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Resumo

Neste trabalho estudamos propriedades eletrônicas de sistemas quasi-unidimensionais

baseados em carbono. Por meio do método Tight-Binding e do formalismo de funções de

Green aplicadas ao modelo de Landauer foi possível obter estruturas de bandas, densidade

de estados e condutâncias eletrônica das redes propostas. O trabalho está subdividido entre

o estudo de propriedades eletrônicas em geometrias do tipo favo de mel, em grafeno, 𝛼-

graphyne e kagomé, definidas aqui como stantard e geometrias fractais obtidas pela inserção

de triângulos de Sierpinski em cadeias carbônicas. O aparecimento de fenômenos fractais em

geometrias stantard pode ser observada por meio da ação de um campo magnético externo

no movimento dos elétrons da rede. Nesta situação, o espectro de energia em função do fluxo

magnético nos fornece uma figura fractal denominada “Hofstadter Butterfly”. Inicialmente

apresentamos a teoria e modelos que possibilitam o estudo das propriedades eletrônicas de

monocamadas, bicamadas e bicamadas rodadas das redes propostas. Resultados de estru-

turas eletrônica, densidade de estados eletrônicos e de transporte são explorados ao longo do

trabalho. As redes fractais são apresentadas e em particular nos concentramos em sistemas

compostos por triângulos de Sierpinski. Motivados por resultados experimentais encontrados

recentemente na literatura, desenvolvemos modelos moleculares simplificados para descrever

cadeias moleculares geradas a base de triângulos de Sierpinski. Esses modelos foram capazes

de reproduzir de forma bastante satisfatória a partir de mapas de densidades locais de cargas

com imagens do microscópio de tunelamento quântico. Nossos cálculos revelam o apareci-

mento da auto-similaridade destes sistemas nas respectivas propriedades eletrônicas. Nossos

estudos se mostraram bastante promissores para futuras aplicações no desenvolvimento de

dispositivos nanoscópicos. Palavras-Chave: grafeno-flat band-fractal-propriedades eletrônicas
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Abstract

In this work we study the electronic properties of quasi-unidimensional carbon-based systems.

Through the Tight-Binding method and the formalism of Green’s functions applied to the Landauer

model, it was possible to obtain band structures, density of states and electronic conductance of the

proposed systems. The work is divided between the study of electronic properties of honeycomb,

graphene, 𝛼-graphyne and kagomé geometries, defined here as stantard and fractal geometries ob-

tained by inserting Sierpinski triangles into carbon chains. The emergence of fractal phenomena

in standard geometries can be observed through the action of an external magnetic field on the

movement of lattice electrons. In this situation, the spectrum of energy as a function of the mag-

netic flux gives us a fractal figure called “Hofstadter Butterfly”. Initially we present the theory and

models that allow the study of the electronic properties of monolayers, bilayers and bilayers rotated

of the proposed networks. Results of electronic structures, density of electronic and transport states

are explored throughout the work. Fractal networks are presented and in particular we focus on

systems composed of Sierpinski triangles. Motivated by experimental results recently found in the

literature, we developed simplified molecular models to describe carbon chains generated on the

basis of Sierpinski triangles. These models were able to reproduce quite satisfactorily from maps

of local charge densities with scanning tunneling microscope images. Our calculations reveal the

appearance of the self-similarity of these systems in the respective electronic properties. The studies

of the properties of the systems discussed here proved to be fundamental for future applications in

the development of nanoscopic devices.

Keywords: graphene-standard lattices-flat band-fractal-electronic properties
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Introduction

The graphene is a bidimensional system believed for some time as being merely a toy model.

Theoretical studies predict an unstable surface due to the fact that thermal fluctuations should be

larger than the binding forces that bring atoms together. The formation of curved structures such

as fullerenes and nanotubes are then expected to happen in graphene systems [1]. This belief comes

down when the physicisst A. Geim e K.Novoselov obtained by exfoliation of graphite a single sheet,

denominated later as graphene. Graphene is a semi-metal in the the bulk, with Dirac cones [2] at

the K points of the Brillouin Zone (BZ). The Dirac cones are energy regions with linear dispersion

where the electron have a high group velocity, near to 106ms−1, and null effective mass [3].

Figure 1: Carbon allotropes: From 0-D to infinite systems. Adapted from Ref.[4]

The subsequent confirmation that graphene exhibit a number of interesting physical responses,

such as high mobility, ballistic electronic propagation, mechanical flexibility, among others, have

1



transformed graphene a protagonist in condensaded matter research [5]. Actually, after the graphene

realization, a gold rush for experimental synthesis of graphene sheets begun. Also, several experi-

mental techniques such as bottom-up assembly [6] and chemical vapour deposition (CVD) [7] were

developed to reproduce the results obtained by different groups. Alternatively, new bidimensional

hexagonal materials that were already theorized in the past, like graphyne lattices and Kagomé,

predicted many years before the graphene discovery, started being investigated and also synthetized.

As illustred in Fig. 1 the first traditional Kagomé lattice, theorized by I.Syozi in 1951 [8] gave rise to

other decorated lattices such as Kagomé Honeycomb (originally proposed as a metal framework) [9],

Lieb lattice, graphyne familly, and others. In metallic materials like 𝛼-graphyne, or semi-metals in

the graphene case, the electrons behave like a gas, and the corresponding electronic wave functions

are delocalized throughout the lattice. Kagomé systems are in general semiconductors with a flat

band near the Fermi Level. The flat band is a direct result from destructive interference between

the electrons in the system [10].

Created from the insertion of acetylenic bonds (sp hybridization) between the graphene aro-

matic rings, the graphyne (Gy) proved to be a promising material. Since the theoretical proposal

of R.H.Baughman et al [12] in 1987, several experimental attempts have been reported in the

literature using chemical/mechanical routes for the synthesis of some of the several variations of

the Gys [13, 14, 15, 16, 17], such as (𝛼, 𝛽, 𝛾 and 6, 6, 12)-graphyne shown in Fig.2. With even

more acetylenic linkages, we have also the graphydine [18]. Several versions of graphyne have also

emerged: multilayers, nanofoams, nanotubes, 0D-3D [19, 20] allotropes, among others. In addition,

technological applications as proposed by Zhang et al [21], reported the use of graphyne as an anode

in Lithium batteries, since energy storage and diffusion were better compared to graphite. Another

possible application is as a desalination agent, reaching 100% of rejection of almost all ions present

in seawater, including Na+, Cl-, Mg2+, K+ and Ca2+, two orders of magnitude higher than in

commercial membranes [22]. In the second Chapter we discuss the electronic properties of bilayered

graphyne, consisting of two graphyne layers stacked on top of one another and other interesting

physical properties of such carbon based systems.

Almost every graphyne family and molecular kagomé structure had been already synthesized

2



Figure 2: Molecular representation of 4 graphyne families:. (a) 𝛼-graphyne, (b) 𝛽-graphyne,
(c) 𝛾-graphyne, and (d) 6,6,12-graphyne. [11]

[9, 23], pushing the development of new models to describe them. It’s important to mention that

other system configurations are possible to be realized experimentally and theoretically described,

like flakes, bilayers and twisted bilayers. Monolayered and bilayered graphene systems are already

largely explored in the literature [2, 24, 25]. In the case of bilayer graphene, two configurations

between the layers are possible [see Fig. 3(a)]; direct 𝐴𝐴 and bernal 𝐴𝐵 stackings, leading a

metallic character for pristine graphene bilayer, which could be broke by an applied perpendicular

electric field [26, 27]. Moreover, by rotating one layer relative to the other, Jarillo and his colleagues

found the called magic-angle in twisted bilayer graphene (TBG) [28]. A superconducting transition

evidenced in TBG started, at 1.7K, started a new rush around twisted materials, giving birth to

new areas as the twistronics [29].

3



Figure 3: (a) AA and AB graphene stacking scheme. (b) Jorio group STM tip. (c) From left
to right: TBG and STMs sample schemes, Charge density obtained via STM and increasing
peak observed for low angles in the tunneling current. Adapted from.[27, 30, 31]

As it will be better pointed in the next sections regarding to the Moiré effect, the commensurable

angles are responsible to the emergence of TBG supercells. This leads the possibility of obtaining

Hofstadter-like butterflies, which are fractal figures [32]. Because of the large unit cells, the TBG

showed up as a propper scenario to explore fractal properties in matter. Shortly, the Hofstadter but-

terflies are obtained when a confined electron in a thin periodic layer interacts with a perpendicular

magnetic field promoting changes in the accessible electron energy. The corresponding electronic

structure as a function of the magnetic field intensity shows fractal patterns, similar to butterfly

wings. The effects of this interaction is explored in Sec. 3.2.

Concerned to experimental aspects, the thin layers of graphene can be manipulated as an origami

using an experimental technique called Scanning Tunneling Microscopy (STM). Very recently, a

Brazilian experimental group in UFMG led by Ado Jorio, have proposed and developed a new

microscope tip with a pyramidal shape able to accurately measure nanometric systems (resolution

of 1nm) and sharp spatial control [31, 33]. To rotate and create the TBGs they have manipulated

the graphene layers with the new developed STM tip as illustrated in Fig. 3(b) [33]. The STM

apparatus and experimental results are observed in Fig. 3(c). Also, for small angles, as depicted in

mentioned figure, the results from the tunneling current reveals a sharply-angle dependent peak.
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The STM creation gives for the first time the possibility of a direct real-space measurement,

contrary to what was developed, for example, with the X-Ray diffraction experiments. Since then,

the STM proved to be an important tool in the study of electronic properties of different materials.

The great deal of having a microscope were the resolution is near from the unit in nanometric scale,

is to explore a new world of properties of matter that was not available before. In fact, the main

goal in any microscope measure is its amplifying power or resolution. Optical microscopes have

limited resolution which qualitatively stipulates the limits that two sample points can be identified

separately. More details of the STM theory are discussed in Chapter 1. Briefly, the measure is made

using the quantum tunneling effect between the sample and the microscope tip. This is possible due

to a gate voltage applied between them. With this experimental setup, we can obtain information

about the system electronic topography by varying the perpendicular distance (d) among the tip

and the lattice. Alternatively, we can obtain the charge density distribution around the lattice

positions, for each energy value, considering d fixed.

Figure 4: (a) Sierpienski Triangle generations (b) Experimental results of constructing ST
flakes with a STM tip taken from Ref. [34].
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After the brief introduction to carbon-based nanomaterials, their background and experimen-

tal measurements, we introduce in the following, the concept of fractals and discuss some results

concerning the fractality in nanostructured systems. Fractal sets are characterized by their infinite

self-similarity property, i.e., each part of the set has the same or approximately the same shape of

the whole set. A particular example, is the Sierpinski Triangle (ST) [see Fig. 4]. Besides the fact

that its constructed by 2D equilateral triangles, subdivided recursively into smaller equilateral tri-

angles, the ST has a fractal dimension 𝐷 ≈ 1.585. Apart from a mathematical object, recently [34],

the ST flakes becomes an experimental reality by manipulating CO molecules on Cu(111) surfaces

with the STM tip. It was possible to build and measure the charge density in a real ST flake. Then,

confronting experimental and theoretical models, the group concluded that the electrons behaves

like a particle in a fractal dimension in such systems.

Mathematical fractal areas are hard to be measured. The "Koch Coastline" is a fractal figure

based on Koch’s snowflakes. For higher orders, as in Fig. 5(a), it is very similar to geographic

coastlines seen from space photographs. Imagine that we want measure the total line-area occupied

by a coastline following the Koch growth. We will certainly have a problem, since there are infinity

generations, each one changing the topography of the coastline. Interested in this problem, Hausdorff

developed the box-counting method [35, 36] to calculate the dimension of such figures.

Figure 5: (a) Koch Coastline generations (b) Box-Counting on Grain Britain coast. Addapted
from Ref. [37].

The box-counting method is based on the dimension calculation of the figure by filling it with
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squares. The measure of the Great Britain coast dimension using the box-counting method [see

top part of Fig. 5(b)] is made by filling it with different 𝑁(𝑟) squares with size 𝑟. After that, the

dimension is obtained by the slope coefficient of the 𝑙𝑜𝑔(𝑁) − 𝑙𝑜𝑔(𝑟−1) plot. In the bottom part of

Fig. 5(b), we see the box method applied; for each dot in the graph we have a certain amount of

boxes filling the coast.

Usually, a fractal is a figure with infinite self-similarity. Here in this work, we will call a finite

fractal (pre-fractal in literature), simply as a fractal, in which the N-th iteration number will be

given by the 𝐺(𝑁) orders. Motivated by the emergence of fractals in nanoscopic systems [38, 39, 40],

in Fig. 6 we have illustrated several examples of STs based on different structures. Separated in the

literature as conventional, hexagonal and graphene zigzag and armchair flakes. In the present work

we also propose the Kagomé honeycomb ST flake, as well in the zigzag and armchair configurations.

Figure 6: Variations of G(3) Sierpinski Triangle flakes: (a) Conventional ST, (b) Zigzag-
Kagomé-Honeycomb ST (Z-KHST), (c) Armchair-Graphene ST (A-GST), (d) Hexagonal ST
(HST), (e) Armchair-Kagomé-Honeycomb ST (A-KHST), and (f) Zigzag-Graphene ST (Z-
GST).
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More than a mathematical abstraction, fractals built with a finite number of iterations are

physically applicable like in fractal circuits and antennas [41], fractals used in the synthesis of

insulator thermal porous media [42], fractal wave guides as a possibility of a “spatial compression

of light energy” [43, 44], and more recently the synthesis of Sierpinski composites [34, 45, 46] and

models describing similar fractal [38, 47]. Lately, 1D molecular chains using STs as building blocks

have been reported [45, 46] using low-temperature STM as depicted in Fig. 7. Experimental

methods using self-assembly [48, 49, 50] and templating [51, 52, 53] are being used to synthesize

ST flakes and nanoribbons with transition metals and metal-organic composites. The systems were

grown on Au(111) and the success of the chain formation depends on the molecular coverage and

matching between molecular size and surface lattices. Also, 2D crystals consisting of ST units are

reported by exploiting benzene-like molecules and Fe atoms on Au(111) by combining molecular

design and epitaxy control [54].

Figure 7: Experimental STM results and lattice model of BPyB molecules [51]. Mirrored ST
chains: (a) G(1) and (b) G(2)

.

Nowadays the understanding of the electronic properties of these new materials is a very impor-

tant technological aspect to the computational advances and device development evolution. The

“nanofication” of the latest processors highlight even more the physical limit of the electronic com-

ponents related with the Moore’s law. The use of fractal lattice was reported as wave guide for

photonic lattice [39], which could be employed in the construction of quasi-analog computing in
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photonics [55].

In summary, we study in this work the electronic properties of nanostructures systems separated

in two types. The first one, presenting well known regular geometries (honeycomb lattice), in which,

in this work are denoted by standard geometries. And the fractal ones, mainly defined by the

construction of fractal lattices or by the insertion of standard geometries into the ST flakes. It is

important to mention that a connection between both physical systems can be made, for instance, by

considering the case in which a magnetic field is applied perpendicularly to a 2D lattice, producing

fractal patterns in the energy spectra, like the famous Hofstadter Butterfly signatures.
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Chapter 1

Theory & Background

To understand the rose, one

person may use geometry and

another the butterfly.

Claudel, 1929

The quantum mechanical theories have been extensively verified experimentally and even nowa-

days its predictions continue motivating physics measurements. Flash drives and transistors use

the transport theory developed for tunneling and drifted electrons in materials. Also, different

under rated mathematical tools turned to be very useful for quantum field theories in condensed

matter, as group theory and topology. Symmetry operations on Hamiltonian matrices are provided

by operators that follow the Hilbert space formulation of quantum mechanics. All these theories

are integrated forming a solid theoretical framework basis that moves the scientific advances though

the centuries. In this chapter we discuss some of these condensed matter theories that are applied

directly to help understanding the physics of the carbon systems proposed in this work.

1.1 Tight-Binding Method

The tight-binding (TB) approximation was suggested by Bloch in 1928 to calculate the state

occupancy of periodic crystalline systems. The TB method is suitable for describing systems in



which electrons are strongly bound to atoms and interact weakly with neighboring potentials. In

this context, the wave functions of these electrons will be quite similar to those of the corresponding

free atom. Electronic wave functions are constructed from a linear combination of atomic orbitals

(LCAO) belonging to different neighboring atoms. In the case of the materials studied here, due to

the symmetry of the orbitals of the carbon atom, the transport is carried out through the 𝜋 bonds

of the 𝑝𝑧 orbitals. The TB model allows us to calculate the band structures in the entire Brillouin

zone, with the advantage of having a low computational cost.

Due to the translation symmetry of the crystalline systems given by the lattice vectors 𝑎𝑖, any

function that satisfies the Bloch theorem could be represented by itself multiplied by a phase [56],

i.e.,

𝑇𝑎𝑖
Ψ = 𝑒𝑖�⃗�.𝑎𝑖Ψ, (𝑖 = 1, 2, 3), (1.1)

where T is the translation operator over the direction of the vector 𝑎𝑖, and �⃗� is the Bloch wave

vector. Any wave function Φ
�⃗�
(�⃗�) that satisfies the condition above, could be defined as a sum over

the atomic wave function orbitals 𝜙(�⃗� − �⃗�) for the j-th site, as

Φ
𝑗�⃗�

(�⃗�) = 1√
𝑁

𝑁∑︁
�⃗�

𝑒𝑖�⃗�.�⃗�𝜙(�⃗� − �⃗�), (𝑗 = 1, 2, ..., 𝑁), (1.2)

with �⃗� being the atom position, in terms of the lattice vectors, and N the number of unit cells.

If the wave function above is a good candidate for a Bloch orbital, then due to the translation

invariant symmetry a displacement by the lattice parameter a could not change the orbital function

Φ
𝑗�⃗�

(�⃗� + �⃗�) = 1√
𝑁

𝑁∑︁
�⃗�

𝑒𝑖�⃗�.�⃗�𝜙(�⃗� + �⃗�− �⃗�)

= 𝑒𝑖�⃗�.⃗𝑎
1√
𝑁

𝑁∑︁
�⃗�−�⃗�

𝑒𝑖�⃗�.(�⃗�−�⃗�)𝜙[�⃗� − (�⃗�− �⃗�)]

= 𝑒𝑖�⃗�.⃗𝑎Φ
𝑗�⃗�

(�⃗�).

(1.3)

Thus, Φ
𝑗�⃗�

is a good candidate for a Bloch orbital function and the wave function Ψ
𝑗�⃗�

(�⃗�) is defined
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as a linear combination of Bloch’s functions, as

Ψ
𝑗�⃗�

(�⃗�) =
𝑁∑︁
𝑗′=1

𝐶𝑗𝑗′(�⃗�)Φ
𝑗′�⃗�(�⃗�) . (1.4)

The coefficients 𝐶𝑗𝑗′ are determined by the j-th eigenvalue expressed as

𝐸𝑗(�⃗�) = ⟨Ψ𝑗 |𝐻|Ψ𝑗⟩
⟨Ψ𝑗 |Ψ𝑗⟩

, (1.5)

with H being the Hamiltonian of the system. Now, changing the index and substituting Eq. 1.4

into Eq. 1.5, we have

𝐸𝑖(�⃗�) =
∑︀𝑁
𝑗𝑗′=1𝐶

*
𝑖𝑗𝐶𝑖𝑗′ ⟨Φ

𝑗,⃗𝑘
|𝐻 |Φ

𝑗′ ,⃗𝑘⟩∑︀𝑁
𝑗𝑗′=1𝐶

*
𝑖𝑗𝐶𝑖𝑗′ ⟨Φ

𝑗,⃗𝑘
|Φ
𝑗′ ,⃗𝑘⟩

=
∑︀𝑁
𝑗,𝑗′=1𝐻𝑗𝑗′(�⃗�)𝐶*

𝑖𝑗𝐶𝑖𝑗′∑︀𝑁
𝑗,𝑗′=1 𝑆𝑗𝑗′(𝑘)𝐶*

𝑖𝑗𝐶𝑖𝑗′
, (1.6)

where 𝑆𝑗𝑗′(�⃗�) = ⟨Φ
𝑗�⃗�

|Φ
𝑗′�⃗�⟩ are the orbital overlap matrix elements for first neighbor atoms, and the

integral matrices 𝐻𝑗𝑗′(�⃗�) = ⟨Φ
𝑗�⃗�

|𝐻 |Φ
𝑗′�⃗�⟩ = 𝜖𝛿𝑗𝑗′ −𝑡𝛿𝑗𝑗′±1, with 𝜖 being the on-site energy, and 𝑡 the

electronic hopping terms between the sites 𝑗 and 𝑗′. The coefficients 𝐶*
𝑖𝑗 are chosen as to minimize

the eigenvalues 𝐸𝑖(�⃗�). Fixing 𝐶𝑖𝑗′ , we have

𝜕𝐸𝑖(�⃗�)
𝜕𝐶*

𝑖𝑗

=
∑︀𝑁
𝑗,𝑗′=1𝐻𝑗𝑗′(�⃗�)𝐶𝑖𝑗′∑︀𝑁

𝑗,𝑗′=1 𝑆𝑗𝑗′(𝑘)𝐶*
𝑖𝑗𝐶𝑖𝑗′

−
∑︀𝑁
𝑗,𝑗′=1𝐻𝑗𝑗′(�⃗�)𝐶*

𝑖𝑗𝐶𝑖𝑗′

(
∑︀𝑁
𝑗,𝑗′=1 𝑆𝑗𝑗′(𝑘)𝐶*

𝑖𝑗𝐶𝑖𝑗′)
2

𝑁∑︁
𝑗,𝑗′=1

𝑆𝑗𝑗′(𝑘)𝐶𝑖𝑗′ = 0. (1.7)

Multiplying then, both sides by
∑︀𝑛
𝑗,𝑗′=1 𝑆𝑗𝑗′(𝑘)𝐶*

𝑖𝑗𝐶𝑖𝑗′ and substituting 𝐸𝑖(�⃗�) from Eq.(1.6) in

the second term of Eq.(1.7), we obtain obtemos

𝑁∑︁
𝑗,𝑗′=1

𝐻𝑗𝑗′(�⃗�)𝐶𝑖𝑗′ = 𝐸𝑖(�⃗�)
𝑁∑︁

𝑗,𝑗′=1
𝑆𝑗𝑗′(�⃗�)𝐶𝑖𝑗′ . (1.8)

By defining a column vector,
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𝐶𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐶𝑖1

𝐶𝑖2
...

𝐶𝑖𝑁

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (1.9)

we get

ℋ𝐶𝑖 = 𝐸𝑖(�⃗�)𝒮𝐶𝑖. (1.10)

Note that Eq. 1.1 is still a N-term expression. Transposing the left side to the right we get,

[ℋ − 𝐸𝑖(�⃗�)𝒮]𝐶𝑖 = 0.

The only non-trivial solution is for [ℋ−𝐸𝑖(�⃗�)𝒮] non-invertible, so the eigenfunction is determined

by solving the following secular equation,

𝑑𝑒𝑡[ℋ − 𝐸(�⃗�)𝒮] = 0. (1.11)

From this equation we can obtain the dispersion relation of the energy inside the Brillouin zone,

for a certain direction of the wave vector �⃗�. In the orthogonal approximation, the overlap term

is equal to one, and there are several ways to express the energy of the system in function of its

own symmetries. In the next Section, we apply the Tight-Binding method to a Kagomé honeycomb

nanoribbon to illustrate the use of theory.

1.1.1 Application: Kagomé Honeycomb Nanoribbon

Here we introduce some aspects of the Kagomé honeycomb nanoribbons (KHNRs) and perform

the orthogonal1 TB calculations to derive the electronic structure and the density of state in such

systems. Usually, the Kagomé honeycomb (KH) lattices are composed by covalent organic frame-

works, with complex unit cells and different band structure features, as depicted in Fig.1.1-(a).
1Approximation were the Bloch orbitals of each atom are orthogonal between then, making the overlap

matrix (S) in the secular equation 1.1 equal to identity
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Otherwise, in simplified models, the lattice is treated as a decorated graphene with on-site energy

potentials ±𝜀, for each sub-lattice as shown in Fig.1.1-(b), with white and black atoms [9].

Figure 1.1: (a) Possible atomic configurations for Metal Organic Framework (MOF) KH and
(b) MOF configuration and the simplified model with its band structure for 𝜀 < 0. Adapted
from Ref. [9].

Despite the fact that a KH lattice, also exhibits hexagonal symmetry, like graphene, a band gap

𝐸𝑔 = 2𝜀, within the adopted model, ensuring a semiconductor state in both bidimensional [Fig.

1.1(b)] and quasi-unidimensional (nanoribbons) [Fig.1.2]. This occurs due to the symmetry break

in the unit cell, by the insertion of intermediary atoms between the graphene lattice, which gives

asymmetrical sub-blocks in the Hamiltonian as will be discussed.

Fig. 1.2 shows an example of a zigzag kagomé honeycomb nanoribbon (Z-KHNR). In order

to preserve and to explore the system symmetries, we define the sequence of unit cells that are

used in the computation code, illustrated with colored dashed rectangles in green, yellow and blue,

representing nanoribbons with sizes N=1, 2, and 3, respectively. An arbitrary site index is chosen

in black for kagomé and white for graphene unit cells. We can see that for the 3-Z-KHNR the gap

size is proportional to 𝐸𝑔 = 2𝜀 like in the bulk case. Due to a single flat state at 𝐸 = −0.25𝑡 the

electronic band structure is is not complete symmetric about the fermi level. The emergence of a

flat state is an important feature of the Kagomé systems [10].
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Figure 1.2: Growth illustration of the KHNRs, highlighting odd and even edges that alternate
as the system increases. Red and blue sites, denotes on-site energies settled as 𝜀 = ±0.25𝑡

The Hamiltonian used to calculate the electronic properties of this system is given as

𝐻 =
∑︁
𝑖

𝜀𝑖𝑐
†
𝑖𝑐𝑖 −

∑︁
<𝑖,𝑗>

𝑡𝑖,𝑗𝑐
†
𝑖𝑐𝑗 + ℎ.𝑐. (1.12)

with 𝜀𝑖 being the on-site energy for each atom located at site 𝑖, defined as ±0.25𝑡 for blue and red

sites, respectively, 𝑐†
𝑖 (𝑐𝑖) is the creation (annihilation) operator of an electron on site 𝑖, and 𝑡𝑖,𝑗 is

the hopping energies for nearest neighboring atoms. Is important to stress that the hopping values

from Kagomé and Graphene systems described in Fig. 1.2 are different, however, for simplicity here

we denote both hopping terms as 𝑡.

The Hamiltonian matrix (𝐻𝐾) for N=1 (green unit cell in Fig. 1.2 with 9 atoms) is defined by

a 9x9 matrix
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𝐻𝐾 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−𝜀 𝑡 0 𝑡𝑒𝑖𝑎𝑘 0 0 0 0 0

𝑡 𝜀 𝑡 0 0 0 0 0 0

0 𝑡 −𝜀 𝑡 0 0 0 0 0

𝑡𝑒−𝑖𝑎𝑘 0 𝑡 𝜀 𝑡 0 0 0 0

0 0 0 𝑡 −𝜀 𝑡 0 0 0

0 0 0 0 𝑡 𝜀 𝑡 0 𝑡𝑒−𝑖𝑎𝑘

0 0 0 0 0 𝑡 −𝜀 𝑡 0

0 0 0 0 0 0 𝑡 𝜀 𝑡

0 0 0 0 0 𝑡𝑒𝑖𝑎𝑘 0 𝑡 −𝜀

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1.13)

As expected, the matrix dimension is given by the number of atoms in the unit cell. Following the

counting in the figure, for first neighbors between different unit cells, a phase is added. Moreover,

the hamiltonian of graphene 𝐻𝐺 can be obtained by removing the red atoms from the green unit

cell, leaving four blue atoms located in the hexagon vertices. The corresponding Hamiltonian matrix

is

𝐻𝐺 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜀 𝑡
(︁
1 + 𝑒𝑖𝑎𝑘

)︁
0 0

𝑡
(︁
1 + 𝑒−𝑖𝑎𝑘

)︁
𝜀 𝑡 0

0 𝑡 𝜀 𝑡
(︁
1 + 𝑒𝑖𝑎𝑘

)︁
0 0 𝑡

(︁
1 + 𝑒−𝑖𝑎𝑘

)︁
𝜀

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(1.14)

Comparing the sub-blocks in 𝐻𝐾 [Eq. 1.13] with the 𝐻𝐺 [Eq. 1.14], we notice an alternating

sign value for the on-site energies in the 𝐻𝐾 matrix. This is in accordingly with is expected for the

Kagomé features. For that reason, the diagonal terms of these sub-blocks can be written in terms

of the generalized 4D Z-Pauli matrix 𝜎4𝐷
𝑍 as,

𝐷1 = −𝜀 𝜎4𝐷
𝑍

𝐷2 = 𝜀 𝜎4𝐷
𝑍 (1.15)
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where D1 and D2 stand for the diagonal terms of the first and second highlighted 4x4 sub-blocks

of 𝐻𝐾 , respectively. The 𝜎4𝐷
𝑍 is obtained by the tensorial product 𝐼2 ⊗ 𝜎𝑍 , with 𝐼2 and 𝜎𝑍 being

the 2x2 identity and Pauli matrices. As discussed in the Appendix. A, when the diagonal terms of

the Graphene Hamiltonian (𝐻𝐺) are proportional to 𝜎𝑍 , both time-reversal and spatial symmetries

of the hexagonal system are broken, with that, the protected metallic state observed for zigzag

graphene nanoribbons [see Fig. 1.3(a)], is changed to a semiconductor character [57, 58]. Hence,

for zigzag kagomé, a band gap proportional to 2𝜀 is reached [see Fig. 1.3(b)]. Further effects, such

as external magnetic, electric fields and strain [59, 60, 61, 62] could also be employed to break these

symmetries and change the electronic properties in that systems. The electronic energy bands and

density of states of both systems are shown in Fig. 1.3

Figure 1.3: Band structure and DOS obtained by the smooth histogram from top to bottom
(a) 𝜀 = 0 (1,2,3)-Z-GNR (b) 𝜀 = ±0.25𝑡 (1,2,3)-Z-KHNR.

Usually, energy bands with no dispersion in momentum space, also called as flat bands, are

related to isolated sites with no connections between the neighbors. Flat bands in general have many

physical interpretations [10, 63]. From the electronic perspective, in such regions, the effective mass

of the particle is almost infinite, giving origin to a fully localized state. Consequently, a dispersionless
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state surges and the hopping term is effectively turned off. In a Kagomé lattice, the flat bands are

characterized by a destructive interference between the electronic wave functions of the moving

electrons in the lattice [63]. When this occurs, Bloch orbitals becomes localized at specific sites of

the lattice.

With the help of the eigenvalues 𝐸(𝑘), obtained from the secular equation 1.1, we can count the

number of states per energy and construct an energy smooth histogram, from which it is possible

to obtain the electronic total density of states (DOS). Results for the density of states of both

systems, kagomé honeycomb and graphene nanoribbons, for N=1, 2, and 3, are shown in the the

bottom part of Fig. 1.3. The electronic localization difference between 𝐸 = −0.25𝑡 and 𝐸 = 0.25𝑡

can be evidenced in the respective peak heights of the DOS. As a general DOS feature of both

nanoribbon systems is the set of Van Hove singularities, typical of quasi-1D systems. Further

techniques for calculating the electronic DOS are discussed in the next section based on the Green

function formalism.

1.2 Time-Independent Green’s Function

We can use the idea that Schrodinger’s equation is to non-relativistic quantum mechanics as

Newton’s second law is to classical mechanics [64]. However, instead of governing the motion of

a particle, as is the case of the second law, the Schrodinger equation governs the dynamics of a

wavefunction Ψ(�⃗�, 𝑡). In this context, we are interested in obtaining the Ψ functions of the electrons

confined in the crystals, and for that, we can make use of the Green’s functions. In general, the time-

independent Green functions 𝐺(�⃗�) can be seen as solutions of non-homogeneous linear differential

equations, which describe systems subject to external perturbations [65]. Let’s consider

ℒ𝜓(𝑥) = 𝑓(𝑥), (1.16)
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where 𝜓(𝑥) and 𝑓(𝑥) are known and unknown functions, respectively, and ℒ is a linear operator.

The condition for Green’s function to satisfy Eq. 1.16 is defined by,

ℒ𝐺(𝑥, 𝑥′) = 𝛿(𝑥− 𝑥′) ⇔
∫︁
𝑑𝑥′ℒ𝐺(𝑥, 𝑥′)𝑓(𝑥′) =

∫︁
𝑑𝑥′𝛿(𝑥− 𝑥′)𝑓(𝑥′)

where we use the linearity of ℒ and Dirac delta’s filtering property. Comparing this expression with

Eq. 1.16, we determine 𝜓(𝑥) through

𝜓(𝑥) =
∫︁
𝑑𝑥′𝐺(𝑥, 𝑥′)𝑓(𝑥′). (1.17)

Applying now to the time-independent Schrödinger equation

ℋ(�⃗�)𝜓(�⃗�) = 𝐸𝜓(�⃗�), (1.18)

we can see that the Green’s function that satisfies this expression will be

[𝐸 − ℋ(�⃗�)]𝐺(𝐸; �⃗�, �⃗� ′) = 𝛿(�⃗� − �⃗� ′). (1.19)

→ 𝐺(𝐸; �⃗�, �⃗� ′) = ⟨�⃗�|�⃗� ′⟩
𝐸 − ℋ(�⃗�) , (1.20)

where we have used the Dirac notation 𝛿(�⃗� − �⃗� ′) = ⟨�⃗�|�⃗� ′⟩.

Using the completeness relation
∑︀
𝑛 |𝑛⟩ ⟨𝑛| = 1 for the Green’s function 1.20 on the basis of the

Bloch functions |𝜑𝑘⟩ in which the Hamiltonian ℋ |𝜑𝑘⟩ = 𝜀𝑘 |𝜑𝑘⟩ is diagonal, we have

𝐺(𝐸; �⃗�, �⃗� ′) =
∑︁
𝑘

⟨�⃗�|𝜑𝑘⟩ ⟨𝜑𝑘|�⃗� ′⟩
𝐸 − ℋ

=
∑︁
𝑘

|⟨�⃗�|𝜑𝑘⟩ |2

𝐸 − 𝜀𝑘
. (1.21)

This equation admits solutions only if 𝐸 ̸= 𝜀𝑘. As ℋ is Hermitian, its eigenvalues are real

and, therefore, to satisfy the existence condition of the Green’s function, it is necessary to add a

small imaginary part in the energy 𝐸. Thus, to ensure the convergence of the solution, we define

𝐸 = 𝜔± 𝑖𝜂, where 𝜔 and 𝜂 are the real and imaginary parts of the energy, respectively, in the limit

19



𝜂 → 0. The Green’s function is then a complex function, given by

𝐺(𝜔 ± 𝑖𝜂; �⃗�, �⃗� ′) =
∑︁
𝑘

|⟨�⃗�|𝜑𝑘⟩ |2

𝜔 − 𝜀𝑘 ± 𝑖𝜂
, (1.22)

and defined as retarded (𝐺𝑟) and advanced (𝐺𝑎) Green functions

G𝑟,𝑎 := lim
𝜂→0

𝐺(𝜔 ± 𝑖𝜂; �⃗�, �⃗� ′) . (1.23)

Using the Cauchy identity

lim
𝜂→0

1
𝑥± 𝑖𝜂

= 𝑃
(︁1
𝑥

)︁
∓ 𝑖𝜋𝛿(𝑥),

in Eq. 1.22, with 𝑥 = 𝜔 − 𝜀𝑘, then

G𝑟,𝑎 = 𝑃

(︃∑︁
𝑘

|⟨�⃗�|𝜑𝑘⟩ |2

𝜔 − 𝜀𝑘

)︃
∓ 𝑖𝜋

∑︁
𝑘

|⟨�⃗�|𝜑𝑘⟩ |2𝛿(𝜔 − 𝜀𝑘) . (1.24)

Taking the imaginary part of G𝑟,𝑎, we get,

∓ 1
𝜋
𝐼𝑚
[︁
G𝑟,𝑎

]︁
=
∑︁
𝑘

|⟨�⃗�|𝜑𝑘⟩ |2𝛿(𝜔 − 𝜀𝑘) . (1.25)

We observe that this expression is related to the probability density of finding the particle with

energy 𝜀𝑘. We can now define the density of states (DOS) with the Trace of the Green’s function

[65],

𝜌(𝜔) = ∓ 1
𝜋
𝐼𝑚

[︃
𝑇𝑟
(︁
G𝑟,𝑎

)︁]︃
. (1.26)

Generally, we calculate the DOS involving the delayed Green’s function, that is, using the

negative sign of 𝜌(𝜔). With this expression, we obtain the total probability occupation of the states

as a function of the energies of the studied system.

Another important physical quantity concerning the electron probability distribution is the

Local Density of States (LDOS), where in the Green’s function formalism could be calculated

taking imaginary part of G𝑟(𝐸)[[𝑖, 𝑖]] for a given energy E at each i-th site. The LDOS gives the
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spatial information among the electronic charge distribution and the lattice position. In order to

obtain the Green functions we use a recursive method for computing the G𝑟 function, discussed in

Appendix. C. The Green’s function importance in the nanoscopic transport will be emphasized in

the following section.

1.3 Transport in Nanoscale

The macroscopic electrical transport of metals is well described by Ohm’s law, which states

that the electric current is proportional to the applied voltage. This proportionality constant is the

conductance G (inverse of resistance), expressed by the quotient of the cross-sectional area S and

the length of the system,

𝐺 = 𝜎
𝑆

𝐿
, (1.27)

where 𝜎 is the conductivity (inverse of the resistivity), which varies according to the material. Due

to the wave characteristics of electrons, in a metal, their wavelength reaches nanoscopic scales. To

understand electrical conduction at a fundamental level, it is necessary that the material studied

be of the order of the Fermi wavelength 𝜆𝐹 of electronic states, which is the De Broglie wavelength

of electrons near the level of Fermi.

Figure 1.4: (a) Representation of the electron in a ballistic conducting piece. The arrows
represent a classic movement of the electron, but in reality at this scale its movement is
undulating. When bouncing off the sides along the x-direction of the conductor, the behavior
is similar to the problem of the electron confined in a box. (b) The confinement of the electron
gives rise to an infinite number of quantized states. The index n indicates the number of
“half” electron wavelengths (1/2 times the Fermi wavelength 𝜆𝐹 ) that can fit in W. (c) Each
state n contributes n quanta for the conductance. [66]
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An important parameter to determine the transport regime is the mean free path (L ), which

is the distance traveled by a particle before it is scattered. In the case of a two-dimensional system,

as illustrated in Fig. 1.4, it makes no sense to use the parameter S. Instead we denote the width

of the conductor by W and L its length. Thus, if L < (𝑊,𝐿) the transport is said to be diffusive

and if L > (𝑊,𝐿) the transport is ballistic. Based on Eq. 1.27, if the conductor length L is

reduced, the conduction would drastically increase infinitely. However, as experimentally reported

[67], the conduction is quantized in multiples of 𝐺0 = 2 𝑒2

ℏ ≈ (12.9 𝑘Ω)−1, which is a finite value.

This happens because in a real experiment, the contacts made to measure the electronic flow have a

finite resistance, and for that reason in the limit where L ≫ 𝐿 the electronic conductance will also

have a finite value. To calculate such conductance values, we can resort to the Landauer formalism

discussed in the section, writing the conductance in terms of electronic transmission probabilities.

1.3.1 Landauer Approach

In the Laudauer formalism, the electronic conduction is associated with the transmission in the

ballistic regime through the scattering region, expressed in terms of the probability an electron has

to be transmitted through the system [68]. Fig. 1.5, illustrates the one-dimensional transport, in

which the contact with the conductor (or scattering region) is made by the left and right leads (or

terminals).

Figure 1.5: Landauer approach involving two terminals represented by the left and right
leads with the respective surface Green function calculated in the semi-infinite scheme. The
central Green function is calculated over the scattering region on the finite central part.
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The contacts are considered as thermal resevoirs. In equilibrium, the chemical potential leads

are equal (𝜇𝐿 = 𝜇𝑅). When a gate voltage (V) is established by 𝑉 = 𝜇𝐿−𝜇𝑅
𝑒 , the chemical potentials

in the left and right leads are, respectively, 𝜇𝐿 = 𝜇+𝑒𝑉 and 𝜇𝑅 = 𝜇, where 𝑒 is the electronic charge.

We assume that both terminals are filled with electrons following the Fermi-Dirac distribution

𝑓𝐿(𝐸) = 𝑓(𝐸,𝜇+ 𝑒𝑉, 𝑇 ) = 1
𝑒

𝐸−𝜇+𝑒𝑉
𝐾𝑇 + 1

𝑓𝑅(𝐸) = 𝑓(𝐸,𝜇, 𝑇 ) = 1
𝑒

𝐸−𝜇
𝐾𝑇 + 1

where K is the Boltzmann constant, E is the electronic energy and T is the temperature.

An electron going from the left/right to the right/left leads has a transmission probability related

to the transmissions coefficient T (𝐸)=T𝐿(𝐸)-T𝑅(𝐸). The electronic current can be obtained by

summing all available energies, the product between the transmission probability and the Fermi-

Dirac distribution difference for each lead, as follows [69]

𝐼 = 𝐼𝐿 − 𝐼𝑅 = 2𝑒
ℎ

∫︁ +∞

−∞
T (𝐸) [𝑓𝐿(𝐸) − 𝑓𝑅(𝐸)] 𝑑𝐸 . (1.28)

By taking the limit 𝑒𝑉 ≪ 0, i.e., considering that the gate voltage between the terminals is

sufficiently small in such a way that Δ𝜇 = 𝜇𝐿 − 𝜇𝑅 ≈ 0. With this, the Fermi-Dirac distribution

becomes,

𝑓(𝐸,𝜇 = 𝜇𝐿,𝑅, 𝑇 ) = 𝑓𝐿,𝑅(𝐸) ≈ 𝑓(𝐸) − 𝜕𝑓(𝐸)
𝜕𝐸

(𝜇− 𝜇𝐿,𝑅) (1.29)

where the following identity was used

𝜕𝑓(𝐸,𝜇, 𝑇 )
𝜕𝜇

= −𝜕𝑓(𝐸,𝜇, 𝑇 )
𝜕𝐸

.

Thus,

𝑓𝐿(𝐸) − 𝑓𝑅(𝐸) = 𝜕𝑓(𝐸)
𝜕𝐸

Δ𝜇. (1.30)

Therefore, using Δ𝜇 = 𝑒𝑉 , the Eq. 1.28 could be writing as

𝐼 = 2𝑒2𝑉

ℎ

∫︁ +∞

−∞
T (𝐸)𝜕𝑓(𝐸,𝜇, 𝑇 )

𝜕𝐸
𝑑𝐸. (1.31)
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Notice that for low temperatures, the 𝜕𝑓(𝐸,𝜇, 𝑇 )/𝜕𝐸 is numerically near from a Dirac’s delta

around the chemical potential. In this case, using the integral delta properties with T→0K, the

electronic distribution is exactly a delta function. Thus, the Eq. 1.31 becomes,

𝐼 = 2𝑒2𝑉

ℎ
T (𝐸). (1.32)

Finally, as we have already discussed previously, the mesoscopic conductance is calculated as

𝐺 = 𝐼
𝑉 . For this reason, in the Landauer formalism, the conductance is expressed as

𝐺 = 2𝑒2

ℎ
T (𝐸). (1.33)

In this formalism, the next step is to obtain the transmission coefficient T (𝐸) using the Deci-

mation method with the Green’s function formalism through the expression [69],

T (𝐸) = 𝑇𝑟(Γ𝐿G𝑟
𝑐Γ𝑅G𝑎

𝑐 ). (1.34)

The Decimation process details are explored in the Appendix. C. Therefore, here, we want to

unravel the meaning of each term from Eq. 1.34 and understand the two terminals model developed

by Landauer. As depicted in the beginning of this Section, the system configuration is followed by

two leads around the scattering region. The leads are composed by the semi-infinite lattice obtained

in the decimation process (see Appendix. C).

To understand Equation 1.34 we need first to define the Green’s function of the central part

(scattering region), expressed by

G𝑟
𝑐(𝐸) = [𝐸 −𝐻𝑐 − Σ𝑟

𝐿(𝐸) − Σ𝑟
𝑅(𝐸)]−1 , (1.35)

where 𝐻𝑐 is the Hamiltonian of the central part, and Σ𝑟,𝑎
𝐿,𝑅(𝐸) are the self-energies for retarded/ad-

vanced Green’s function of the left and right leads, respectively, expressed as

Σ𝑟,𝑎
𝐿,𝑅(𝐸) = 𝑈 †

𝐿,𝑅G𝑟,𝑎
𝐿,𝑅𝑈𝐿,𝑅 , (1.36)

in which, U𝐿,𝑅 are the hopping matrices that connect the leads with the central part. Note that
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Σ𝑎 = (Σ𝑟)† and also that G𝑎
𝐿,𝑅 = (G𝑟

𝐿,𝑅)†. Finally, the coupling matrices expression is then

obtained by

Γ𝐿,𝑅(𝐸) = 𝑖

[︃
Σ𝑟
𝐿,𝑅(𝐸) − Σ𝑎

𝐿,𝑅(𝐸)
]︃
. (1.37)

In the following section we address the Tersoff-Hamann model for the STM tip and discuss

how it is connected with the Local Density of States (LDOS) obtained with the Green’s function

formalism together with the Landauer approach.

1.4 STM Theory: A Brief look into Tersoff-Hamann

model

The Scanning Tunneling Microscope (STM) is an experimental apparatus discovered by G.Binnig

and H.Rohrer in March of 19812 [70]. Until now, several progress were made concerning to the

technological aspects involved, from manufacturing up to measurements itself, as discussed in the

Introduction. To perform the measurements, a small metal tip is kept near enough from the surface

of the material and the high (d) between then is adjusted to make the electron tunneling approxi-

mately constant, as illustrated in Fig. 1.6. A gate voltage is created to promote a tunneling current

measured and processed by the control center, giving, as a result, a surface map of the system

as depicted in Fig. 1.6(a). Usually, the STM tip, is composed by cluster of atoms [71], or even,

more complex structures like pyramids [31], although in the Tersoff-Hamann model, the tip was

considered as a spherically potential well, near from the single s-orbital with radius R, as depicted

in Fig. 1.6(b).

The calculations developed originally by J.Tersoff & D.R.Hamann in 1985, used a transfer matrix

to compute the system information, and then connect it with the net current [72]. On the present

case we derive the tunneling current (I) using the electronic transmission probability between the

sample and tip within first-order perturbation theory, following Hui et al [73], and then discuss its
2The discovery gave to both of them a Nobel Prize 5 years later in 1986, after the study and improvements

of the STM.
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Figure 1.6: a) STM apparatus b) Tersoff-Hamann model for the STM tip [72] with inset
showing the s-wave model for the tip interacting with the 𝑝𝑧 orbitals of the sample as an
example.

connection within the Local Density of States (LDOS). Starting with the one-electron Schrodinger

equation for the tip and a similar one for the sample[︃
− ℎ2

2𝑚∇2 + 𝑈𝑡(�⃗�)
]︃
𝜑
𝑛�⃗�𝑡

(�⃗�) = 𝐸𝑛(�⃗�𝑡)𝜑𝑛�⃗�𝑡
(�⃗�) (1.38)

where 𝜑
𝑛�⃗�𝑡

(�⃗�) and 𝐸𝑛(�⃗�𝑡) are the wave function and the eigenvalue with band index n and wave

vector �⃗�, respectively, and 𝑈𝑡 is an effective local potential. The Hamiltonian 𝐻 of the system

composed by an electron moving through the sample (s) and the tip (t), is given by

𝐻 = − ℎ2

2𝑚∇2 + 𝑈𝑠 + 𝑈𝑡 + 𝑈𝑠,𝑡 (1.39)

where 𝑈𝑠 and 𝑈𝑡 are the sample and tip potentials, respectively, and 𝑈𝑠,𝑡 is the sample-tip interaction

potential. Applying the time-dependent perturbation theory, the initial electronic state is localized

on 𝜑
𝑛�⃗�𝑡

with time-dependent amplitude 𝐴
�⃗�𝑡

. The �⃗�𝑡 denotes the wave vector of the tip states when

a voltage bias is established. We define 𝒫𝑡→𝑠 as the steady-state transition rate of the electron from,

𝜑
𝑛�⃗�𝑡

on the tip, to 𝜑
𝑛�⃗�𝑠

in the sample. For simplicity, only a single-band calculations are considered,

and also a quasi-unidirectional electron movement between the sample and the tip. In that sense

we have 𝜑
𝑛�⃗�𝑖

= 𝜑𝑘𝑖
and 𝐸𝑛(𝑘𝑖) = 𝐸𝑖 where 𝑖 = 𝑠 or 𝑡. Taking into account the transition 𝒫𝑡→𝑠

between the tip and the sample, the time-dependent wave function Ψ𝑘(�⃗�, 𝑡) will be a combination

among the sample and tip states as follows
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Ψ𝑘(�⃗�, 𝑡) = 𝐴𝑘𝑡(𝑡)𝜑𝑘𝑡(�⃗�)𝑒−𝑖𝐸𝑡𝑡 +
∫︁
𝑑𝑘𝑠𝐴𝑘𝑠(𝑡)𝜑𝑘𝑠(�⃗�)𝑒−𝑖𝐸𝑠𝑡. (1.40)

Within the perturbation theory the amplitude coefficients in first order are 𝐴𝑘𝑡(𝑡) ≈ 1 and

𝐴𝑘𝑠(𝑡) ≈ 0. The transition probability 𝒫𝑡→𝑠 can be calculated taking the 𝑙𝑖𝑚𝑡→∞ |𝐴𝑘𝑠(𝑡)|2/𝑡,

yielding to [73]

𝒫𝑡→𝑠 ≈ 2𝜋|𝐻(𝑘𝑠, 𝑘𝑡)|2𝛿(𝐸𝑠 − 𝐸𝑡) , (1.41)

where 𝐻(𝑘𝑠, 𝑘𝑡) are the matrix elements ⟨𝜑𝑘𝑠 |𝐻 |𝜑𝑘𝑡⟩. The transition probability can be written

in terms of the fermi level or the chemical potentials of the systems, 𝜇𝑠 and 𝜇𝑡, by 𝜖𝑠 = 𝐸𝑠 − 𝜇𝑠

and 𝜖𝑡 = 𝐸𝑡 − 𝜇𝑡. We have then 𝜇𝑠 − 𝜇𝑡 = 𝑒𝑉 , with V being the gate voltage applied between the

sample and the tip. Finally, the electronic current is obtained by multiplying the Eq. 1.41 with the

probability 𝑓(𝜖𝑡), that the tip level is occupied, and by [1 − 𝑓(𝜖𝑠)], being the probability that the

sample level s is unoccupied. Both of them integrated over all 𝑘𝑠 and 𝑘𝑡 for each system. The net

current is calculated doing the current difference between each transition possibility,

𝐼 = 𝐼𝑡→𝑠 − 𝐼𝑠→𝑡

= 2𝜋𝑒
∫︁ ∫︁

𝑑𝑘𝑠𝑑𝑘𝑡|𝐻(𝑘𝑠, 𝑘𝑡)|2(︁
𝑓(𝜖𝑡)[1 − 𝑓(𝜖𝑠)] − 𝑓(𝜖𝑠)[1 − 𝑓(𝜖𝑡)]

)︁
𝛿(𝜖𝑠 − 𝜖𝑡 + 𝑒𝑉 )

= 2𝜋𝑒
∫︁ ∫︁

𝑑𝑘𝑠𝑑𝑘𝑡|𝐻(𝑘𝑠, 𝑘𝑡)|2
[︁
𝑓(𝜖𝑡) − 𝑓(𝜖𝑠)

]︁
𝛿(𝜖𝑠 − 𝜖𝑡 + 𝑒𝑉 ) ,

(1.42)

where we have used 𝛿(𝐸𝑠 − 𝐸𝑓 ) = 𝛿(𝜖𝑠 − 𝜖𝑡 + 𝑒𝑉 ), with 𝑓(𝜖) being the Fermi-Dirac distribution.

In the limit where the applied voltage and the temperature are sufficiently low, the net current

becomes

𝐼 = 2𝜋𝑒2𝑉

∫︁ ∫︁
𝑑𝑘𝑠𝑑𝑘𝑡|𝐻(𝑘𝑠, 𝑘𝑡)|2𝛿(𝜖𝑠)𝛿(𝜖𝑡) . (1.43)

In the multiband case, the band indexes 𝑛 and 𝑚 should be take into account for the sample and tip,

respectively. The calculations made so far could be preserved, adapting only the matrix elements

of 𝐻(𝑘𝑠, 𝑘𝑡) to 𝐻𝑛,𝑚(𝑘𝑠, 𝑘𝑡). In fact, the calculations made by Tersoff-Hamann using the transfer

matrix ℳ𝑛,𝑚 reach at the same result as developed here with the correct connections between the
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two models [72, 73]. Considering only simple single orbitals for the tip function 𝜑𝑡 the net current

can be written as
𝐼 ∝ 𝑒2𝑉

∑︁
𝑛

∫︁
𝑑𝑘𝑠|⟨𝜑𝑛𝑘𝑠 |𝐻 |𝜑𝑡⟩ |2𝛿(𝜖𝑠)

∝ ×
∑︁
𝑛

∫︁
𝑑𝑘𝑠|𝜑𝑛𝑘𝑠 |2𝛿(𝜖𝑠)

∝ ×𝐿𝐷𝑂𝑆

(1.44)

where only the n-bands of the sample were considered. Because the function 𝜑𝑡 is concentrated at

the tip position �⃗�0, we have assumed that the matrix elements ⟨𝜑𝑛𝑘𝑠 |𝐻 |𝜑𝑡⟩ are proportional to the

overlap integral ⟨𝜑𝑛𝑘𝑠 |𝜑𝑡⟩. As a consequence of this, the term ⟨𝜑𝑛𝑘𝑠 |𝜑𝑡⟩ becomes proportional to

⟨𝜑𝑛𝑘𝑠 |�⃗�0⟩ = 𝜑𝑛𝑘𝑠(�⃗�0) leading to the LDOS definition,

𝐿𝐷𝑂𝑆(�⃗�0, 𝐸) =
∑︁
𝑛

|Φ𝑛(�⃗�0)|2𝛿(𝐸 − 𝐸𝑛) (1.45)

where �⃗�0 here denotes the lattice positions and Φ(�⃗�0) is the corresponding electronic wave function

of the 𝑛𝑡ℎ state acting here as weights to the electronic distribution. It is important to stress that

this equivalence between the current measured in the STM and the LDOS works well for s-wave tips

with low Miller index metal surfaces like Au(111), Cu(100), and others [71]. We will see later that,

in fact this theoretical model fits very well with experimental observations of synthesized fractal

molecular chains.
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Chapter 2

Electronic Properties of Standard

Carbon Systems

Carbon materials are very versatile due to the several chemical linkage possibilities. Forming

single, double and triple bonds, the carbon interactions gives a large number of compounds that

could be created. The calculations presented in this work are related essentially with carbon-atom

lattices, and then, the principal atomic orbital responsible for the transport is the 𝑝𝑧. The electron

configuration in carbon is given by 1𝑠22𝑠22𝑝2. The first core is screened while the others energies

levels are composed by two hybridized perpendicular states 𝜎𝑥,𝑦 and 𝜋𝑧, formed by 𝑝𝑥, 𝑝𝑦, 𝑠 and

𝑝𝑧 orbitals, each one with one electron (four in total). In the orthogonal TB approximation there

is no overlap between the orbitals and the energy bands close to the Fermi energy are 𝑝𝑧-orbital

contributions. The 𝑝𝑧 are then the most important orbitals for the electronic transport, with the

carriers moving between the sites using the hopping energies. The TB energy parameters can

be obtained by first principle calculations within other computation methods [74], but one of the

strengths of the TB model is the possibility of obtaining the electronic properties in function of 𝑡.

Graphene systems and its allotropes (graphyne and kagomé lattices) can be prepared in several

ways, such as flakes, wires, nanotubes, monolayers and bilayers [75]. The monolayers are bidi-

mensional system (2D), with infinite symmetry in both 𝑥-𝑦 directions, also called as bulk in some

cases. A quasi-one dimension graphene lattice is the graphene nanoribbon, that depending on the



edge-geometry are subdivided as chiral or achiral ribbons. In the latter group we have zigzag and

armchair nanoribbons. The nanoribbons can be obtained by cutting the infinite system along one

specific axis and present infinite periodicity along that direction while exhibiting discrete states in

the confining direction. In the following we discuss both 2D and quasi-unidimensional examples of

some all-carbon systems disposed in the called standard geometries.

2.1 Monolayer

Taking a single slice of graphite makes possible for the first time the study the electronic prop-

erties of monolayered carbon systems [1]. Here we focus on the investigation of such properties

in graphene, graphyne and kagomé honeycomb features. The most general aspects of graphene

nanoribbons (GNRs) and 2D-graphene features were already explored analytically and numerically

by Wakabayashi et al [2] and other authors [5]. For that reason, the electronic properties of graphene

will be compared with the electronic results obtained for other hexagonal systems.

Figure 2.1: Top: 2D 𝛼-graphyne and kagomé honeycomb lattices. Bottom: Tables of the
hopping and lattice parameters and bond scheme of the 𝛼-graphyne lattice.

In Fig.2.1 we present schematically the 𝛼-graphyne and the kagomé honeycomb lattices. Dif-
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ferently from the graphene and Kagomé lattices the graphyne exhibits sp-like orbitals, forming

acetylenic bonds in addition to the usual 𝑠𝑝2. The acetylenic and simple carbon bonds in gra-

phyne are represented by the lattice parameters 𝑎𝑠𝑝 and 𝑎𝑠𝑝2 , respectively. As hopping energies

are inversely proportional to the corresponding atomic distance, and as 𝑎𝑠𝑝 < 𝑎𝑠𝑝2 , we expect to

have 𝑡2 > 𝑡1, where t2 and t1 are represented in the Fig. 2.1 with black and red lines. Of course,

chemical aspects of linkages are very important for this result. The other hexagonal lattice shown,

the Kagomé Honeycomb, may be described as a decorated graphene lattice. Actually, graphene

lattice is recovered by removing the red sites in the unit cell of kagomé honeycomb shown in Fig.

2.1. Both structures have the same hexagonal symmetry, and then we can use the same unit cell,

with area �⃗�1 × �⃗�2 given in terms of the corresponding lattice parameter 𝑎 and changing the the unit

cell basis from 2 atoms for graphene, to 5 and 8 atoms for kagomé and 𝛼-graphyne, respectively.

Figure 2.2: Left: Unit cell representation of the 2D-kagomé honeycomb. Right: Reciprocal
space of a honeycomb lattice with high symmetry points highlighted.

In the following we calculate the electronic structure of the kagomé lattice. The unit cell and the

corresponding first Brilouin zone are depicted in Fig. 2.2. Numerical calculations were developed

with the use of Hamiltonian 1.12, and adopting the hopping parameters t1 and t2 given in reference

[11, 76], for the 𝛼-graphyne, and 𝑡1 for the graphene lattice [75].

The lattice vectors are defined as

�⃗�1 = 𝑎(cos 30∘, sin 30∘)⃗𝑎2 = 𝑎(0, 1).
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The first nearest neighbor are mapped in terms of the position vectors

�⃗�1 = 𝑎(
√

3
6 , 0) ,

�⃗�2 = 𝑎(−
√

3
12 ,

1
4) ,

�⃗�3 = 𝑎(−
√

3
12 ,−

1
4). (2.1)

Using the method described in Sec.1.1.1, the Hamiltonian for kagomé honeycomb is given as

𝐻𝐾𝐻 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜀1 𝑡𝑀1 𝑡𝑀2 𝑡𝑀3 0

𝑡𝑀*
1 𝜀2 0 0 𝑡𝑀1

𝑡𝑀*
2 0 𝜀3 0 𝑡𝑀2

𝑡𝑀*
3 0 0 𝜀4 𝑡𝑀3

0 𝑡𝑀*
1 𝑡𝑀*

2 𝑡𝑀*
3 𝜀5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2.2)

where 𝑀𝑗 = exp
(︁
𝑖�⃗�.�⃗�𝑗

)︁
(j=1,2,3), 𝑀*

𝑗 its complex conjugate, and the potentials 𝜀2 = 𝜀3 = 𝜀4 = 𝜖𝐾

and 𝜀1 = 𝜀5 = 𝜖𝐻 represent the atomic plurality of the kagomé lattice. Solving the secular equation

1.1 for 𝐻𝐾𝐻 , we obtain the eigenvalues

𝐸1 = 𝜖𝐾

𝐸2 = 1
2
(︁
𝜖𝐻 + 𝜖𝐾 −

√︁
(𝜖𝐻 − 𝜖𝐾)2 + 4𝑡2(3 − 𝑓

�⃗�
)
)︁

𝐸3 = 1
2
(︁
𝜖𝐻 + 𝜖𝐾 +

√︁
(𝜖𝐻 − 𝜖𝐾)2 + 4𝑡2(3 − 𝑓

�⃗�
)
)︁

𝐸4 = 1
2
(︁
𝜖𝐻 + 𝜖𝐾 −

√︁
(𝜖𝐻 − 𝜖𝐾)2 + 4𝑡2(3 + 𝑓

�⃗�
)
)︁

𝐸5 = 1
2
(︁
𝜖𝐻 + 𝜖𝐾 +

√︁
(𝜖𝐻 − 𝜖𝐾)2 + 4𝑡2(3 + 𝑓

�⃗�
)
)︁

(2.3)

where 𝑓
�⃗�

=
√︂

4 cos
(︁√

3𝑎𝑘𝑥/2
)︁

cos(𝑎𝑘𝑦/2) + 2 cos(𝑎𝑘𝑦) + 3. The first constant eigenvalue 𝐸1 is re-

sponsible for the flat band in the dispersion relation. This particular value corresponds to the on-site

energies of the atoms at the 2, 3 and 4 positions in the unit cell. The dispersion relation along the

high symmetry path is presented in Fig. 2.3, considering two on-site energy configurations. The
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flat band at 𝐸1 clearly breaks the electron-hole symmetry of the band structure around the Fermi

Level. Moreover, no available energies for electrons in the range Δ𝐸 = 0.25𝑡 are found in the case

of 𝜖𝐾 = −𝜖𝐻 = 0.25𝑡 [9], revealing a semiconductor characteristic for the Kagomé when 𝜖𝐾 ̸= 𝜖𝐻

[see Fig. 2.3(a)]. Otherwise, for 𝜖𝐾 = 𝜖𝐻 = 0 [see Fig. 2.3(b)], as discussed for kagomé honeycomb

systems, the spatial and time-reversal symmetries are preserved and the gap is closed.

Figure 2.3: Energy dispersion of a kagomé honeycomb in terms of 𝑡 for (a) 𝜖𝐻 = 0.25𝑡,
𝜖𝐾 = −0.25𝑡 and (b) 𝜖𝐻 = 𝜖𝐾 = 0.

For 𝛼-graphyne monolayer, the band structure has symmetric flat bands which are tuned by

changing the hopping ratio 𝑡1/𝑡2, as seen in Fig. 2.4. As previously mentioned, for graphyne lattices

described by the TB Hamiltonian we have 𝑡2 > 𝑡1 and then a physical result is only observed for

𝑡1/𝑡2 < 1. For this case the flat bands are pinned at 𝐸 = ±𝑡2 and are symmetrical with respect to

the Fermi level (𝐸 = 0), as can be seen in Fig. 2.4(a). For 𝑡1 > 𝑡2 the same behavior is observed,

as shown in the energy dispersion highlighted in the green square in Fig. 2.4(b), for 𝑡2 = 0.5𝑡1. The

morphology of the band structures can be captured in the gap energy given by Δ(𝑡) as a function

of the hopping ratio 𝑡1/𝑡2. As depicted in Fig. 2.4(c), for ratio values satisfying 𝑡1
𝑡2
< 1 a linear

behavior is seen with a minimum value of Δ(𝑡) = 0, null gap, for 𝑡1/𝑡2 =
√︀

2/3, as shown in the

band structure shown within the blue square in Fig. 2.4(c). The Δ(𝑡) values as a function of the

t-ratio gives a picture of the itinerant flat bands. The colors red and orange are used to distinguish

between physical and not physical situation in the graphyne, respectively. The evolution of the

flat band with the hopping values was previously reported for the square Lieb lattice with similar

features [77] and also evidenced for kagomé lattices [78].
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Figure 2.4: Band structure of 𝛼-graphyne. (a) for 𝑡1 = 2.85 𝑒𝑉 , 𝑡2 = 7.5 𝑒𝑉 (b) Changing
the hoppings 𝑡1 and 𝑡2, green and blue highlited bands have 𝑡1/𝑡2 equal to 2 and

√︁
2/3,

respectively. (c) Δ(𝑡) as a function of 𝑡1/𝑡2.

As Dirac cones and flat bands describe opposite electronic properties, they are difficult to coexist,

although band engineering could be employed to promote the crossing between Dirac cones and flat

bands in graphene and kagomé nanoribbons [79, 80]. In Fig. 2.5 we present a comparison between

the DOS of the graphene, graphyne and kagomé lattices, by setting the on-site energies equal to

zero and using the hopping parameter equal to the graphene lattice, i.e., 𝑡 = 2.85𝑒𝑉 . Next to the

Fermi energy the graphene [Fig. 2.5(a)] and 𝛼-graphyne [Fig. 2.5(b)] have the same semi-metallic

aspect, as zero gap semiconductors, while for the kagomé [Fig. 2.5(c)] the energy gap is closed for

𝜀 = 0 𝑒𝑉 , giving to the system a metallic characteristic. Also, a flat state is observed at the zero

level.

Lowering the system dimensions, by cutting along orthogonal directions, we get nanoribbon
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Figure 2.5: Density of states for zero on-site energy values: (a) graphene and (b) 𝛼-graphyne,
and (c) kagomé honeycomb with t=2.85eV.

lattices, as depicted in Fig. 2.6(a); the zigzag and armchair are obtained for vertical and horizontal

cuts, respectively. Because of the graphene and graphyne lattice geometries [see Fig. 2.6(b)], we

can construct similar unit cells for both graphene (GNRs) and 𝛼-graphyne nanoribbons (GyNRs).

The first two unit cells 𝑁 = 1 and 𝑁 = 2 are displayed in the figure.

Figure 2.6: Nanorribons scheme illustration (a) Cut direction of both armchair and zigzag,
for red and blue lines, respectively, along the hexagonal lattice. (b) Nanorribons unit cells
for both A-GNR/GyNR and Z-GNR/GyNR from left to right, respectively.
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The effects of the lattice topology on the electronic properties of the system is presented in Fig.

2.7, where a comparison between the hexagonal nanoribbon lattice details of graphene, graphyne,

Kagomé and 3-dimer graphyne lattices (all with N=3) and the corresponding band structure is

explored. The results are grouped accordingly with the parity symmetry of the unit cells of the

lattices. The results indicate a direct relation to that, i.e., if the number of atoms inside the unit

cell (2D system) is even, such as in the cases of graphene (4 atoms) and 𝛼-graphyne (8 atoms),

the properties will be similar for the nanoribbons as shown in Fig. 2.7(a) and (b), respectively;

semiconductor families for armchair nanoribbons with N=3 (and metallic states for zigzag - not

shown here). These features are also found for 𝛼-graphdiyne nanoribbons [18], with 14 atoms in

the unit cell.

Figure 2.7: N=3 Armchair nanoribbon lattices and corresponding band structures: (a)
Graphene, (b) 𝛼-Graphyne, (c) Kagomé honeycomb, and (d) Decorated honeycomb for 𝜖 = 0

Otherwise, if the system unit cell has an odd number of atoms it will behave as a semiconductor

independently of the nanoribbon family, as evidenced for kagomé honeycomb with 𝜖 = 0 (5 atoms

in the unit cell), shown in Fig. 2.7(c). This metallic characteristic is also found for a proposed

decorated honeycomb lattice, a 3-dimer graphyne lattice presenting odd parity, as depicted in Fig.

2.7(d). For zigzag-edged nanoribbons, both lattices with odd parity are metallic with a well defined
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flat band at the Fermi level E=0.

A comparison between the energy gaps vs the unit cell index of armchair GNRs and GyNRs

can be seen in Fig. 2.8(a) and (b). We notice that the armchair nanoribbons alternate from

semiconductor to metallic systems in both lattices; two semiconductor series, 3p and 3p+1, and one

metallic 3p+2. The armchair nanoribbon width is given by
√

3𝑎×𝑁 , with 𝑎 being the atoms distance

inside the lattice of each system and 𝑁 the nanoribbon cell index. Although not shown here, kagomé

honeycomb nanoribbons (KHNRs) have a constant gap undependable from the configuration details

or ribbon width, given by the difference between the on-site energies. In the previous case presented

in Fig. (c), a null gap was found since the same energy was considered for the red and blue atoms

illustrated in the schematic Kagomé lattice in the left pannel. This particular property is also

evidenced in the Sierpinski kagomé that will be discussed in the next Chapter.

Figure 2.8: Energy gap and conductance for (a) A-GNR [𝑡 = 2.80 eV] and (b) A-𝛼-GyNRs
[𝑡1 = 2.85 eV and 𝑡2 = 7.50 eV].

Furthermore, electronic transport aspects were investigated and shown in the bottom of Fig.
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2.8. We note that each conductive channel is unveiled by the sequence of plateaus, characteristic

of ballistic transport. The conductance results for A-GNR and A-GyNR exhibit the same sequence

of channel number, considering equal unit cells indexes. In the following Section we explore what

happens to the electronic properties when the single nanoribbons discussed here are stacked forming

bilayered systems, and how the alignment between the layers affect the general physical features.

2.2 Bilayer

In the case of bilayered systems, new configurations can be reached depending on the particular

atomic aligning within the unit cell. The number of possible stacking depends on the number of

atoms in the unit cell. Moreover, the energetic stability is the most important aspect to systems

formation. It is known, for instance, that for graphite the most stable configuration is the Bernal

stacking.

Figure 2.9: Unit cell of 2D 𝛼-Gy and the four stacking possibilities 𝐴𝑏, 𝑎𝑎, 𝐴𝐵 𝑎𝑛𝑑 𝑎𝑏.
Adapted from Ref.[81].

For graphene, as already seen in the Introduction, the total number of alignments are two, being

the direct stacking, when two 𝐴 atoms are exactly on top of each other [𝐴𝐴 stacking], and the Bernal

or 𝐴𝐵 stacking, occurring for 𝐴 and 𝐵 atoms directly aligned in the unit cell, respectively. On the

other hand, 𝛼-graphyne allows more stacking possibilities illustrated in Fig. 2.9, as 𝐴𝑏, 𝑎𝑎, 𝐴𝐵

and 𝑎𝑏. Recent DFT calculations have addressed 𝐴𝑏 stacking as the most stable with an average

distance 𝑑𝐴 = 3.14 Å between the layers [81, 82]. For this reason, the calculations of the graphyne
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bilayer nanoribbons are mainly calculated regarding this configuration as will be discussed later.

The Hamiltonian matrix of bilayered systems can be constructed by duplicating the monolayer

matrix and including each layer interaction as follows

𝐻𝐵𝑖 =

⎛⎜⎝𝐻𝐿1 𝐻𝑖𝑛𝑡

𝐻*
𝑖𝑛𝑡 𝐻𝐿2

⎞⎟⎠ (2.4)

with 𝐻𝐿1 and 𝐻𝐿2 being the haniltonians of the individual layers and e 𝐻𝑖𝑛𝑡 the interaction between

them. In the second quantization formalism, the same hamiltonian is expressed as

𝐻 =
∑︁
𝑖,𝛼

𝜀𝛼𝑖 𝑐
†𝛼
𝑖 𝑐

𝛼
𝑖 −

∑︁
⟨𝑖𝑗⟩
𝛼

𝑡𝛼𝑖𝑗𝑐
†𝛼
𝑖 𝑐

𝛼
𝑗 −

∑︁
⟨𝑖𝑗⟩
𝛼 ̸=𝛽

𝑡𝛼𝛽𝑖𝑗 𝑐
†𝛼
𝑖 𝑐

𝛽
𝑗 + ℎ.𝑐. (2.5)

with 𝜀𝑖 being the on-site energy for each atom located at site 𝑖 in the 𝛼 layer (𝛼 = 1, 2) and the

operator 𝑐𝛼†
𝑖 (𝑐𝛼𝑖 ) creates (annihilates) an electron on site i and plane 𝛼. The second term describes

the intralayer couplings (𝛼 = 1 and 2), 𝑡𝛼𝑖𝑗 being the corresponding hopping energies taken as 𝑡1

and 𝑡2 for graphyne and 𝑡 graphene, depending if the 𝑖 and 𝑗 first-neighboring atoms share sp or

sp2 hybridized orbitals, respectively. Interlayer interactions are considered in the last term (𝛼 ̸= 𝛽)

and denoted as 𝑡𝛼𝛽𝑖𝑗 =𝑡⊥. They depend on the stacking configuration between top and bottom layers

and on the respective edges.

In particular, for graphene bilayers (BG), in 𝐴𝐴 and 𝐴𝐵 stackings, we see a linear crossing and

a parabolic pattern at the K points, respectively. In the 𝐴𝐵 stacking a band gap can be induced by

applying an external perpendicular electric field perpendicularly to the layers plane, as theoretically

predicted and experimentally verified, [25, 26]. Without the field, as shown in Fig. 2.10(a) and (b),

both stackings 𝐴𝐴 and 𝐴𝐵 are metallic. In the inset of the band structures it is possible to verify

that the linear dispersion band crossing at K point still appears for 𝐴𝐴 stackings, while for 𝐴𝐵 the

eigenenergies follows a not crossing parabolic shape at K point.

In this Section we are interested in the study of the electronic properties of the graphyne bilayers

(BGy). As pointed out in the literature, the graphyne systems are good candidates to thermometric
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Figure 2.10: 2D bilayered graphene DOS, band structure and unit cell of (a) 𝐴𝐴 and (b) 𝐴𝐵
stackings.

device construction due to its very poor electronic-phonon thermal conductance [83, 84]. As a result,

thermoelectric efficience responses are higher than the verified for graphene [81, 85]. The energy

bands for 𝛼-graphyne 2D bilayers are also calculated. We notice that the orange and black atoms

have distinct positioning depending on the stacking inside the unit cell. For the 𝐴𝑏 stacking the unit

cell has two atoms positioned exactly one above the other, giving origin to a hopping parameter

𝑡⊥ = 0.28, and also with one almost direct align among the atoms, leading to a mismatch between

the first and second layers, represented in the model as 𝑡′⊥ = 0.25 𝑒𝑉 . The energy bands behavior

close to the Fermi level are also different for the 𝛼-graphyne stackings, in which, for 𝐴𝑏 stacking [see

Fig. 2.11(a)] the energy spectra in the point K are almost parabolic as observed in 𝐴𝐵 stacking for

graphene. A very similar result is observed for the 𝐴𝐴 stacking in both graphene and 𝛼-graphyne

bilayers as can be seen in Fig. 2.11(b).

The band structure comparison between the results in orange for TB and blue for DFT calcu-

lations made by Rodrigues et al [81] reveals that the simple model used here, better fits the results

for direct stackings, like 𝐴𝐴. In the case where a mismatch between the atoms of both layer is
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Figure 2.11: In orange our TB results and in blue DFT*[81] band structures of 2D 𝛼-Gy
(a) 𝐴𝑏 stacking showing almost parabolic crossing in K (b) 𝐴𝐴 stacking with linear crossing
bands in K.

observed, as in 𝐴𝑏 stacking, adding second neighbors and including the overlap between the orbitals

in the TB model could better fit the results obtained in DFT (not shown here).

Figure 2.12: 𝛼-Gy mono/bilayer nanoribbons scheme for (a) Armchair and (b) Zigzag. Both
relaxed results are exhibit in the bottom of the respective nanoribbon type. Adapted from[81].

As well as for monolayers, we can cut the bilayered bidimensional system along two directions

and obtain the bilayer nanoribbons (BNRs). An interesting feature is the bending effect observed

on the 𝛼-graphyne zigzag features after relaxation calculations [81] as evidenced in Fig. 2.12(a) and

(b), we notice in the bottom of each figure, an attractive and repulsive action in the armchair and

41



zigzag bilayers, respectively. The same behavior were reported for bilayer graphene nanoribbons

[24, 86]. With that, new properties can be explored and studied in these systems. For the zigzag 𝛼-

graphyne nanoribbon (Z𝛼-BGyNR) we have chosen the hopping energy parameters [11] as 𝑡1 = 2.85

eV and 𝑡2 = 7.50 eV and the hopping interaction between the layers are considered as 𝑡⊥ = 0.28 eV

and 𝑡′⊥ = 0.25 eV for 𝐴𝐴 and 𝐴𝑏 stacking, respectively. For the 𝛼-graphyne armchair nanoribbons

A𝛼-BGyNR showed in Fig. 2.13, the chosen parameters are as follows: 𝑡1 = 2.85 eV, 𝑡2 = 4.00 eV,

and 𝑡⊥ = 0.37 eV and 𝑡′⊥ = 0.23 eV for 𝐴𝐴 and 𝐴𝑏 stacking, respectively. Both parameters were

chosen based on the nearest results of TB in comparison with DFT calculations [81].

Figure 2.13: DFT and Tight-Binding calculations on A𝛼-BGyNR for 𝐴𝑏 stacking (a) From
top to bottom: Gap evolution of armchair monolayer and bilayer nanoribbons and band
structures of 𝑁𝐴= 4 and 5 of DFT calculations [81]. (b) Band structures of 𝑁𝐴=2, 4, and 5
preserving the edges symmetry (here Γ𝑋 path stands for 𝑘𝑥 ∈ [0, 𝜋/𝑎]).

Just like graphene, the bilayer graphyne armchair families alternate between semiconductor

and metallic states, as confirmed by DFT calculations [81] in Fig. 2.13(a). Considering only the

semiconductor cases in armchair, we see that the band structures of A𝛼-BGyNR in Fig. 2.13(b)

obtained with a simple first neighbors TB are in good agreement with the ones calculated via

DFT [81]. The electronic density of states and the conductance of an N-𝛼A-BGyNR with 𝑁𝐴 = 5
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are presented in Fig. 2.14(a) and (b). The energy gaps confirm the semiconducting nature of

such bilayer nanoribbon. The charge distribution for a particular energy, along the nanostructure,

may be visualized by a colour plot of the local density of states (LDOS). The two LDOS color

maps displayed at the right part of Fig. 2.14 correspond to the results for the highlighted energies

in dashed lines on the electronic conductance [see Fig. 2.14 (a)] and density of states [see Fig.

2.14(b)], E=0.50 eV and 1.1 eV in green and black, respectively. We notice that, for E=0.50 eV the

charge density distribution are localized primarily at the more external acetylenic linkages, whereas

for E=1.11 eV they are localized in the middle of those linkages on the nanoribbons.

Figure 2.14: (a) Density of States and (b) Electronic Conductance of Ab stacking 5-𝛼A-
BGyNR (c) LDOS results with lattice in black dots and energy regions highlighted in DOS
and Conductance with green and black dashed lines.

Returning to the graphene systems, it is interesting to compare the band gap evolution of an

armchair single nanoribbon layer and the 𝐴𝐵 stacked bilayer nanoribbon graphene, as shown in Fig.

2.15(a). The results exhibit the same alternating behavior between the energy gap (lower values

for bilayer) as the system is grown following the description given in Fig. 2.15(b). As discussed

before for both, GNR and GyNR, the pristine zigzag features without disturbance are metallic

systems. When atomic relaxation are considered in 𝐴𝐵 bilayer graphene nanoribbon, an small

43



energy gap is achieved, as predicted by our TB model (blue curves) and DFT calculations reported

in Refs. [24, 86], as shown in Fig. 2.15(c). It is important to stress that, this bending effect could

Figure 2.15: Results obtained for armchair and zigzag bilayered graphene nanoribbons. (a)
Energy band gap evolutions comparing the monolayer and bilayer cases of armchair graphene
sheets. (b) Top: Z-BGNR unit cell representation. Bottom: Hopping scheme model adopted,
with 𝑡 intralayer and 𝑡⊥ intralayer hoppings. The 𝑡𝐸𝐷𝐺𝐸 regions are represented by square
around the edges of each layer. (c) On the left, in blue, TB results and on right, red DFT
results *[24]

create an overlap between the electronic clouds of neighbors carbon atoms in the layers which is

not taken into consideration in our calculations. Thus, in more complex systems with different

hybridizations the interaction between those electronic clouds becomes an important factor to the

electronic structures. Because of that, our zigzag calculations performed with our simple TB model

for Z𝛼-BGyNRs including the edge hoppings are not enough to get comparable results with first

principle calculations. Besides that, more simple systems like graphene, including a hopping term

𝑡𝐸𝐷𝐺𝐸 in Z-BGNRs is sufficient to obtain results in good agreement with the ones obtained by DFT
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[24, 86] for zigzag BGNR.

Figure 2.16: (a) Top: Gap evolution vs Edge hoppings percentage (𝑡𝐸𝐷𝐺𝐸 = %𝑡1) Bottom:
Gap evolution vs Nanoribbon size (n) for 𝑡𝐸𝐷𝐺𝐸 = 10%𝑡1, 20%𝑡1, 30%𝑡1, in blue, orange and
green, respectively. (b) DFT*[24, 86] calculations for Z-BGNRs with edge hoppings for (𝑏)(𝑎)
Energy gap and (𝑏)(𝑏) orbitals distance, versus nanoribbon length, respectively. (c) Energy
bands for Z𝛼-BGyNR with 𝑁𝑍 = 2 and hoppings 0%𝑡1 and 10%𝑡1, respectively.

The energy gap achieved by considering the interaction between the edges can be tuned according

to the edge hopping energy, considered in terms of the 𝑡1 values (%𝑡1) and also as a function of

the nanoribbon width. Both results are shown in Fig. 2.16(𝑎). The parabolic trend observed for

the Z𝛼-BGyNRs results are also obtained in our group by performing DFT calculations [81] for the

zigzag system. However, our maximum gap values occur at different nanoribbon widths, indicating

that the simple TB model does not provide equivalent results with the DFT calculations. The same

parabolic feature was reported before [24] for Z-BGNRs as depicted in Fig. 2.16-(𝑏)(𝑎). As shown in

Fig. 2.16-(𝑏)(𝑏), for increasing nanoribbon sizes the overlap between the edge hoppings are minimal.

The energy bands for Z𝛼-BGyNRs are shown in Fig. 2.16(c). The hopping parameters are chosen
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to better fitting with the DFT results. For 𝑁 = 2, they are:; 𝑡1 = 2.85 eV, 𝑡2 = 4.0 eV, 𝑡⊥ = 0.37

eV, 𝑡′⊥ = 0.23 eV. As we can see, the edge hopping energies are responsible to open a band gap and

break the electron-hole symmetry of the electronic spectra.

In conclusion, a simple TB method can satisfactorily calculate electronic properties of near band

transitions in armchair non-metallic graphyne samples (mono and bilayered sistems). However, for

the zigzag features, we need further the inclusion of electronic correlations due to the edge states

to get reasonable agreements with first principle calculations. Advances studies have been already

started in this direction. Better adjustments are still lacking to improve the TB approximations

such as a proper incorporation of the ribbon bending effect due to relaxation processes. More than

stacking the monolayers, we can make a rotation between the layers for specific angles, and with that

it should be possible to expect further interesting effects that will be approached in the following

section.

2.3 Overview: Moiré Effect in Twisted Bilayer Graphene

The Moiré effect is a very common optical pattern, obtained by the interference of electromag-

netic waves when crossing through grids shifted by a very short amount. More recently, this effect

was also observed for electrons in carbon materials at specific angles, defined as commensurable

angles, in twisted bilayered-systems. For really specific angles between the layers, called magical

angles, near from 1.1∘, the twisted bilayer graphene (TBG) is know for its superconductive proper-

ties due to strongly correlated electronic interactions at magic angles [28], leading to the emergence

of flat bands, as indicated in Fig. 2.17(b) taken from Ref.[29].

The mismatch between the rotated layers are responsible to produce the Moiré effect. As

illustrated in Fig. 2.17(a) for non commensurable angles as 60∘, the moiré effect can not be seen.

To determine the commensurable angles responsible for that, we start from the graphene unit vectors

𝑎1 = 𝑎(−1/2̂𝑖+
√

3/2�̂�),

𝑎2 = 𝑎(1/2̂𝑖+
√

3/2�̂�), w/ �⃗� = 𝑎�̂�

(2.6)

The position vector at the fixed layer is defined as �⃗� = 𝑚�⃗�1 +𝑛�⃗�2 while the vector at the twisted
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Figure 2.17: (a) Structures generated in Mathematica for commensurable angles Θ = 1.1∘

and 13.8∘ and for non commensurable angles Θ = 60∘ and . (b) Energy flat bands and DOS
observed for TBG at Θ = 1.05∘ near ±15 𝑚𝑒𝑉 . Adapted from.[29]

layer is given by �⃗�1 = 𝛼�⃗�1 + 𝛽�⃗�2, with 𝑛, 𝑚, 𝛼, 𝛽 being integer coefficients. We determine 𝛼, 𝛽 as

a function of 𝑛, 𝑚 such that the relation �⃗�− �⃗� = 𝑡1 is satisfied. Substituting the vectors �⃗�1, �⃗�2 and

solving a linear system of equations, we get 𝑡1 = 𝑛�⃗�1 + 𝑚�⃗�2, with 𝑛 = 𝑚 + 1. The next step is to

determine 𝑡2 from a rotation of the vector 𝑡1. By hypothesis, the angle between these two vectors

is fixed, as they both delimit the area of the unit cell to be determined. In addition, due to the

hexagonal geometry, the angle between these two vectors should be 60∘. Thus, we can write that

�⃗�2 = R.⃗𝑡1 [87], with R = R(60∘) being the rotation matrix. By multiplying the rotation matrix we

obtain the rotated vector in terms of the �̂�, �̂� coordinates �⃗�2 = (𝑚 + 𝑛/2)̂𝑖 +
√

3/2 𝑛 �̂�; in terms of

the primitive vectors ir is written as �⃗�2 = −𝑚�⃗�1 + (𝑛+𝑚)⃗𝑎2.

We can see in the left part of Fig. 2.18 that the vectors �⃗�1 + �⃗�2 delimit the parallelogram that

grows as 𝑛 varies. These regions are exactly the smallest cells responsible for the reproduction of the

system periodically. We still need to determine the commensurable angles for which the rotations

does generate a Moiré pattern, corresponding to a strong electronic localization of the system. To

obtain the commensurable angles, we need to calculate the angle between the vector of the fixed

layer �⃗� and the angle of the vector of the twisted layer �⃗�1. Thus [88],
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Figure 2.18: Left: Geometric illustration of base vectors as a function of the integers n and
m that define the size of the lattice [cases n=1, 2 and 3]. Right: Illustration of the unitary
cel for n=1 (Θ = 21.78∘).

𝑟.𝑡1 = |�⃗�||⃗𝑡1|𝑐𝑜𝑠Θ

→ Θ(𝑛,𝑚) = arccos[�⃗�.⃗𝑡1/|�⃗�||⃗𝑡1|]

→ Θ(𝑛,𝑚) = (𝑚2 + 4𝑚𝑛+ 𝑛2)
2(𝑚2 +𝑚𝑛+ 𝑛2)2 .

(2.7)

Using this relation, we determine the commensurable angles that are responsible to give the size

of the system unit cell, as illustrated for the first case on the right of Fig. 2.18 for Θ = 21.78∘.

We can also determine the function 𝑁(𝑛,𝑚) which gives us the number of atoms per unit cell.

The rate of the area delimited by �⃗�1 × �⃗�2, and the area of a regular hexagon gives the number

of hexagons per unit cell. Multiplying the result by 2, factor associated with the layer number,

and by 6, corresponding to the number of atoms per hexagon, we determine the number of atoms

distributed in the unit cell, 𝑁(𝑛,𝑚) = 4(𝑚2 + 𝑚𝑛 + 𝑛2). We can notice, that for angles close to

the magic angle our system reaches 4 decimal places for the number of atoms involved.

As the number of elements in the Hamiltonian matrix is defined by the number of atoms in the

unit cell, for 1.08∘ we get a 11164 x 11164 matrix, requiring a significantly large computational effort

to perform the calculations of the eigenvectors and eigenvalues. The Hamiltonian of this system is

constructed with the same structure as bilayered one, with elements 𝑖, 𝑗,
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𝐻𝑖𝑛𝑡[[𝑖, 𝑗]] = 𝑡⊥ = 𝑡0𝐸𝑥𝑝

[︃
𝑑(𝑖, 𝑗)
𝛽

]︃
(2.8)

where 𝑑(𝑖, 𝑗) is the Euclidean distance between the lower layer site (not twisted) and the upper

layer site (twisted) and the dimensionless 𝛽 adjustment parameter, which usually can vary between

-3 and -2.5 [88].

Figure 2.19: Energy bands for: 𝛽 = −3, 𝑡 = −2.8 𝑒𝑉 (a) Θ = 9.43∘ and 𝑡0 = −0.12 𝑒𝑉
(b) Θ = 21.78∘ and 𝑡0 = −0.3 𝑒𝑉 . DFT and TB calculations adapted from [89] and [90],
respectively, are shown in the dashed square in the top-right section.

The electronic structures of 2D bilayered Gy for Θ = 21.8∘ and Θ = 9.43∘ are shown in Fig.

2.19(a) and (b), along the high symmetry points, Γ = [0, 0], 𝐾 = (⃗𝑏1 − �⃗�2)/3, 𝑎𝑛𝑑𝑀 = �⃗�1/2. Our

results (orange curves) are compared with other theoretical calculation [89, 90] presented in the

dashed frame in Fig. 2.19 exhibiting a reasonable agreement.

In the next chapter we drive our efforts in discussing fractals systems, considering flakes made of

Sierpinski triangle compositions and some molecular chains composed of ST units. It is interesting

at that point to mention that systems with standard geometries may exhibit fractal properties by

applying a perpendicular magnetic field to the layer. In this case the electrons are confined in the
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unit cell, travels under the effect of an external field, and then changes its hopping phase. The

patterns shown when the external magnetic field is observed along the available electronic energies

are fractal. Further aspects of electrons moving through a lattice with external magnetic field is

discussed in the following Chapter.
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Chapter 3

Fractal Properties of Carbon

Materials

In a physics conference at MIT, Dr.Richard Feynman, when asked about the physical problems to

be solved in the future after the sec.XX, replied: “There’s Plenty of Room at the Bottom”, concluding

that a lot of contents in physics are about to be discovered, and studied. Until now, we have seen

that experimental realizations of fractals in nanometric systems are a reality. This is not surprising,

indeed, the condensed matter systems are strikingly related with the geometric properties, as shortly

exposed in this work. Recent results show that electrons and photons interacting within a fractal

lattice behaves like particles in a fractional dimension [34, 91]. In this Chapter we investigate the

fractal patterns in the electronic properties of some systems. The self-similarity appears at specific

energy intervals between each fractal order, and have equal spectra for each generation observed.

Moreover, a magnetic field applied across a standard (not fractal) geometry can create a fractal

pattern in the electronic energy spectra,exhibiting a coexistence between free and periodic electrons

in a crystal .

3.1 Landau Levels

Magnetic field is a fundamental ingredient of crucial interactions and elementary theory in

condensed matter. Motivated by Bloch studies (1925) on a confined electron, Lev Landau was



concerned to solve the problem of a free electron in a perpendicular strong applied magnetic field.

Within the Drude electron gas theory, the hamiltonian is given by

𝐻 = 𝑝2

2𝑚 (3.1)

with 𝑝 = −𝑖ℏ∇. In the presence of a magnetic field 𝐵𝑧 applied in the z-direction, the electron

movement is restricted to the x,y-axis. The Pierls substitution for the momentum in the Hamiltonian

gives [92]

�̂� =

[︃
𝑝+ 𝑒�⃗�(𝑟)

]︃2

2𝑚 (3.2)

where 𝑒 is the electronic charge and �⃗�(𝑟) is the potential vector. In this problem the free electron

energy is quantized into separate levels known as Landau Levels (LLs) and the problem could be

interpreted as a quantum harmonic oscillator with a cyclotron frequency 𝑤𝑐 = 𝑒𝐵𝑧/𝑚 [93]. The

accessible energies are

𝐸𝑛 = ℏ𝑤𝑐

(︃
𝑛+ 1

2

)︃
(3.3)

with n being an integer.

The energy spectra in function of the magnetic field and the density of states in function of the

energy are represented in Fig. 3.1. The LLs are highly degenerated in energy and each peak in the

DOS is separated by a factor proportional to the applied magnetic field 𝐵𝑧.

Figure 3.1: Representation of the Landau Levels a) Energy spectra in function of the magnetic
field b) DOS as a function of the free electron energy.

For the case of the free electron we see a linear relation between the energy spectra and the
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magnetic field. Notice that 𝑤𝑐 = 𝑒𝐵𝑧
𝑚 = ℏ

𝑚𝑙2𝐵
, with 𝑙𝐵 =

√︀
ℏ/𝑒𝐵 being the magnetic length.

Now, considering the electron moving inside a lattice, with atoms distance 𝑎, we can add a

periodic potential 𝑈(𝑟) = 𝑈(𝑟 + 𝑎) into Eq. 3.1

�̂� =

[︃
𝑝+ 𝑒�⃗�(𝑟)

]︃2

2𝑚 + �̂�(𝑟). (3.4)

Now, considering the periodic potential of a graphene monolayer (MG) and a graphene bilayer

(BG), the energy spectra are shown to be proportional to 𝐸 ∝ 𝑛
√
𝐵 and 𝐸 ∝ 𝑛𝐵, respectively, as

illustrated in Fig. 3.2.

Figure 3.2: Left: LLs in Dirac Cone of the effective model for MG. Medium: Energy spectra
for MG. Right: Energy spectra for BG. Adapted [94].

In a periodic medium, Bloch bands emerge in the energy spectra. In the presence of a external

applied magnetic field the energy degeneracy is broken. A plot of the eigenvalues of this system

versus the magnetic flux produces a beautiful fractal figure, obtained first by Hofstadter in 1976. In

the following sub-section we briefly reproduce his calculations and derive the Hodstadter butterfly

for different lattice systems.
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3.2 Hofstadter Butterfly

We have seen that electronic energy can be quantized in two ways, by the lattice potential and

by an applied magnetic field. In this sub-section we consider both quantities in a square lattice as

performed by Douglas Hofstadter [95]. The first calculations of a lattice in a magnetic field where

performed in 1955 by P.G. Harper [96], however, he did not succeed in obtaining the solutions of

his equations for different values of magnetic field. Later Hofstadter proceed with the calculations

finding a beautiful fractal figure as we discuss now.

The translation operator presented in Sec. 1.1 together with the Peierls substitution is 𝑇�⃗� =

exp
{︁
𝑖
ℏ(𝑝.�⃗�) + 𝑖𝑒

ℏ (�⃗�.�⃗�)
}︁

. Applying to a Bloch orbital

𝑇�⃗� 𝜑(�⃗�) = exp
{︃
𝑖𝑒

ℏ

(︃∫︁
𝒞
�⃗�.𝑑�⃗�

)︃}︃
𝜑(�⃗� + �⃗�) (3.5)

where the vector potential �⃗� changes continuously along the curve 𝒞 and 𝑑�⃗� changes with unitary

cell. Using the hopping definition

𝑡′
�⃗�,�⃗�′ =

∫︁
𝑑�⃗� 𝑇�⃗�′𝜑

*
�⃗�′ ℋ 𝑇�⃗� 𝜑�⃗� (3.6)

substituting the translation operator 3.5 we obtain

𝑡′
�⃗�,�⃗�′ = exp

{︃
𝑖𝑒

ℏ

(︃∫︁
�⃗�.𝑑�⃗�

)︃}︃
𝑡�⃗�,�⃗�′ . (3.7)

We conclude then, that the external magnetic field changes the hopping term by a phase related

to the vector potential. This effect is related with the Aharonov–Bohm (AB) effect, in which, the

wave function of a particle obtains a phase even in regions without a measurable magnetic field, as

evidenced in the AB effect [97]. Thus, we define the Peierls phase as

Φ = 𝑒

ℏ

∫︁
�⃗�.𝑑�⃗� = 2𝜋Φ𝐵

Φ0
(3.8)
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with Φ0 = ℎ/𝑒. The system geometry changes the magnetic flux Φ𝐵. Usually, for the adopted

Landau gauge �⃗� = (0, 𝐵𝑥, 0), inside the square unit cell, we have Φ𝐵 = 𝑎𝐵𝑥. Taking into account

only one displacement along x-direction; 𝑥 = 𝑎 gives Φ𝐵 = 𝑎2𝐵. Using 𝑙2𝐵 = ℏ/𝑒𝐵 we can define a

flux over the magnetic unit cell area

𝛼 = Φ𝐵

Φ0
= 𝑎2𝐵

ℎ/𝑒
= (𝑎/𝑙𝑏)2

2𝜋 ⇔ Φ = 2𝜋𝛼. (3.9)

The 𝛼 value is given by the ratio between the lattice parameter 𝑎 and the magnetic length 𝑙𝐵.

With this quantity, we could have two regimes. When 𝑎 is much smaller than 𝑙𝐵, and then we have

the LLs and the Drude model is applicable. Or when the both quantities are comparable, in this

case, the lattice is important for the study of electron behavior. Thus, the size of the spatial unit

cell is inversely proportional to the size of the magnetic unit cell. The modulus of the magnetic field

in Eq. 3.9 could be written as 𝐵 = 𝛼/𝑎2Φ0, in this way if 𝛼 = 1, then the applied magnetic field

decreases with 1/𝑎2. Then, the larger is the spatial unit cell, the smaller is the applied magnetic

field to obtain the Hofstadter butterfly. For this reason, the TBGs with super-cells are largely used

to construct experimental Hofstadter butterflies [98] as in Fig. 3.3.

Figure 3.3: Left: Experimental magnetic field versus carrier density Right: Modeled Hofs-
tadter butterfly with Landau levels in blue [Adapted [98]]

In a square lattice, for the first neighbors TB Hamiltonian in Eq. 1.12, the annihilation(creation)
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operators act on the 𝑖𝑡ℎ lattice sites given by �⃗�𝑖 = 𝑚𝑖𝑎�̂�+ 𝑛𝑖𝑎𝑦, with 𝑚 and 𝑛 integers. Thus, the

Peierls phase from two consecutive atoms is,

Φ = 2𝜋
Φ0
𝐵𝑚𝑖𝑎.(𝑛𝑗𝑎− 𝑛𝑖𝑎).Φ = 2𝜋𝑚𝑖𝛼

Note that we have the same result Φ𝐵 = 𝐵𝑎2 in Eq. 3.9 if 𝑚𝑖 = 1, 𝑛𝑗 = 1 and 𝑛𝑖 = 0, which is

the first magnetic unit cell with two atoms. Due to the periodicity of the lattice, the magnetic cell

could be displayed in 𝑥 or 𝑦 directions, quantified by 𝑝 and 𝑞, respectively. In this case, due to the

adopted Landau gauge, only the y-direction hoppings will be changed. Further, we can define 𝛼 as

a rational number [95]

𝛼 ≡ 𝑝

𝑞
; 𝛼 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 0 & 1 (3.10)

with 𝑝 and 𝑞 being integers that give the size of the magnetic unit cell. The magnetic field 𝐵 =

Φ0𝑝/𝑞𝑎
2 have large values for 𝛼 = 1 due to the lattice parameter 𝑎 ≈ 10−10 𝑚. In the case

illustrated in Fig. 3.4, the spatial unit cell is marked in orange and the magnetic unit cell (red

region) displayed along the 𝑥 direction, with area given by (1x𝑞).𝑎2. In this system the hopping

Figure 3.4: Scheme of the magnetic field in a square lattice. Orange square: Spatial unit cell
for p=1 and q variable. Red rectangle: Magnetic unit cell.
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integral in the 𝑥-direction does not change due to the particular conditions of the Peierls phase:

exp{(0, 𝐵𝑥, 0).(1, 0, 0)} = 1

Otherwise, the hopping integral in the 𝑦 direction depends on the 𝑥 position along the magnetic

cell and the Hamiltonian is written as

𝐻 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ℎ1 𝑡𝑒𝑖𝑘𝑥𝑎 0 . . . 𝑡𝑒−𝑖𝑘𝑥𝑎

𝑡𝑒−𝑖𝑘𝑥𝑎 ℎ2 𝑡𝑒𝑖𝑘𝑥𝑎 . . . 0
...

...
... . . . ...

𝑡𝑒𝑖𝑘𝑥𝑎 0 0 . . . ℎ𝑞

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(3.11)

where ℎ𝑚 = 𝑐𝑜𝑠(𝑘𝑦𝑎 + 𝑚Φ) and (𝑚 = 1, 2, ..., 𝑞). Note that at the end of the unit cell 𝑚 = 𝑞.

This leads to a 𝑞-level Schrodinger equation to be solved, as described in the TB section. Without

magnetic field, or when 𝛼 assumes an integer value the energy levels are simply 𝐸 = 2𝑡[𝑐𝑜𝑠(𝑘𝑦𝑎) +

𝑐𝑜𝑠(𝑘𝑥𝑎)].

Figure 3.5: Left: Zooms of an arbitrary region in the butterfly. Medium: The Hofstadter
butterfly of a square lattice for q=80. Right: Landau levels in the butterfly.

The energy spectra shown in the center of Fig. 3.5 is obtained for an electron in a periodic

potential exposed to a large magnetic field. Known as Hofstadter Butterfly, this figure shows a

fractal pattern in arbitrary regions. Box counting calculations agrees with a fractal dimension
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D=1.77 for the Hofstadter Butterfly in literature [99]. In the red and blue boxes we compare

zoomed regions in the butterfly spectrum. We verify that the figure is a fractal, showing a self-

similarity for each inset. Further interesting features are largely explored in the butterflies, such

as topological invariants called Chern numbers, which are directly related to the quantization of

the Hall conductivity in the integer Quantum Hall effect [100, 101, 102]. Also, near from integer 𝛼

values the butterfly regions became similar to the LL for free electrons.

Figure 3.6: Butterfly spectrum for different lattice structures. The flat band of each system
is signalized with the black arrow [Adapted from [102]].

Other spectra are further illustrated for different structures as shown in Fig. 3.6. We can

observe that the full periodicity of the butterfly spectra is achieved at particular flux values that

depend on the lattice parameter, being extremely sensitive to disorders and defects in the lattice

[103]. Also, the flat states marked with black arrows in the figures, are preserved as can be noticed

for the Kagomé Honeycomb studied before.
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3.3 Conventional ST Flake Model

Inspired on the possibility of engineering real structures based on the geometries of the Sierpinski

triangle we developed a recursive process to describe ST of different generations, based on the

Green’s function formalism. Our first emphasis is to investigate fractal features on the electronic

properties of ST flakes. Here we show the results of the density of states (DOS) for conventional

ST flakes in terms of the order generation 𝑙.

Figure 3.7: Illustration of the decimation method in which a G(2) ST is reduced to a G(1)
ST.

The electronic properties are obtained by using the single first neighbor tight binding Hamiltonian,

described in Eq. A.3 and putting 𝑡′ = 0. The hopping energy matrices follow the corresponding

connectivity of the 𝑙-order ST [G(l)], illustrated in Fig. 3.7. The DOS is given by

𝜌𝑖(𝐸) = − 1
𝜋
𝐼𝑚𝐺𝑖𝑖(𝐸). (3.12)

The Dyson equations [see Appendix. B] relating the real-space Green functions, among the
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15-atoms of the second ST generation, shown in Fig. 3.8, can be written as,

𝐺00 = 𝑔0 + 𝑔0𝑡[𝐺10 +𝐺20 +𝐺30 +𝐺40] (3.13)

𝐺10 = 𝑔1𝑡[𝐺00 +𝐺20 +𝐺60 +𝐺50]

𝐺20 = 𝑔2𝑡[𝐺00 +𝐺10 +𝐺60 +𝐺90]

𝐺30 = 𝑔3𝑡[𝐺00 +𝐺40 +𝐺70 +𝐺110]

𝐺40 = 𝑔4𝑡[𝐺00 +𝐺30 +𝐺70 +𝐺80]

𝐺60 = 𝑔6𝑡[𝐺10 +𝐺20 +𝐺50 +𝐺90]

𝐺70 = 𝑔7𝑡[𝐺30 +𝐺40 +𝐺80 +𝐺110] ,

where the propagator 𝑔𝑖(𝐸) = 1/(𝑤 − 𝐸𝑖) and 𝑡 = 𝑡𝑖,𝑗 corresponds to the energy hopping between

two first neighboring atoms i and j in the lattice, which were considered identical. After some

algebraic manipulations involved in a decimation procedure[104], and considering 𝑔𝑖 = 𝑔0, for all

sites i, we obtain a renormalized Dyson equation for the 𝐺00 locator,

𝐺00 = 𝑔0 + 𝑔0𝑡[𝐺50 +𝐺80 +𝐺90 +𝐺110] , (3.14)

corresponding to a reduced ST generation, with the dressed propagator and hopping energy given

by,

𝑔0 = 𝑔0

1 − 4𝑔2
0𝑡

2(1+𝑔0𝑡)
1−3𝑔2

0𝑡
2−2𝑔3

0𝑡
3

, (3.15)

and

𝑡 = 𝑔0𝑡
2(1 + 2𝑔0𝑡)(1 + 𝑔0𝑡)
1 − 3𝑔2

0𝑡
2 − 2𝑔3

0𝑡
3 . (3.16)

By realizing 𝑙 iterative process it is possible to obtain the DOS of the (𝑙 + 1) − 𝑡ℎ ST generation.

The results for different numbers of iterative processes (1-4) are shown in Fig. 3.8 .

As being finite systems, the DOS are expected to exhibit a sequence of delta functions that

increase as the number of atoms is increased, as depicted in Fig. 3.8. A self-similarity of the

DOS, emerging from higher 𝑙-order STs is evident in the zoom (bottom panel) presenting the short

energy range (-1.0t to -0.75t). Particular pinned localized states are found at the same energies,
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Figure 3.8: DOS as a function of the Fermi energy, calculated from -2.5t to 4.5t for 𝑙-ST
varying from 1 up to 4. Inset: DOS results within a narrower energy range(marked in the
central figure), for 𝑙=5, 7, 9 and 20, illustrating the DOS self-similarity.

independently of the ST generation-order. More interesting to note is the fact that all states

presented in a given iterative process also appear in the LDOS results of all subsequent iterative

steps of higher order, in a cumulative process.

3.4 Kagomé ST Flake Model

Motivated by fractal properties in more realistic systems we propose the Kagomé-Honeycomb ST

flake (KHST). In this case we solve the tight-binding system up to second neighbors, as illustrated

61



in Fig.(3.9)-(a) for armchair-KHST (A-KHST) and in Fig.(3.9)-(b) for zigzag-KHST (Z-KHST).

The number of atoms for the armchair (𝑁𝐴) and zigzag (𝑁𝑍) configurations are, respectively,

𝑁 𝑙
𝐴 = 12 * 3𝑙 +

𝑙∑︁
𝑖=1

3𝑖 ,

𝑁 𝑙
𝑍 = 15 * 3𝑙 + 4 −

𝑙−1∑︁
𝑖=0

3𝑖, for 𝑙 > 1 and 𝑁1
𝑍 = 49 . (3.17)

All the calculations are made using on-site energies equal to ±𝜖 = ±0.25𝑡1, with 𝑡1 being

the nearest-neighbor hopping, for the blue (+𝜖) and orange (−𝜖) sites, following reports on two-

dimensional covalent organic honeycomb frameworks [9], that are typical example of graphene-

kagomé lattices. The second nearest neighbor hopping energy is chosen as [34] 𝑡2=0.08𝑡1. The

LDOS is calculated as a function of energy by

𝐿𝐷𝑂𝑆(𝑥, 𝑦, 𝐸) =
∑︁
𝑛

|Φ𝑛(𝑥, 𝑦)|2𝛿(𝐸 − 𝐸𝑛) , (3.18)

where 𝑥 and 𝑦 are the lattice position coordinates and Φ(𝑥, 𝑦) is the corresponding electronic wave

function of the 𝑛𝑡ℎ state. To compute the delocalized electronic contribution around the sites, given

by |Φ𝑛(𝑥, 𝑦)|2 we transform the

For both KHST edge geometries, the presence of a band gap is verified, for the cases of first

and up to second-neighbors, as shown in Fig. 3.9 (right panels), revealing a semiconducting feature

to such Kagomé-like ST. Otherwise, the graphene ST flake results, reveal a semiconducting and

metallic characteristic for armchair and zigzag GSTs, respectively [38] in the energy-state maps. As

noticeable from Figs. 3.9(a) and (b), the gap increases by ≈ 0.16𝑡1 when second nearest neighbors

are taken into account in the TB model, for armchair and zigzag-edged KHSTs. An interesting

feature found in the electronic properties of the KHST gaskets is the reminiscent flat band observed

in 2-dimensional Kagomé lattice, highlighted here by the high degeneracy order of the E=-0.25𝑡1

and -0.41𝑡1 states, for first and second-neighbor models, respectively, at the gap threshold. The

number of such localized degenerate states is expected to increase as the generation order of the

gasket is increased, although the size of the gaps do not dependent on the generation order, as

depicted in the insets of Fig. 3.9, for armchair and zigzag configurations. Compared with the gap
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Figure 3.9: Schematic view of the second generation [G(2)] of an (a) A-KHST and a (b) Z-
KHST flake at left and the eigenvalues for the 5th generation as a function of the eigenstate
indexes at right. Results considering only first and up to second neighbor-hopping energies
are depicted in black and green dots, respectively. Insets: gap sizes versus the ST generation.

dependence for GST flakes exhibited in Fig. 3.9(a), for KHST the gap size saturates with 𝑙 between

3 and 4. We must comment that the number of atoms in the KHST flakes are considerable superior

at the same generation order, what may justify the constant gap size achieved already in the first

generation. The self similarity is evidenced zooming in the DOS of a G(5)-armchair GST, after

each amplifying as evidenced by Perdersen et al. For zigzag GST the energy gap can be tuned by

adding an electronic correlation with the Hubbard model [38].

Due to the difference in the geometry and site numbers in the basic units forming the KHSTs

in comparison to the conventional ST, another fractal dimension definition is used

𝐷 = lim
𝑟→0

𝐿𝑜𝑔(𝑁(𝑟))
𝐿𝑜𝑔(𝑟−1) , (3.19)

with 𝑁(𝑟) and 𝑟 being the number of squares covering the full system, and the square size, re-

spectively. These parameters are used in the box-counting method [36] to perform the dimension
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calculation. The dimension of each system is determined by the line slope coefficient of 𝐿𝑜𝑔(𝑁(𝑟))

vs 𝐿𝑜𝑔(𝑟−1) graph presented in Fig. 3.10 (a).

Starting from the atomic spatial localization in the A-KHST flake [see Fig. 6(e)], the sizes (in

pixels) of each square found to better adjust the slope are 10 up to 90 pixels. In both cases we

take the LDOS image (360 x 360 pixels) and binarize it in a threshold of 30%, to represent the

most accurate electronic distribution. The details of such numerical process is described in Refs.

[34, 35]. Perfect Kagomé nanoribbons and Kagomé 2D-lattices, exhibit symmetric band spectra,

except for the presence of a flat band located exactly at 𝜖 or -𝜖, depending on the hopping energy

signal. For this reason, in this work we choose then the values of 𝐸 = ±𝜖 to calculate the maximum

contribution in LDOS indicated by its brightest spots, which gives two different patterns, as can be

seen in the binarized image shown in Fig. 3.10 (b) and (c).

In this system we have two energy values that the maximum contribution in LDOS is spread

through the flake, given origin to the patterns (b) and (c) in Fig. 3.10. Taking them both in the

analysis, the box counting method yields a fractal dimension close to the conventional Sierpinski

triangle gasket, ≈ 1.585, as can be verified by the slope values shown in Fig. 3.10(a), for both

situations (1𝑠𝑡 and up to 2𝑛𝑑 neighbor hopping). This occurs because the brightest spots in the

LDOS maps are near from the geometrical points of a A-GST flake, that are also fractal. Otherwise,

for energies where the bright spots (high LDOS values) do not reveal the real geometry of the flake,

the fractal dimension varies between D=1.30-1.80, as verified by Kempkes et al.[34] in hexagonal

flakes, varying between low and high contributions of each site for the LDOS, respectively. The

self-similarity observed in others ST flakes [34, 38] is also evidenced here for both configurations

of the KHSTs (armchair and zigzag), independently on the order of the neighboring hopping taken

into account.

A further interesting feature to explore in zigzag and armchair KHST flakes, described by the

first and second neighbors approximation, is the asymmetric distribution of the electronic probability

distribution at 𝐸1=-0.25𝑡1 and 𝐸2=0.25𝑡1 states. Considering the first generation G(1), we found

that while the 𝐸1 state is formed by four-fold degenerate eigenstates, the 𝐸2 state is non-degenerated.

These states are spread differently among the orange and blue sites of the flake [see Fig. 3.9] , giving

raise to the LDOS exhibited in Fig. 3.10 (d) and (e), respectively. The same behavior is evidenced
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Figure 3.10: (a) Box-counting results of the binarized images (b) and (c) for ±0.25𝑡1, repre-
sented by red and black colors, respectively. Total DOS and LDOS of a G(3)-A-KHST for
(d) first neighbors at 𝐸 = ±0.25𝑡1 and (e) second neighbors at 𝐸 = 0.25𝑡1 and 𝐸 = −0.41𝑡1.

for higher orders of the KHSTs, considering both first and up to second-neighbor hopping models.

3.5 ST Mirrored Chains

Following the experimental realization of 1-D molecular chains [45], with ST as building blocks

grown on Au(111), we explore electronic properties of a similar quasi-1D chain as depicted in

Fig. 3.11(a). The system was idealized based on the coupling of two hexagonal STs spatially

inverted (up and down), with mirror symmetry. Green and black lines connect nearest and second-

nearest neighboring atoms, respectively, through the hopping terms 𝑡 and 𝑡′ in the tight binding

Hamiltonian given in Eq.(1). Differently from the long-range ordered grown structures where Co

atoms are present in intercalated benzene lattices [45], our simple model involves exclusively carbon
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atoms, denoted by blue dots. The electronic properties are calculated using on site energy 𝜖 = 0

and following the relation t’=0.08t for the hopping parameters as recently for HSTs [34].

Figure 3.11: (a) Effective G(1)-ST Chain. The green and black lines are related to hopping
t and t’, respectively. The system extends infinitely along the x-direction. (b) LDOS in
function of the energy at sites 1,2,3,5 and 7 identified and colored circled inside the red
dashed unit-cell of the ST-Chain, defined in part (a). The total DOS is also shown with pink
shadow regions. (c) Band structure of the ST chain for 𝜖=0.

The LDOS shown in Fig. 3.11(b) is calculated via Eq. 3.12, where 𝐺00 is obtained using similar

real-space decimation methods, properly constructed to infinite periodic systems as discussed pre-

viously. At energies close to the Fermi level, the electronic group velocity is near zero, giving origin

to almost two dispersionless bands as can be seen in the corresponding electronic structure shown

in Fig. 3.11(c). These flat bands appear as highly peaked density of states, and are highlighted in

the inset in Fig. 3.11(b). The different curves correspond to the assigned sites marked with the

same color in the unit cell displayed in part (a). As seen in Fig. 3.11(b), at E=-0.16𝑡, the main

contribution becomes from sites 1, 2 and 3, and from the symmetric upper sites 11, 10 and 9.

A better visualization of the spatial electronic distribution through the system is displayed in

Fig. 3.12 for distinct energies. While part (a) refers to a STM image adapted from ref. [45], Figs.
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3.12(b), (c), and (d), are the LDOS theoretical results at 𝐸 = −0.16𝑡 (flat band), 0.96𝑡 and 1.65𝑡.

In the STM image a high charge distribution appears as bright spots at the relative atomic sites.

Correspondingly, in our results the color maps refer to the LDOS intensity. The normalized LDOS

results shown in Fig. 3.12(b) reveal that at one of the flat bands [E=-0.16t] not all the atomic sites

of the lattice are populated, in according with the previously discussion. This last state appears

again in the Dephased ST Chain, and in special, it will not contribute to the transport properties

of these systems, as we will see in the next session. Moreover, while at 𝐸 = 0.96𝑡, only sites 2 and

Figure 3.12: LDOS contour plots of a G(1)-ST Chain. a) STM image adapted from the
experimental data reported in Ref.[45]. Our theoretical LDOS results for (b) E=-0.16𝑡, (c)
0.96𝑡, and (d) 1.65𝑡.

5, and their equivalents in the unit cell, contribute to the state [see Fig. refstchain(c)], revealing a

restricted charge distribution, for the state 𝐸 = 1.65𝑡, Fig. 3.11(d), almost all the lattice is visited

generating bright spots in the geometrical net. The later LDOS pattern strongly resembles the cited

STM image [Fig. 3.12(a)] indicating that our simple model can be an important tool of modelling

such organic molecular chain.

Another experimental alternative of generating 1D mirrored chains made of Sierpiński triangles

was proposed in Ref.[46]. We call it as mirrored chain structure-type 2 (MSTC-2). In our model

up and down triangles are now fully preserved resembling the STM images shown in Fig. 3.13(a).
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Figure 3.13: (a) STM images of the MSTC-2 [Adapted from [46]]. (b) LDOS of the MSTC
for a Fermi energy equal to 2.4t. The nanoribbon unit cell is highlighted with red dots. (c)
DOS and conductance results of the MSTC and MSTC-2 in blue and gray, respectively.

The LDOS at a particular energy (𝐸 = 2.4𝑡) is depicted in part (b) where the region enclosing the

nanoribbon unit cell is marked with red circles. The results for DOS and conductance are shown

in Fig. 3.13(c), highlighted with shadowed blue curves and compared with the results found for

the previous molecular chain [shaded gray curves]. It is noticeable the emergence of two narrowed

energy states near the Fermi Level for the MSTC-2, this is a characteristic property of double ST

Chains that will be explored in next section. Also, the flat-like states in both chain configurations

are preserved in the central gap in DOS, although they are suppressed in the electronic conductance

response of each molecular designs due to the high localization features of the flat band.
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3.6 Dephased ST Chain

Following the experimental molecular structures presented in Ref.[45, 46], we address now an-

other proposal for ST chain, as illustrated in Fig. 3.14(a). Differently from the previous discussed

molecular chains, the new structure are composed by dephased pairs of HSTs [G(2)], connected at

particular lateral lattice sites, simulating the packing mode of STs produced by a combination of a

Co atom and three BPyB molecules [45]. The unit cell of the dephased molecular chain is marked

with dashed red lines. It is interesting to note that our theoretical result for the LDOS at 𝐸 = 1.4𝑡,

as shown in Fig. 3.14(d), reproduces quite well the STM image presented in Fig. 3.14(c) for the

grown molecular nanostructured.

The electronic properties of the G(2)-dephased ST is shown in Fig. 3.14(b) via the density of

states and conductance results. Due to the high electronic localization, the DOS peak at E=-0.16t

does not contribute to the electronic conductance in G(2), what happens also for dephased chains

of higher ST orders (not shown here).

Figure 3.14: (a) Effective G(2)-dephased ST chain, (b) Conductance and DOS, (c) STM
image [adapted from Ref.[45]], and (d) LDOS at E=1.4t.

To investigate fractal properties on such nanostructured systems we concentrate now in the
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Figure 3.15: (a-c) Unit cells of G(2-4) Dephased ST Chains and corresponding band struc-
tures, followed by its zooms, from left to right.

electronic band structures. We present in Fig. 3.15(a-c) unit cells of three generations of the

proposed molecular chain discussed in Fig. 3.14, G(2), G(3) and G(4), and the corresponding band

structure of the 1D chains. The dashed regions marked in the band structures presented in Fig.

3.15(a), related to the G(2) lattice, was enlarged in the subsequent panels at right, revealing a

single flat band and other two bands presenting a small energy dispersion, at the lower energy

range, highlighted by the red shaded area. These later are also noted in the DOS and conductance

results (not shown). To analyze the role played by the generation order on the used HST blocks

forming the chains, we show in Fig. 3.15(b) and (c), for comparison, the energy bands of the three

G(3) and G(4) dephased ST chains. The auto similarity of these systems can be evidenced looking

firstly, at the same energy region of the three generation proposed, defined by the dashed energy

range. Comparing the results, we notice in the last right panels that the common pattern of a

single flat band (happening at 0.96t in the three cases), followed by two dispersive bands [ending
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at 1.1t (a), 1.0t (b) and 0.97t (c), respectively, is slightly preserved going from G(2) to G(4). As

expected, for increasing ST generations, the repeated band structure pattern are found at smaller

energy ranges.

Moreover, the results for the energy bands reveal an increasing number of 1D-like van Hove

singularities passing from G(2) to G(4) dephased chains. Similarly as reported before [39], the

number of flat bands increases significantly with the ST order used to build the chains. Also, in

these flat states the degeneracy for each k value inside the first Brillouin zone increases considerably.

Our findings suggest that properly tuning the tight binding parameters and playing with different

connections between and inside the unit cells, better modeling of such nanostructured systems may

be achieved. In particular, considering different on-site energies for Co atoms and BPyB molecules

in our model (for instance taking 𝐸𝐶 = −𝐸𝐶𝑜), simplified here as carbon atoms, only promotes a

shift in the double flat states near the fermi level.
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Conclusion

We have seen that the carbon atom is a very versatile chemical component. As Mr.Feynmans

quote, a new physics branch turned to be an important description of nature behavior at fractal

nano scales. The understanding of multilayered systems also becomes very important due to the

possibility of changing physical properties. In particular, the recent superconductivity emergence

in bilayered graphene systems raised other carbon-based materials to the center of research activity.

The studied electronic properties of the monolayered systems present an alternating of semicon-

ductor to metallic families in armchair and only metallic for zigzag features in hexagonal systems

with an even number of atoms in the unit cell, e.g., graphene and 𝛼-graphyne. For an odd number

of atoms inside the unit cell, e.g. Kagomé Honeycomb, both armchair and zigzag nanoribbons are

semiconductor with a band gap 𝐸𝑔 = 2𝜖. The kagomé systems turned to be very important due

the appearance of flat bands, which results in high peaks of van Hove singularities. Stacking two

monolayers we obtain the bilayered systems, here studied for each hexagonal system proposed; bi-

layers of graphene, 𝛼-graphyne and kagomé honeycomb. The connection between those geometries

is observed when a transient flat band in both 𝛼-graphyne and kagomé is obtained by changing the

tight-binding parameters. The study developed for the bilayered systems is mainly related with the

graphene and 𝛼-graphyne bilayers due its similar electronic properties. In zigzag graphene bilayers,

first principle calculations have shown a curved relaxed structure at zigzag edges favoring an inter-

action between those edge sites. Also, the edge hopping analysis were made in order to obtain the

best data fitting with DFT results. Both calculations, our results and others, are in good agreement

with zigzag graphene bilayer nanoribbons. However for 𝛼-graphyne bilayer nanoribbons, the zigzag

results have an energy gap difference, which can be turned out by adding the electronic correlation

between each layer sites. Meanwhile the calculations for armchair features are in good agreement

with the literature. Better adjustment are still lacking to improve the tight binding approximations

such as a proper incorporation of the ribbon bending effect due to relaxation processes. Rotating

one layer above the other, we construct the twisted bilayered systems. Responsible for exhibit
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superconductivity at low angles in 𝑇 ≈ 2𝐾, the twisted bilayer graphene are systems with large

commensurable unit cells giving the possibility of experimental observation of Hofstadter butter-

flies for effectively-low magnetic fields. These fractal figures mark the connection between standard

geometry lattices with the fractal world.

We have explored fractal features in the electronic properties of ST flakes and molecular chains

of different geometry details. Recent experimental results are modeled within our developed tight-

binding models, as evidenced for the molecular sierpinski lattice developed in this work. Also,

more recently, the synthesis of sierpinski lattice leads the exploration on physical properties of

fractal lattices. Theoretical works were previously modeled several spatial geometries. The simple

models developed here could qualitatively describe the experimental results for hexagonal flakes

and more complex lattice. The results found for the fractal dimension of the Kagomé-like ST flakes

follow recent reports on graphene-like STs. The result is corroborated by the Kagomé ST LDOS at

particular energy states that exhibit typical graphene ST spatial configurations. The self similarity

of the energy states are found comparing different ST generation orders and also amplifying the

energy ranges investigated, for both flakes and quasi 1D systems. In particular, the results for the

local density of states of the theoretical molecular chains proposed here exhibit quite similar spatial

charge distribution as experimental STM reports. The analysis of transport response of such quasi

1D molecular chains reveals localized states that do not contribute to the electronic transport. The

study can be used as a guide to propose a variety of architecture in the synthesis of real molecular

chains.

Further aspects of the theoretical framework adopted were explored such as changing the inter

and intra unit cell connections of the proposed molecular chains. Some of the schemes induce

degeneracy break of particular electronic states, favoring the disrupt of flat bands. Although a

primary analysis on more realistic on-site energies, simulating metallic atoms in the ST chains

that appear in the experiments, has not indicated great changes, more sophisticated theoretical

framework must be used for a fully study of tuning the energy channel positions in the transport

features of the chains. Probably, the inclusion of electron-electron interaction in the model will

bring important light into the electronic occupation in conductive states, in special, in the flat

states presented.

73



Appendix A

Symmetries in Graphene

The symmetry of nanostructured systems, as discussed in Sub-Section 1.1.1 plays an important

role in the electronic properties of each system. Therefore, here we analyze Spatial Inversion and

Time-Reversal symmetry aspects in graphene when a diagonal term associated with the potentials

of A and B sub-lattices is included.

Given the Hamiltonian for graphene,

ℋ(�⃗�) =

⎡⎢⎣ 0 𝛾ℎ(�⃗�)

𝛾ℎ†(�⃗�) 0

⎤⎥⎦ (A.1)

in which

ℎ(�⃗�) =
∑︁
𝛼

𝑒𝑖�⃗�.�⃗�𝛼 = 2𝑒
𝑖𝑎𝑘𝑦

2 𝑐𝑜𝑠(
√

3𝑎𝑘𝑥
2 ) + 𝑒−𝑖𝑎𝑘𝑦 (A.2)

where for simplicity we have considered 𝜀 = 0 and first neighbors only. The Hamiltonian A.1 could

be understood as a two level system in terms of the Pauli matrices (𝜎1, 𝜎2, 𝜎3).

In special, the metallic states mainly related with the Dirac cones at 𝑘 = ± 4𝜋
3
√

3𝑎 in hexagonal

systems as Graphene are topologically protected by Time-Reversal and Spatial Inversion symmetry.

We will conclude that those symmetries are preserved if the principal diagonal terms of the matrix

are real and identical. Physically for Graphene, this is quite obvious, given that its sub-lattice is
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formed by Carbon atoms that are identical, and because of that the 𝜀 is a real quantity, measurable

and usually given in electron-volt (eV). For this reason, the pristine Graphene does not have a term

associated with 𝜎3 in the Hamiltonian. What we will do next is to propose an element associated

with 𝑓(�⃗�)𝜎3 and to analyze its correlation with the potentials 𝜀 in Graphene.

Time-Reversal Symmetry (𝒯 ): Given that the wave vector �⃗� [105] is not invariant by a

transformation 𝒯 , then ℋ(�⃗�) → 𝐻*(−�⃗�) since the Bloch basis are related with complex phases.

The Hamiltonian A.1 now is given by

ℋ(�⃗�) =

⎡⎢⎣ 𝑓(�⃗�) 𝛾ℎ(�⃗�)

𝛾ℎ†(�⃗�) −𝑓(�⃗�)

⎤⎥⎦ , (A.3)

and as a consequence of the time-reversal operator 𝒯 , we have

ℋ(−�⃗�)* =

⎡⎢⎣ 𝑓*(−�⃗�) 𝛾(ℎ(−�⃗�))*

𝛾(ℎ†(−�⃗�))* −𝑓*(−�⃗�)

⎤⎥⎦ . (A.4)

As ℋ(�⃗�) = ℋ*(−�⃗�) if the system has time-reversal symmetry conserved, then comparing term by

term in A.3, ℋ(�⃗�)1,1 = ℋ*(−�⃗�)1,1 which implies that 𝑓(�⃗�) = 𝑓*(−�⃗�) is a symmetric function in �⃗�.

Spatial Symmetry Inversion (𝒫): Physically, in Graphene, this symmetry is responsible to

invert the phases between the A and B sites, changing �⃗� to −�⃗�. Thus, in Pauli matrix representa-

tion, the condition 𝒫ℋ(−�⃗�)𝒫−1 = ℋ(�⃗�) must also be satisfied. For this reason, being symmetric

about 𝒫 requires that 𝜎𝑖ℋ(−�⃗�)𝜎−1
𝑖 = ℋ(�⃗�) with i=1, 2 and 3 being the x, y and z components,

respectively[58].

For i=1 we have,

⎡⎢⎣0 1

1 0

⎤⎥⎦
⎡⎢⎣ 0 𝛾ℎ(−�⃗�)

𝛾ℎ(−�⃗�) 0

⎤⎥⎦
⎡⎢⎣0 1

1 0

⎤⎥⎦ =

⎡⎢⎣ 0 𝛾ℎ(�⃗�)

𝛾ℎ(�⃗�) 0

⎤⎥⎦ .
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It can be shown that for i= 2,3 the equality is not satisfied. Actually, 𝜎2ℋ(−�⃗�)𝜎2 = −ℋ(�⃗�) and

𝜎3ℋ(−�⃗�)𝜎3 = −ℋ*(�⃗�). Now, including 𝑓(�⃗�)𝜎3 in 𝜎1ℋ(−�⃗�)𝜎1,⎡⎢⎣0 1

1 0

⎤⎥⎦
⎡⎢⎣ 𝑓(−�⃗�) 𝛾ℎ(−�⃗�)

𝛾ℎ(−�⃗�) −𝑓(−�⃗�)

⎤⎥⎦
⎡⎢⎣0 1

1 0

⎤⎥⎦ =

⎡⎢⎣−𝑓(�⃗�) 𝛾ℎ(�⃗�)

𝛾ℎ(�⃗�) 𝑓(�⃗�)

⎤⎥⎦ ,

and comparing the matrix elements between the two sides of the equation we get 𝑓(−�⃗�) = −𝑓(�⃗�).

In the following we want to combine both symmetries presented in Graphene and compare the

conditions for 𝑓(�⃗�).

Spatial & Time-Reversal Symmetries: With the inclusion of the term 𝑓(�⃗�)𝜎3 in the

graphene hamiltonian, for satisfying both symmetries, the following conditions for 𝑓(�⃗�) are needed

⎧⎪⎪⎨⎪⎪⎩
𝑓(�⃗�) = 𝑓*(−�⃗�)

𝑓(−�⃗�) = −𝑓(�⃗�)
(A.5)

Solving the system above, we have 𝑓*(−�⃗�) = −𝑓(−�⃗�), which implies that 𝑓(�⃗�) is purely imag-

inary. However, as the Hamiltonian is hermitian, 𝑓(�⃗�) = 0 is the unique non-trivial solution.

Further, for both symmetries to be satisfied the graphene hamiltonian can not have 𝜎3 terms in

the principal diagonal. Finally, for that reason, the parity related with 𝒯 and 𝒫 protects the Dirac

cones in graphene and similar materials. We propose in the next the breaking of these symmetry

and verify the electronic gap emergence.

Symmetry break in Graphene: Supposing that 𝑓(�⃗�)𝜎3 = 𝜀𝜎3, which implies in a distinct

potential 𝜀 between the sub-lattice sites A and B. With this change, the hamiltonian becomes

ℋ(�⃗�) =

⎡⎢⎣ 𝜀 𝛾ℎ(�⃗�)

𝛾ℎ†(�⃗�) −𝜀

⎤⎥⎦ . (A.6)

The eigenvalues 𝐸(𝑘𝑥, 0) are displayed in Fig. A.1. We notice that the energy gap is proportional

to 2𝜀. Therefore, we conclude that the both symmetries play an important role in the electronic

structure of condensed matter systems. In fact, other hexagonal geometries that spontaneously

break those symmetries like the hexagonal Boron Nitride (hBN), have naturally different values for
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(a) (b) (c)

Figure A.1: Electronic dispersion relation projected along the 𝑘𝑥 axis for different values of
𝜀: (a) 𝜀=0.0 eV and 𝐸𝑔=0.0, (b) 𝜀=0.5 eV and 𝐸𝑔=1.0𝛾 and (c) 𝜀=1.0 eV and 𝐸𝑔=2.0𝛾.
Dirac ±K points are pointed in red.

Figure A.2: hBN Band structure along the high symmetry points [106].

the on site energy in the sub-lattice. For that reason, hBN is an insulator material with an energy

gap 𝐸𝑔 > 5 eV [106], as depicted in Fig. A.2.
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Appendix B

Dyson Equation

The Dyson equation surges naturally within the Greens function formalism when we perturb

the free particle with an external potential. The Hamiltonian of this system can be expressed as

𝐻(�⃗�) = 𝐻0(�⃗�) + 𝑉 (�⃗�) . (B.1)

The Green function associated with H is given by

[𝐸 −𝐻(�⃗�)]𝐺(�⃗�, �⃗� ′) = 𝛿(�⃗� − �⃗� ′) (B.2)

or
ℒ⏞  ⏟  

[𝐸 −𝐻0(�⃗�)]

𝜓(�⃗�)⏞  ⏟  
𝐺(�⃗�, �⃗� ′) =

𝑓(�⃗�)⏞  ⏟  
𝛿(�⃗� − �⃗� ′) + 𝑉 (�⃗�)𝐺(�⃗�, �⃗�) . (B.3)

Changing the integral argument of Eq. 1.17 to 𝑔(�⃗�, �⃗� ′′) for the undisturbed system, we have

𝐺(�⃗�, �⃗� ′) =
∫︁
𝑑�⃗� ′′𝑔(�⃗�, �⃗� ′′)[𝛿(�⃗� ′′ − �⃗� ′) + 𝑉 (�⃗� ′′)𝐺(�⃗� ′′, �⃗� ′)]

= 𝑔(�⃗�, �⃗� ′) +
∫︁
𝑑�⃗� ′′𝑔(�⃗�, �⃗� ′′)𝑉 (�⃗� ′′)𝐺(�⃗� ′′, �⃗� ′) .

(B.4)

Note that 𝐺(�⃗�, �⃗� ′) now depends on the integral of 𝐺(�⃗� ′′, �⃗�), however, we can calculate this one
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in the same way as we calculated before,

𝐺(�⃗� ′′, �⃗� ′) = 𝑔(�⃗� ′′, �⃗� ′) +
∫︁
𝑑�⃗� ′′′𝑔(�⃗� ′′, �⃗� ′′′)𝑉 (�⃗� ′′′)𝐺(�⃗� ′′′, �⃗� ′) , (B.5)

which substituting in 𝐺(�⃗�, �⃗� ′) we get,

𝐺(�⃗�, �⃗� ′) = 𝑔(�⃗�, �⃗� ′)

+
∫︁
𝑑�⃗� ′′𝑔(�⃗�, �⃗� ′′)𝑉 (�⃗� ′′)

[︁
𝑔(�⃗� ′′, �⃗� ′) +

∫︁
𝑑�⃗� ′′′𝑔(�⃗� ′′, �⃗� ′′′)𝑉 (�⃗� ′′′)𝐺(�⃗� ′′′, �⃗� ′)

]︁

= 𝑔(�⃗�, �⃗� ′) +
∫︁
𝑑�⃗� ′′𝑔(�⃗�, �⃗� ′′)𝑉 (�⃗� ′′)𝑔(�⃗� ′′, �⃗� ′)

+
∫︁
𝑑�⃗� ′′

∫︁
𝑑�⃗� ′′′𝑑�⃗� ′′𝑔(�⃗�, �⃗� ′′)𝑉 (�⃗� ′′)𝑔(�⃗� ′′, �⃗� ′′′)𝑉 (�⃗� ′′′)𝐺(�⃗� ′′′, �⃗� ′)

with

𝐺(�⃗� ′′′, �⃗� ′) = 𝑔(�⃗� ′′′, �⃗� ′) +
∫︁
𝑑�⃗� 𝐼𝑉 𝑔(�⃗� ′′′, �⃗� 𝐼𝑉 )𝑉 (�⃗� 𝐼𝑉 )𝐺(�⃗� 𝐼𝑉 , �⃗� ′)

then

𝐺(�⃗�, �⃗� ′) = 𝑔(�⃗�, �⃗� ′) +
∫︁
𝑑�⃗� ′′𝑔(�⃗�, �⃗� ′′)𝑉 (�⃗� ′′)𝑔(�⃗� ′′, �⃗� ′)

+
∫︁
𝑑�⃗� ′′

∫︁
𝑑�⃗� ′′′𝑑�⃗� ′′𝑔(�⃗�, �⃗� ′′)𝑉 (�⃗� ′′)𝑔(�⃗� ′′, �⃗� ′′′)𝑉 (�⃗� ′′′)𝑔(�⃗� ′′′, �⃗� ′) + . . . (B.6)

We can see that the new Green’s function is written again in terms of another function to be

determined. We solve this problem by an iterative method in which, for simplicity, we write the

terms in the integral of Eq.B.6 in the form of operators.

Thus, we have for the first term

∫︁
𝑑�⃗� ′′𝑔(�⃗�, �⃗� ′′)𝑉 (�⃗� ′′)𝑔(�⃗� ′′, �⃗� ′) =

∑︁
�⃗� ′′,�⃗� ′′′

⟨︀
�⃗�
⃒⃒
g
⃒⃒
�⃗� ′′⟩︀ ⟨︀�⃗� ′′⃒⃒V⃒⃒�⃗� ′′′⟩︀ ⟨︀�⃗� ′′′⃒⃒g⃒⃒�⃗� ′⟩︀

=
⟨︀
�⃗�
⃒⃒
gVg

⃒⃒
�⃗� ′⟩︀ ,

(B.7)
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and for the second

∫︁
𝑑�⃗� ′′

∫︁
𝑑�⃗� ′′′𝑑�⃗� ′′𝑔(�⃗�, �⃗� ′′)𝑉 (�⃗� ′′)𝑔(�⃗� ′′, �⃗� ′′′)𝑉 (�⃗� ′′′)𝑔(�⃗� ′′′, �⃗� ′)

=
∑︁

�⃗� 𝐼𝐼 ,�⃗� 𝐼𝑉

∑︁
�⃗� 𝐼𝐼𝐼 ,�⃗� 𝑉

⟨
�⃗�
⃒⃒⃒
g
⃒⃒⃒
�⃗� 𝐼𝐼

⟩ ⟨
�⃗� 𝐼𝐼

⃒⃒⃒
V
⃒⃒⃒
�⃗� 𝐼𝐼𝐼

⟩ ⟨
�⃗� 𝐼𝐼𝐼

⃒⃒⃒
g
⃒⃒⃒
�⃗� 𝐼𝑉

⟩ ⟨
�⃗� 𝐼𝑉

⃒⃒⃒
V
⃒⃒⃒
�⃗� 𝑉

⟩ ⟨
�⃗� 𝑉

⃒⃒⃒
g
⃒⃒⃒
�⃗� 𝐼
⟩

=
⟨︀
�⃗�
⃒⃒
gVgVg

⃒⃒
�⃗� ′⟩︀ . (B.8)

The complete expansion of 𝐺(�⃗�, �⃗� ′) can be expressed in the form of operators as

G = g + gVg + gVgVg + gVgVgVg + . . .

= g + gV g + gVgVg + gVgVgVg + . . .⏟  ⏞  
G Propagator

.
(B.9)

Finally, the Dyson equation is written as

G = g + gVG. (B.10)
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Appendix C

Decimation Method Application:

Brick Wall 𝛼-Graphyne

Here we follow Ref.[107], and consider that the graphyne lattice can be represented as a graphene

with renormalized hopping energies, i.e., (𝑡1, 𝑡2) → 𝛾0 [11]. We can slice the unit cell and deform

the lattice as a square lattice, as illustrated in Fig. C.1.

Figure C.1: Illustration of the renormalization process and the construction of the brick wall
in an armchair 𝛼-graphyne. Where the sub-lattice difference is expressed as blue and green
circles in the last picture.

This system is constituted by an infinite number of alternated slices of type𝐴 and𝐵, both formed

by 𝑛 numbers of atoms. The connection between slices 𝐴(𝐵) and the slice 𝐵(𝐴) are represented by
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an operator 𝑈𝐴𝐵(𝐵𝐴) from left to right, and 𝑈 †
𝐴𝐵(𝐵𝐴) from right to left. We define the Hamiltonian

𝐻𝑚,𝑚′(𝑛, 𝑛′) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐻𝐴(𝑛, 𝑛′) 𝑈𝐴𝐵(𝑛, 𝑛′) 0 0 . . .

𝑈 †
𝐴𝐵(𝑛, 𝑛′) 𝐻𝐵(𝑛, 𝑛′) 𝑈𝐵𝐴(𝑛, 𝑛′) 0 0

0 𝑈 †
𝐵𝐴(𝑛, 𝑛′) 𝐻𝐴(𝑛, 𝑛′) 𝑈𝐴𝐵(𝑛, 𝑛′) 0

0 0 𝑈 †
𝐴𝐵(𝑛, 𝑛′) 𝐻𝐵(𝑛, 𝑛′) 𝑈𝐵𝐴(𝑛, 𝑛′)

... 0 0 𝑈 †
𝐵𝐴(𝑛, 𝑛′) . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(C.1)

Taking into account the relation

[(𝐸(𝑛, 𝑛′) −𝐻(𝑛, 𝑛′))𝐺(𝑛, 𝑛′)]𝑚,𝑚′ = 𝛿𝑚,𝑚
′(𝑛, 𝑛′) (C.2)

we have

[𝐸0,0 −𝐻𝐴]𝐺0,0 = ℐ + 𝑈𝐴𝐵𝐺10

[𝐸1,1 −𝐻𝐵]𝐺1,0 = 𝑈 †
𝐴𝐵𝐺1,0 + 𝑈𝐵𝐴𝐺2,0

[𝐸2,2 −𝐻𝐴]𝐺2,0 = 𝑈 †
𝐵𝐴𝐺2,0 + 𝑈𝐴𝐵𝐺3,0

...

[𝐸𝑘,𝑘 −𝐻𝑖]𝐺𝑘,0 = 𝑈 †
𝑗,𝑖𝐺𝑘−1,0 + 𝑈𝑖,𝑗𝐺𝑘+1,0 (C.3)

where ℐ is the identity matrix. The Hamiltonian of the i-th slice is labeled as 𝐻𝑖(𝑛, 𝑛′) and for k

even(odd) we have i=A(B). For simplicity we consider 𝐸0,0 = 𝐸1,1 = . . . = 𝐸.

The first decimation step for the B slice gives,

[𝐸 −𝐻𝐴 − 𝑏1]𝐺0,0 = ℐ + 𝑑1𝐺2,0

[𝐸 −𝐻𝐴 − 𝑎1 − 𝑏1]𝐺2,0 = 𝑐1𝐺0,0 + 𝑑1𝐺4,0

[𝐸 −𝐻𝐴 − 𝑎1 − 𝑏1]𝐺4,0 = 𝑐1𝐺2,0 + 𝑑1𝐺6,0

...

[𝐸 −𝐻𝐴 − 𝑎1 − 𝑏1]𝐺2𝑘,0 = 𝑐1𝐺2(𝑘−1),0 + 𝑑1𝐺2(𝑘+1),0 (C.4)
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with

𝑎1 = 𝑈 †
𝐵𝐴(𝐸 −𝐻𝐵)−1𝑈𝐵𝐴 , 𝑏1 = 𝑈𝐴𝐵(𝐸 −𝐻𝐵)−1𝑈 †

𝐴𝐵

𝑐1 = 𝑈 †
𝐵𝐴(𝐸 −𝐻𝐵)−1𝑈 †

𝐴𝐵 , 𝑑1 = 𝑈𝐴𝐵(𝐸 −𝐻𝐵)−1𝑈𝐵𝐴 (C.5)

Similarly, we perform the second decimation step, and obtain

[𝐸 −𝐻𝐴 − 𝑏1 + 𝑑2]𝐺0,0 = ℐ + 𝑏2𝐺4,0

[𝐸 −𝐻𝐴 − 𝑎1 − 𝑏1 − 𝑐2]𝐺4,0 = 𝑎2𝐺0,0 + 𝑏2𝐺8,0

[𝐸 −𝐻𝐴 − 𝑎1 − 𝑏1 − 𝑐2]𝐺8,0 = 𝑎2𝐺4,0 + 𝑏2𝐺12,0

...

[𝐸 −𝐻𝐴 − 𝑎1 − 𝑏1 − 𝑐2]𝐺22𝑘,0 = 𝑎2𝐺22(𝑘−1),0 + 𝑏2𝐺22(𝑘+1),0 (C.6)

where

𝑎2 = 𝑐1(𝐸 −𝐻𝐴 − 𝑎1 − 𝑏1)−1𝑐1 ,

𝑏2 = 𝑑1(𝐸 −𝐻𝐴 − 𝑎1 − 𝑏1)−1𝑑1 ,

𝑐2 = 𝑐1(𝐸 −𝐻𝐴 − 𝑎1 − 𝑏1)−1𝑑1 + 𝑑1(𝐸 −𝐻𝐴 − 𝑎1 − 𝑏1)−1𝑐1 ,

𝑑2 = 𝑑1(𝐸 −𝐻𝐴 − 𝑎1 − 𝑏1)−1𝑐1 . (C.7)

The third step leads to

[𝐸 −𝐻𝐴 − 𝑏1 − 𝑑3]𝐺0,0 = ℐ + 𝑏3𝐺8,0

[𝐸 −𝐻𝐴 − 𝑎1 − 𝑏1 − 𝑐3]𝐺8,0 = 𝑎3𝐺0,0 + 𝑏3𝐺16,0

[𝐸 −𝐻𝐴 − 𝑎1 − 𝑏1 − 𝑐3]𝐺16,0 = 𝑎3𝐺8,0 + 𝑏3𝐺24,0

...

[𝐸 −𝐻𝐴 − 𝑎1 − 𝑏1 − 𝑐3]𝐺23(𝑘−1),0 = 𝑎3𝐺23(𝑘+1),0, (C.8)
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with

𝑎3 = 𝑎2(𝐸 −𝐻𝐴 − 𝑎1 − 𝑏1 − 𝑐2)−1𝑎2 ,

𝑏3 = 𝑏2(𝐸 −𝐻𝐴 − 𝑎1 − 𝑏1 − 𝑐2)−1𝑏2 ,

𝑐3 = 𝑐2 + 𝑎2(𝐸 −𝐻𝐴 − 𝑎1 − 𝑏1 − 𝑐2)−1𝑏2 + 𝑏2(𝐸 −𝐻𝐴 − 𝑎1 − 𝑏1 − 𝑐2)−1𝑎2 ,

𝑑3 = 𝑑2 + 𝑏2(𝐸 −𝐻𝐴 − 𝑐2)−1𝑎2 . (C.9)

Therefore, we can write a general expression for the S-th decimation step

[𝐸 −𝐻𝐴 − 𝑏1 − 𝑑𝑆 ]𝐺0,0 = ℐ + 𝑏𝑆𝐺2𝑆𝑘,0 ,

[𝐸 −𝐻𝐴 − 𝑎1 − 𝑏1 − 𝑐𝑆 ]𝐺2𝑆𝑘,0 = 𝑎𝑆𝐺2𝑆(𝑘−1),0 + 𝑏𝑆𝐺2𝑆(𝑘+1),0 . (C.10)

where

𝑎𝑆 = 𝑎𝑆−1(𝐸 −𝐻𝐴 − 𝑎1 − 𝑏1 − 𝑐𝑆−1)−1𝑎𝑆−1 ,

𝑏𝑆 = 𝑏𝑆−1(𝐸 −𝐻𝐴 − 𝑎1 − 𝑏1 − 𝑐𝑆−1)−1𝑏𝑆−1 ,

𝑐𝑆 = 𝑐𝑆−1 + 𝑎𝑆−1(𝐸 −𝐻𝐴 − 𝑎1 − 𝑏1 − 𝑐𝑆−1)−1𝑏𝑆−1

+ 𝑏𝑆−1(𝐸 −𝐻𝐴 − 𝑎1 − 𝑏1 − 𝑐𝑆−1)−1𝑎𝑆−1 ,

𝑑𝑆 = 𝑑𝑆−1 + 𝑏𝑆−1(𝐸 −𝐻𝐴 − 𝑎1 − 𝑏1 − 𝑐𝑆−1)−1𝑎𝑆−1 (C.11)

and we define 𝑐1 = 𝑑1 = 0. When |𝑏𝑆 | is sufficiently small we can approximate 𝐺0,0 ≈ [𝐸 − 𝐻𝐴 −

𝑏1 − 𝑑𝑆 ]−1 . This result provides the surface Green function of each slide slice. Notice that for

armchair case the Hamiltonian from the slice A is equal to the slice B: 𝐻𝐴 = 𝐻𝐵. So we define

𝑈𝐴𝐵(𝑛, 𝑛′) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝛾0 0 0 0 . . .

0 0 0 0

0 0 𝛾0 0

0 0 0 0
... . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 𝑈𝐵𝐴(𝑛, 𝑛′) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 . . .

0 𝛾0 0 0

0 0 0 0

0 0 0 𝛾0
... . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(C.12)
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𝐻𝐴(𝑛, 𝑛′) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜀0 𝛾0 0 0 . . .

𝛾0 𝜀0 𝛾0 0

0 𝛾0 𝜀0 𝛾0

0 0 𝛾0 𝜀0
... . . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(C.13)

To illustrate the presented decimation process, we show in Fig. C.2 the electronic density of

states obtained by using Eq.(1.2) for an infinite armchair nanoribbon with 𝑁𝐴 = 30.
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Figure C.2: Total density of states for 𝑆 = 40, 𝜂 = 10−4 and nanoribbon size 𝑁𝐴 = 30.
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Appendix D

Epigraph Source Code

In[ ]:= next[prev_] :=

prev /.
polígono

Polygon[{p1_, p2_, p3_}] ⧴

{
polígono

Polygon[{p1, (p1 + p2)/ 2, (p1 + p3)/ 2}],
polígono

Polygon[{p2, (p2 + p3)/ 2, (p1 + p2)/ 2}],

polígono

Polygon[{p3, (p1 + p3)/ 2, (p2 + p3)/ 2}]};

transform[p_] := (
inverte ordem

Reverse[p].p) p/
norma

Norm[p]^2;

notFishieAwwwSadFace[n_, a1_ : 0, a2_ : 0, options___] :=

módulo de código

Module[{axiom}, axiom =
polígono

Polygon[{
cosseno

Cos[#],
seno

Sin[#]} & /@ (a1 + 2
⋯

Pi
intervalo de valores

Range[3]/ 3)];

representa⋯

Graphics[{
transparente

Transparent,
forma da ⋯

EdgeForm[
preto

Black],

rotação

Rotate[
repete a apl⋯

Nest[next,
valor numérico

N@axiom, n] /.
polígono

Polygon[pts_] ⧴
polígono

Polygon[transform /@ pts], a2]},

options]];

notFishieAwwwSadFace[7, 1.045]

Figure D.1: Credits: http://www.oftenpaper.net/sierpinski
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