 1
−
α

0 2
··
·
−
α

0 L
−

1
−
α

0 L
0

0
−
α

0 1∗
−
α

0 2∗
··
·
−
α

0 L
−

1∗
−
α

0 L
∗

0

−
α

0 1∗
0

0
··
·

0
0

−
α
L

+
1

1
∗

α
0 1∗

0
0

··
·

0
0

−
α
L

+
1

1
∗

−
α

0 2∗
0

0
−
α
L

+
1

2
∗

α
0 2∗

0
0

−
α
L

+
1

2
∗

. . .
. . .

. . .
. . .

. . .
. . .

. . .

−
α

0 L
−

1∗
0

0
−
α
L

+
1

L
−

1∗
α

0 L
−

1∗
0

0
−
α
L

+
1

L
−

1∗

−
α

0 L
∗

0
0

··
·

0
0

−
α
L

+
1

L

∗
α

0 L
∗

0
0

··
·

0
0

−
α
L

+
1

L

∗

0
−
α
L

+
1

1
−
α
L

+
1

2
··
·
−
α
L

+
1

L
−

1
−
α
L

+
1

L
0

0
α
L

+
1

1
∗
α
L

+
1

2
∗
··
·

α
L

+
1

L
−

1∗
α
L

+
1

L

∗
0

0
α

0 1
α

0 2
··
·

α
0 L

−
1

α
0 L

0
0

α
0 1∗

α
0 2∗

··
·

α
0 L

−
1∗

α
0 L

∗
0

−
α

0 1
0

0
··
·

0
0

α
L

+
1

1
α

0 1
0

0
··
·

0
0

α
L

+
1

1

−
α

0 2
0

0
α
L

+
1

2
α

0 2
0

0
α
L

+
1

2

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

−
α

0 L
−

1
0

0
α
L

+
1

L
−

1
α

0 L
−

1
0

0
α
L

+
1

L
−

1

−
α

0 L
0

0
··
·

0
0

α
L

+
1

L
α

0 L
0

0
··
·

0
0

α
L

+
1

L

0
−
α
L

+
1

1
−
α
L

+
1

2
··
·
−
α
L

+
1

L
−

1
−
α
L

+
1

L
0

0
α
L

+
1

1
∗
α
L

+
1

2
∗
··
·

α
L

+
1

L
−

1∗
α
L

+
1

L

∗
0

                                                                  .
(D

.6
2)
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It can be shown that Λ has only two nonzero diagonal elements, λ1 and λ2 and the
rest of eigenvalues are zero. For nonzero eigenvalues, we have

λ1, λ2 =
√

2

√√√√√√ L∑
j=1

(|α0
j |2 + |αL+1

j |2)±

√√√√√∣∣∣∣ L∑
j=1

(α0
j + αL+1

j )(α0∗
j − αL+1∗

j )
∣∣∣∣2. (D.63)

Then, M would have only four nonzero eigenvalues and the rest are zero independent of
size. The next step is to find the eigenvectors to construct the U matrix. In (7.12), we have
already introduced two eigenvectors of zero mode. Using the orthogonality condition, and
the condition that if |u⟩ is an eigenvector with eigenvalue λ then J |u⟩ is also an eigenvector
with eigenvalue −λ, therefore, we can find and present only half of the eigenvectors. For
simplicity, we assume α0

j = αL+1
j = αj, then eigenvectros of positive modes. we have:

∣∣∣u+
1

〉
=


u

v

 ;

uL+1 = u0 = −v0 = vL+1 = 1

ui = − 2α∗
i√∑L

j=1 |αj |2

else = 0

(D.64)

∣∣∣u+
2

〉
=


u

v

 ;

uL+1 = −u0 = v0 = vL+1 = αL
|αL|

vi = 2αi√∑L

j=1 |αj |2
αL

|αL|

else = 0

(D.65)

For eigenvectros of zero modes, we have:

∣∣∣u0
1

〉
=


u

v

 ;
uL+1 = u0 = v0 = −vL+1 = 1

else = 0
(D.66)

∣∣∣u0
k

〉
=


u

v

 ;

ui = − αkα
∗
i∑k−1

j=1 |αj |2
; i < k ̸= 0

uk = 1

else = 0,

(D.67)

where k = 2, 3, · · · , L. With this expressions for eigenvectors, we can construct the unitary
matrices U. Having the exact U, we can calculate correlation matrices (see section 7.3).
putting these eigenvectors together, one can construct the U.
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Having the U matrix, we can directly calculate the δ+ introduced in (7.35). The
calculation of δ+ shows that

δ+ =

+1 if L even

−1 if L odd
(D.68)

Vacuum state in configuration basis

Another method to calculate the entanglement of subsystem in a particular state is to
use a more direct way. We could use the equation (2.53) to calculate the entanglement.
Using the results of subsection 7.2.4 for A,B = 0 we can find the form of R matrix as:.

R =



0 αj√
|α1|2+···+|αL|2

1

−αi√
|α1|2+···+|αL|2

0 αi√
|α1|2+···+|αL|2

−1 −αj√
|α1|2+···+|αL|2

0


(D.69)

where,
|0⟩η = 1√

det[I + R†R]
e

1
2
∑

i,j
Rijc

†
i c

†
j |0⟩c .

Numerical investigations suggest that for even sizes we get exactly the same expression,
and for odd sizes we get the minus of the vacuum (αi ∈ R).

Correlations

For the special case of A,B = 0, the correlation matrices look pretty much simple in
terms of the parameters αi’s. We are going to demonstrate the matrix form of correlations
for general αi ∈ C. For start, in the vacuum state, correlations looks like below. (In the
following expressions indexes n and m are the number of rows and columns respectively.)

C0 =



1
2

αm

4
√∑

k
|αk|2

−1
4

α∗
n

4
√∑

k
|αk|2

α∗
nαm

2(
∑

k
|αk|2)

α∗
n

4
√∑

k
|αk|2

−1
4

αm

4
√∑

k
|αk|2

1
2


, F0 =



0 α∗
m

4
√∑

k
|αk|2

1
4

−α∗
n

4
√∑

k
|αk|2

0 α∗
n

4
√∑

k
|αk|2

−1
4

−α∗
m

4
√∑

k
|αk|2

0



K0 =



1 0 0

0 δnm − m−n
|m−n|

iℑ[α∗
nαm]∑

k
|αk|2

−iℑ[αn]√∑
k

|αk|2

0 iℑ[αm]√∑
k

|αk|2
1


, K̄0 =



1 iℑ[αm]√∑
k

|αk|2
0

−iℑ[αn]√∑
k

|αk|2
δnm − m−n

|m−n|
iℑ[α∗

nαm]∑
k

|αk|2 0

0 0 1


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G0 =



0 ℜ[αm]√∑
k

|αk|2
0

0 −δnm + ℜ[α∗
nαm]∑
k

|αk|2
ℜ[αn]√∑
k

|αk|2

−1 0 0


For the case where the state is ZME state (|∅⟩) then the correlation matrices look like

below.

C∅ =



1
2

αm

4
√∑

k
|αk|2

1
4

α∗
n

4
√∑

k
|αk|2

α∗
nαm

2(
∑

k
|αk|2)

α∗
n

4
√∑

k
|αk|2

1
4

αm

4
√∑

k
|αk|2

1
2


, F∅ =



0 α∗
m

4
√∑

k
|αk|2

−1
4

−α∗
n

4
√∑

k
|αk|2

0 α∗
n

4
√∑

k
|αk|2

1
4

−α∗
m

4
√∑

k
|αk|2

0



G∅ =



0 ℜ[αm]√∑
k

|αk|2
0

0 −δnm + ℜ[α∗
nαm]∑
k

|αk|2
ℜ[αn]√∑
k

|αk|2

1 0 0


, K∅ = K0, K̄∅ = K̄0.

Finally, for this case when the state is |G±⟩ then the correlations look like below.

C± =



1
2

αm

4
√∑

k
|αk|2

0

α∗
n

4
√∑

k
|αk|2

α∗
nαm

2(
∑

k
|αk|2)

α∗
n

4
√∑

k
|αk|2

0 αm

4
√∑

k
|αk|2

1
2


, F± =



0 α∗
m

4
√∑

k
|αk|2

0

−α∗
n

4
√∑

k
|αk|2

0 α∗
n

4
√∑

k
|αk|2

0 −α∗
m

4
√∑

k
|αk|2

0


,

G± =



0 ℜ[αm]√∑
k

|αk|2
0

0 −δnm + ℜ[α∗
nαm]∑
k

|αk|2
ℜ[αn]√∑
k

|αk|2

0 0 0


, K± = K0, K̄± = K̄0.
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M matrix for modified XY chain
In this appendix, the exact forms of the matrices A and B for modified XY spin chain is
demonstrated. For |⃗b1| = 1 and |⃗bL| = 1, they can be written as:

A =



0 − sin θ1eiϕ1
2 0 ...

− sin θ1e−iϕ1
2 −h + cos θ1 −J

2 0 ...

0 −J
2 −h −J

2 0 ...

0 0 −J
2 −h −J

2 0 ...

. . .

. . .

. . −h + cos θL − sin θLe−iϕL
2

· · · 0 − sin θLeiϕL
2 0



, (D.70)

B =



0 − sin θ1e−iϕ1
2 0 · · ·

sin θ1e−iϕ1
2 0 −Jγ

2 0 · · ·

0 Jγ
2 0 −γJ

2 0 ...

... 0 Jγ
2 0 −γJ

2 0 ...

. .

. .

. . . . . Jγ
2 0 − sin θLe−iϕL

2

. . . . . 0 sin θLe−iϕL
2 0



. (D.71)

With the help of (7.8) and (7.9), one can construct the actual M matrix.
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