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Abstract

In this thesis, we will explore the manifestation of strange quark matter in as-
trophysical environments, particularly in the context of compact objects, and
planets-like objects. We consider the “strange quark matter hypothesis”, that
is, matter consisting of a combination of up, down, and strange quarks could
be absolutely stable. Small nuggets of such matter are called “strangelets” and
large pieces (kilometer-sized) are “strange stars”. In this context, first, we con-
sider the possibility that strange quark matter may manifest itself in the form
of planet-like objects made of strangelets organized in a crystalline structure.
These objects we call strangelet crystal planets. We also calculate the relevant
quantities that could potentially be observable, such as the planetary tidal dis-
ruption radius and the gravitational wave signals that may arise from potential
star-planet merger events. Thus, we find that strangelet crystal planet have
masses that are similar to ordinary planets, but slightly smaller radii. Addi-
tionally, they display intermediate behavior with possible orbital properties not
as extreme as those of strange planets (composed of strange quark matter in a
gaseous-like state, i.e. not clumped in nuggets) but not as mild as those of ordi-
nary planets. The second part of this thesis is dedicated to the study of quark
stars. In this case, these objects are composed of quark matter core crusted
by strangelets. Our main purpose is to quantify the effects of strangelets crust
matter on the thermal properties and relaxation times of those quark stars. We
also consider the possibility color superconductivity effects in the quark core. In
this way, we have found that quark stars with strangelet crusts (thinner crusts)
display a faster cooling behavior when compared with quark stars with nuclear
crusts (thicker crusts). We will show that quark stars with strangelet crusts have
a significantly thermal relaxation time different from those with nuclear matter
crusts. The studies carried out in this thesis approach strangelet manifestations
in compact objects, and it provides some effective methods to test the strange
quark matter hypothesis.
Keywords: quark matter, strangelets, planets, quark stars.
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Resumo

Nesta tese, exploraremos a manifestação da matéria de quarks estranha em am-
bientes astrofísicos, particularmente no contexto de objetos compactos e objetos
semelhantes a planetas. Levamos em conta a “hipótese da matéria de quarks es-
tranha”, ou seja, a matéria consistindo de uma combinação de quarks up, down
e strange poderia ser absolutamente estável. Pequenas pepitas de tal matéria
são chamadas “strangelets” e pedaços grandes (do tamanho de quilômetros) são
“estrelas estranhas”. Neste contexto, primeiro, consideramos a possibilidade de
que a matéria de quarks estranha possa se manifestar na forma de objetos semel-
hantes aos planetas feitos de strangelets organizados em uma estrutura cristalina.
Esses objetos nós chamamos planetas cristalinos de strangelets. Também calcu-
lamos as quantidades relevantes que poderiam ser potencialmente observáveis,
como o raio de ruptura das marés planetárias e os sinais de ondas gravitacionais
que podem surgir de potenciais eventos de fusão estrela-planeta. Desta forma,
descobrimos que os planetas cristalinos de strangelets têm massas semelhantes
aos planetas comuns, mas raios ligeiramente menores. Além disso, eles exibem
um comportamento intermediário com possíveis propriedades orbitais não tão
extremas quanto as de planetas estranhos (compostos de matéria de quarks es-
tranha em estado gasoso, ou seja, não aglomerados em pepitas), mas não tão
moderadas quanto as de planetas comuns. A segunda parte desta tese é dedi-
cada ao estudo das estrelas de quarks. Nesse caso, esses objetos são compostos
de núcleo de matéria quarks com crostas de strangelets. Nosso principal obje-
tivo é quantificar os efeitos da matéria da crosta de strangelets nas propriedades
térmicas e nos tempos de relaxamento dessas estrelas. Incluímos, também, os
possíveis efeitos de supercondutividade de cor no núcleo de quarks. Desta forma,
descobrimos que estrelas de quarks com crostas de strangelets (crostas mais finas)
apresentam um comportamento de resfriamento mais rápido quando compara-
das com estrelas de quarks com crostas nucleares (crostas mais grossas). Além
disso, mostraremos que estrelas de quarks com crostas de strangelets têm um
tempo de relaxamento térmico significativamente diferente daquelas com crostas
de matéria nuclear. Os estudos realizados nesta tese abordam manifestações de
strangelets em objetos compactos e fornecem alguns métodos eficazes para testar
a hipótese de matéria de quarks estranha.
Palavras-chave: matéria estranha, strangelets, planetas, estrela de quarks.
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Chapter 1

Introduction

In astrophysics we employ methods and principles of physics and mathematics
to study astronomical objects and their properties. Some topics of study by
astrophysicists include solar systems, extrasolar planets, stellar dynamics and
structure, and compact objects. Astrophysicists distinguish three types of com-
pact objects: white dwarfs (WD), neutron stars (NS) and black holes (BH). In
particular, neutron stars are residues of massive stars that eject matter in the
process known as a supernova explosion (Weber, 2017; Glendenning, 2012). Neu-
tron stars have typical masses of ∼ 1.4M� (solar masses1) and radii about 10
km. This makes them have core densities that can be ten times (∼ 1015 g/cm3)
greater than the nuclear saturation density2. Also, there is an expectation that
at such extreme densities, new states of matter will be produced. One such in-
triguing possibility is that compact stars consist of strange quark matter made
up of up, down, and strange quarks, which could be more stable than ordinary
nuclear matter and all atomic nuclei (Weber, 2017). This is known as strange
quark matter (SQM) hypothesis. However, the internal composition of these
compact objects is still largely studied.

It has been suggested that strange quark matter state may exist in the core
due to the high density at the center (several times of nuclear saturation den-
sity) (Bodmer, 1971; Witten, 1984; Farhi and Jaffe, 1984). Taking into account
the SQM hypothesis, the existence of a whole sequence of strange quark mat-
ter (SQM) objects, such as strange quark stars (Witten, 1984; Farhi and Jaffe,
1984; Alcock et al., 1986), strange quark dwarfs (Glendenning et al., 1995), and
strange quark planets (Glendenning et al., 1995; Horvath, 2012; Huang and Yu,
2017) were proposed. Even in Glendenning et al. (1995), SQM objects may be

1See Physical Constant in Appendix A
2Nuclear saturation density is 2.8× 1014 g/cm3
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1. Introduction 2

covered by a thin crust of normal hadronic matter, or may simply be bare SQM
cores. However, the common compact nature of strange stars and neutron stars
makes it difficult to discriminate them by current astronomical observations (Al-
cock et al., 1986). To get around this issue, some works were made to reveal
the difference between them, for example, they may have different mass–radius
relations (Witten, 1984; Glendenning et al., 1995), different rotation periods
(Friedman et al., 1989; Frieman and Olinto, 1989; Madsen, 1998), different cool-
ing rate (Pizzochero, 1991; Page and Applegate, 1992; Ma et al., 2002), different
gravitational wave features (Madsen, 1998; Jaranowski et al., 1998; Geng et al.,
2015), different maximum masses (Lai and Xu, 2009; Li et al., 2010; Shibata
et al., 2019), and so on. Nevertheless, the problem still remains unsolved. Tak-
ing this in mind, in this thesis, we pretend to approach this problem and give
an alternative to test SQM hypothesis in the context of planets-like objects and
compact objects.

The hypothesis of strange quark matter (SQM), i.e. matter consisting of
up, down, and strange quarks is absolutely stabler than hadronic matter has
been proposed by Bodmer (1971); Witten (1984); Terazawa (1979). In recent
years, many authors investigated how such matter would manifest in nature,
see for instance Madsen (1999); Weber (2005); Buballa (2005); Kurkela et al.
(2010). Possibilities included little quark lumps called strangelets3 (a few Fermi)
and large compact stars (∼ km) made entirely of strange quark matter (Alcock
et al., 1986; Baym and Chin, 1976; Haensel et al., 1986b,a). Particularly, the
authors Farhi and Jaffe (1984) and Berger and Jaffe (1987) calculated a mass
formula for strangelets, later this approach has been improved by Heiselberg
(1993); Heiselberg et al. (1993) and he found a more accurate mass formula con-
sidering the charge distribution that vary on the scale of the Debye screening
length. Furthermore, in Witten (1984); Alcock et al. (1986); Glendenning et al.
(1995); Haensel et al. (1986b,a); Kettner et al. (1995), the authors developed the
concept of strange quark stars, that is, objects consisting of strange matter cores
surrounded by nuclear crusts. They found a complete sequence of strange stars
that range from very compact members, with properties similar to those of neu-
tron stars to white dwarf-like objects, to planetary-like strange matter objects.
It was pointed out that the minimum-mass configuration in such sequence is
0.017M� (Glendenning et al., 1995; Kettner et al., 1995). On top of that, Alford

3The term strangelet is a hyperdiminutive of the English word “strange”



1. Introduction 3

et al. (2012) investigated dwarf-like objects that consist of a crystal of positively
charged strangelets in a neutralizing background of electrons, they named these
objects as strangelet dwarfs.

Encouraged by the works previously exposed above, we especially focused our
research on the following works: Alford et al. (2012) who performed a study on
strangelet dwarfs, which consist of a crystalline structure of strangelets in a sea
of electrons as well Heiselberg’s mass formula for strangelets (Heiselberg, 1993)
however, we center of attention in planet-like objects. Also, Alcock et al. (1986),
in which they considered the possibility for a strange star to maintain a crust of
normal matter, and Jaikumar et al. (2006) which considered the possibility of a
crust of strangelets embedded in a uniform electron background on the surface of
strange stars. In the work presented here, we follow Alcock et al. (1986); Alford
et al. (2012); Jaikumar et al. (2006) except, we center on planetary-like objects,
characterized by low pressure and, quark stars crusted by strangelets (Jaikumar
et al., 2006). Along these lines, to planetary-like objects proposed here, we study
their properties such as mass, radii, and possible orbital properties, on the other
hand, as to quark stars, we will explore the effects of strangelets crust on the
cooling analysis and the thermal relaxation of these quark stars. Our work is
the first in this type of analysis.

Therefore, our contribution is to provide a possible manifestation of strangelets
and how we could identify SQM objects. Thus, we present an alternative of
planet-like objects called strangelet crystal planets and study their main proper-
ties (Zapata and Negreiros, 2020). Similarly, explore strange stars with strangelet
crusts and quantify their thermal properties (Zapata, J. et al., 2022). We base
our thesis on the theoretical hypothesis of strange quark matter. Phenomenologi-
cally speaking, the connection between theses two objects studied in this research
is the behavior of strange quark matter at different densities. As in Glendenning
et al. (1995) where the authors determined all possible equilibrium sequences
of compact strange-matter stars with nuclear crusts, which range from massive
strange stars to strange white-dwarf-like objects (strange dwarfs), we argue a pos-
sible sequence of compact objects that consist a core of strange matter enveloped
within strangelet crystal planets matter. Specially, we focus on planetary-like
objects and quark stars with strangelets crust.
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This thesis is organized as follows: in chapter 2 we begin to study the founda-
tions of this thesis, that is, the strange quark matter hypothesis, the strangelets
and their mass formula, the possibility to have strangelet crusts on quark stars’
surfaces, and ends with the equation of state of strange quark matter. With
the foundations in place, in chapter 3 we will explore the possible existence of
strangelet crystal planets as well discuss their orbital properties. Afterward, in
Chap. 4 we will examine the cooling and the thermal relaxation of isolated quark
stars crusted by strangelet. We also analyzed quark stars crusted by ordinary
nuclear matter for comparison purposes. Finally, in Chap. 5 we will present our
conclusions and suggest possible future studies to be based on this research.



Chapter 2

Strange Quarks Matter

2.1 Introduction

It is well known that hadrons (protons and neutrons) are composed of a sub-
structure of particles called quarks. In fact, all hadrons can be understood as
a composition of quarks, three of which are needed to form baryons (for exam-
ple, the neutron is formed by the combination of one up and two down quarks).
Quarks are found in six flavors: up (u), down (d), strange (s), charm (c), top (t)
and bottom (b). Currently, quarks, along with leptons and bosons, are thought
of as fundamental or elementary particles.

In the astrophysical context, there are three categories of compact objects:
white dwarfs (WD), neutron stars (NS), and black holes (BH). White dwarfs
are theoretically formed from small and medium-mass stars (less than ∼ 8M�).
A typical WD is approximately as massive as the sun, yet only slightly larger
than Earth. This makes white dwarfs contain one of the densest forms of matter
(∼ 109 g/cm3). As for black holes, they constitute a region of space-time with
such a concentration of matter and energy that no particle (not even light) inside
the black hole can escape its gravitational force. Finally, neutron stars, which
are residues of massive stars (with masses greater than 8M�) that eject matter
in the supernova explosion process. Neutron stars have a radius on the order of
10 km and a mass of about 1.4M�. It makes neutron stars, the smallest and
densest currently known class of stellar objects (Glendenning, 2012). However,
according to model calculations, neutron stars are far from being composed of
only neutrons but may contain a large fraction of strangeness1–carrying hyperons

1Strangeness is a property of particles expressed as a quantum number, for describing decay
of particles in strong and electromagnetic interactions which occur in a short period of time.
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2. Strange Quarks Matter 6

which are possible in phase equilibrium with u, d, s–quark matter (Weber, 2017).
Nevertheless, if the cores of neutron star have high compressed matter, then
neutrons inside the star transforms into its deconfined phase, quark matter.
Indeed, there is the possibility that that ground state may be strange quark
matter, made up of u, d, s quarks, instead of iron. If it is possible, then it appears
likely that all neutron stars would have to be strange quark matter stars (Weber,
2017; Madsen, 1998). Quark stars are composed of quark matter. Such a state of
matter was conceived of soon after the realization that quarks, the constituents
of nucleons, are asymptotically free. At the extreme of asymptotic momentum
transfer, density, or temperature, quark are free of interaction. Under these
circumstances, the individuality of nucleons is lost, and the quarks of nuclear
matter are free to explore a much larger “colorless” region of space referred to
as quark matter.

Hence, in this chapter we present the main basis of our work that will be
used to develop this thesis, that is, the strange quark matter hypothesis, the
strangelets and their mass formula, the possibility of crystal structures made of
strangelets on the surfaces of quark stars, and the equation of state (EOS) for
strange quark matter.

2.2 Strange Quark Matter Hypothesis

Firstly, we consider the theoretical strange quark matter (SQM) hypothesis as
proposed by Bodmer (1971); Witten (1984) and Terazawa (1979). According to
this hypothesis, the true and absolute ground state of the strong interactions
is the deconfined state of quark matter consisting of an approximately equal
proportion of up, down and strange quarks. That is, strange matter may have an
energy per baryon that is less than that of nuclear matter. This is called strange
quark matter. In the following, we describe the possible absolute stability of
strange quark matter.

Experimentally, no quarks have been isolated, this leads to the concept that
quarks are characterized by their confinement inside the hadrons. A useful phe-
nomenological description of quarks in hadrons is provided by the MIT2 bag
model. For this model, the pressure P f of the individual quarks and leptons
contained in the bag is counterbalanced by the total external pressure in the

2MIT stands for Massachusetts Institute of Technology.
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bag, P +B, according to
P +B =

∑
f

P f , (2.1)

while the energy density of the quarks confined in the bag is given by

ε =
∑
f

εf +B. (2.2)

where εf are the contributions of the individual quarks to the total energy density
and, the quantity B denotes the bag constant3. The contributions of each quark
flavor to pressure, energy density, and baryonic number density are determined
by the thermodynamic potentials, from which one obtains

P f = γf
6π2

∫ kFf

0
dk

k4√
k2 +m2

f

, (2.3)

εf = γf
2π2

∫ kFf

0
dkk2

√
k2 +m2

f , (2.4)

ρf = γf
6π2k

3
Ff
. (2.5)

The quantity µf denotes the chemical potential of the flavor quark f , and mf

represents its mass. The phase space factor γf = 2(spin)× 3(color) = 6.

Let us consider massless quarks inside a confining bag at zero temperature.
For a massless quark flavor, f , the Fermi momentum, kFf

, equals the chemical
potential, µf (µ =

√
k2 +m2). The number densities are therefore given by

ρf = (µf )3

π2 , (2.6)

the energy densities by

εf = 3(µf )4

4π2 , (2.7)

and, the pressures given by

P f = (µf )4

4π2 = εf

3 . (2.8)

At zero external bag pressure, the sum of the quark pressures is balanced by the
3In fact, B is the energy cost per unit volume to keep the quarks in the bag.
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confining bag pressure, B, i.e.

ΣfP
f = B. (2.9)

This gives for the total energy density inside the bag

ε = Σf ε
f +B. (2.10)

The total baryon number density is

ρ = Σfρ
f/3. (2.11)

For a gas of massless u (charge +2
3e) and d (charge −1

3e) quarks electric charge
neutrality,

2
3ρ

u − 1
3ρ

d = 0, (2.12)

requires that ρd = 2ρu, or µ2 ≡ µu = µd/21/3. The corresponding 2-flavor quark
pressure then follows as

P2 ≡ P u + P d =
(
1 + 24/3

) µ4
2

4π2 = B. (2.13)

From the total energy density, ε2 = 3P2 + B = 4B, and the baryon number
density,

ρ2 = ρu + ρd

3 = µ3
2
π2 , (2.14)

one obtains for the energy per baryon of 2-flavor quark matter,(
E

A

)
2
≡ ε2
ρ2

= 4B
ρ2

= 934MeV ×B1/4
145 , (2.15)

where B1/4
145 ≡ B1/4/145 MeV. A value of 145 MeV is the lowest possible choice

for B1/4 (Weber, 2017).

On the other hand, a 3-flavor quark gas is electrically neutral for4,

ρu = ρd = ρs, (2.16)

that is, µ3 ≡ µu = µd = µs. For fixed bag constant, the 3-flavor quark gas should
exert the same pressure as the 2-flavor gas, i.e., P3 = P2. This implies for the

4strange quark (charge − 1
3e)
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chemical potentials

µ3 =
[

(1 + 24/3)
3

]1/4

µ2. (2.17)

Hence, the total baryon number in this case can be written as

ρ3 = µ3
3
π2 =

[
(1 + 24/3)

3

]3/4

ρ2. (2.18)

The energy per baryon is then given by(
E

A

)
3
≡ ε3
ρ3

= 4B
1.127ρ2

= 829MeV ×B1/4
145 , (2.19)

since ε3 = 3P3 + B = 4B = ε2. We thus see that the energy per baryon of
a massless non-interacting 3-flavor quark gas is of order 100 MeV per baryon,
lower than in 2-flavor quark matter. The difference arises from,

ρ2
ρ3

=
[ 3

(1 + 24/3)

]3/4
≈ 0.89, (2.20)

which reflects that the baryon number can be packed more densely into 3-flavor
quark matter (ρ3 > ρ2) due to the extra Fermi well accessible to the strange
quarks.

To compare, the energy per baryon in a free gas of neutrons is the neutron
mass, E/A = mn = 939.6 MeV. For a 56Fe nucleus, one has E/A = (56mN −
56.6 MeV )/56 ≈ 930 MeV, where mN denotes the nucleon mass. Thus, stability
of u,d,s-quark matter is absolutely stable relative to 56Fe that corresponds to
(E/A)3 < 930 MeV (Weber, 2017). If the strange matter hypothesis is true,
there could exist large pieces of stable SQM called strange quark stars (with the
baryon number A ∼ 1057) (Alcock et al., 1986; Baym and Chin, 1976) and, small
SQM nuggets (with A ≤ 107) often referred as strangelets (Farhi and Jaffe, 1984;
Berger and Jaffe, 1987, 1991; Madsen, 1993) or slets (Peng et al., 2006). Thus,
the basis throughout our work is the strange quark matter hypothesis. Next, we
will study strangelets and their mass formula.



2. Strange Quarks Matter 10

2.3 Strangelets: Mass Formula

As mentioned in the previous section, we assume the true ground state of matter
consists of a combination of up, down, and strange quarks known as “strange
quark matter” (SQM). Small nuggets of such matter are called “strangelets”.
Strangelets (dimensions of a few Fermis) have been investigated by Farhi and
Jaffe (1984); Berger and Jaffe (1991); Madsen (1993). They have calculated the
mass formula for strangelets and, in particular, they have derived the charge
Z and radii R of strangelets which are given in terms of the baryon number A
when the SQM is in β equilibrium. They did, however, make the assumption
that the strangelets are uniformly charged, i.e., the chemical potential is not
spatially varying within the quark matter strangelet. Nevertheless, Heiselberg
(1993) showed up that this is inconsistent, since the electrostatic potential will
then be increasing towards the center and the quarks will migrate due to the
electric field. He took into account the screening effect5 in strangelets and found
a more refined mass formula for large droplets with baryon number A . 105.

In general, a strangelet with radius R will have charge distributions that
vary on the scale of the Debye screening length λD6. When µi ∼ µ the screening
length is λD ' 7/µ, almost independent of the strange quark mass. Taking a
typical value for the quark chemical (µ ' mN/3 ' 300 MeV, mN is the nucleon
mass), one find λD ' 5 fm (Heiselberg, 1993). Thus, we follow Heiselberg (1993)
where the screening will be taken into account and the spatially varying chemical
and electrostatic potentials will be found in Heiselberg (1993). Consequently,
the correct mass formula, radii, and charge are calculated. Quark screening
will reduce the strangelet charge and hence this scenario is not energetically
favored for strangelets of sizes larger than the quark screening length as shown
in Heiselberg (1993). Heiselberg (1993) found that if the characteristic spacial
scales of the structures are less than about 10 fm for the nuclear phase, and less
than ∼ 5 fm for the quark phase, screening effects will be unimportant, and the
electron density will be essentially uniform. In the opposite case, when screening

5Screening effect is also known as the shielding effect. The phenomenon which occurs when
the nucleus reduces its force of attraction on the valence electrons due to the presence of
electrons in the inner-shell. This is known as a screening effect. Outer electrons experience
attraction from the nucleus and repulsion from the inner electrons.

6The Debye length (also called Debye radius), is a measure of a charge carrier’s net electro-
static effect and how far its electrostatic effect persists. With each Debye length, the charges
are increasingly electrically screened, and the electric potential decreases (Shohet, 2003).
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lengths are short compared with spatial scales, the total charge densities in bulk7

nuclear matter and quark matter will both vanish. For the case when screening
lengths are much larger than the spatial scale structures. This later condition
implies that the electron density is uniform everywhere, and all other particle
densities are uniform within a given phase (Heiselberg, 1993).

We implement the Heiselberg’s improved mass formula for strangelets as sug-
gested in Heiselberg (1993). The MIT bag model is a widely used approximation
to describe the bulk properties of quark matter. For simplicity αc = 08, this
implies that: the chemical potentials are just the Fermi energies, the effects of
gluons on the dispersion relation for the quarks can be neglected, as well as
the Landau-Fermi-liquid interactions among quasi-particles. Only strangelets of
a size less than typical atomic distances will be studied in order to avoid the
presence of electrons in the bulk quark matter; i.e., we can assume that µe ' 0.
This restricts the strangelet radial size to R . aB/Z (Z is the strangelet charge)
and, an upper limit on the baryon mass number A = (4π/3)R3nB, where nB is
the baryon density. The charge Z is increasing with strangelet size and depends
strongly on the strange quark mass ms. In addiction, the charge as a function
of mass number will be calculated for different values for ms. For small ms the
charge density and therefore Z, is very small because the charge of the u quark
(+2e/3) is almost balanced by the charges of d and s quarks (−e/3). Therefore,
A can be large without electrons being present in the strangelets. For large ms,
the condition A . 105 must be satisfied in order to avoid electrons in the bulk
quark matter.

Heiselberg found that the total charge Z of the strangelet is Heiselberg (1993)

Z = 1
α
R∆µ

(
1− tanh(RqD)

RqD

)
, (2.21)

where R = aA1/3/µ0 with a ' 1.4 and µ0 ' 300 MeV; α ≈ 1/137; qD = λ−1
D

where λD ' 7/µ is the Debye screening length (when µi ∼ µ, where i = u, d, s).
Recall that we can safely adopt µ ' µ0. In addition, ∆µ is defined by

∆µ =

m
2
s/µ, ms � µ,

µ/5, ms ≥ µ.

7Consider a body which has a finite volume and surface area. Bulk means, the region of a
body in which the physical properties of the body are not influenced by its surface area.

8αc is the strong interaction coupling constant.
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With these equations above, we can find Z(A). Heiselberg also found the total
energy per quark given by

E

N
' µ0 + ES + EC

N0
(2.22)

where N is the number of quarks in the strangelet; N0 = n(µ0)V , with V =
(4π/3)R3; ES = 4πσR2 is the surface energy (σ is the surface tension constant
here); and EC is the Coulomb energy of the strangelet given by

EC = ∆µ2R

2α
[
1− 3

2
tanh(RqD)

RqD
+ 1

2cosh
−2(RqD)

]
, (2.23)

Thus, the final mass formula described by Heiselberg can be written as
(Heiselberg, 1993):

E

N
= µ0 + EC + 4πσR2

4πR3(n/3) , (2.24)

where µ0 = µd = µs = µu due to β equilibrium, R is the strangelet radius, σ is
the surface tension, n is the quark density, and Ec is the Coulomb energy. Note
that

E

N
= E

3A, (2.25)

and the quark number density is9

n(µ0) = µ3
0
π2

3
(
1− m2

s

2µ2
0

)
, ms � µ0,

2, ms ≥ µ0.

As we will see in chapter 3, we are interested in crystalline strange matter, thus
we need to restrict our study to the low-surface-tension regime. As discussed
in Alford et al. (2012), the critical value for the surface tension that allows
the formation of a strangelet crystal structure is ∼ 1 − 10 MeV fm−2, which
is appropriate for the scenario we are interested in. Thus, we use σ = 0.6
MeV.fm−2. We can compute the properties of some strangelets in the Table 2.3.
Note that we have also calculated strangelet properties for σ = 0.2 − 1.0 MeV
fm−2, which did not significantly change the strangelet energy. By providing
different values for A and using Eq. (2.21) to calculate the charges of different
strangelets, whose properties we present in Table 2.3. The strangelets that we use

9Here we will use ms = 150 MeV.
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in our work are appropriate to describe the low-pressure planetary-like objects
that we are interested in.

Table 2.1: Properties of some strangelets from equation (2.24) for different
constant surface tension values σ (in MeV fm−2).

Label A Z E(A,Z) (106 MeV)
σ = 0.2 σ = 0.6 σ = 1.0

Stra1 5× 103 581 4.5176 4.5189 4.5201
Stra2 1× 104 793 9.0258 9.0277 9.0297
Stra3 5× 104 1527 45.055 45.060 45.066
Stra4 1× 105 1986 90.073 90.082 90.091

As expected, strangelets with higher A have larger masses, furthermore, the
Z/A ratio is small relative to ordinary nuclei, as strangelets are less charged
(due to the presence of the negatively charged strange quark). In this context,
following Heiselberg (1993), in chapter 3 we explore the possibility of planet-like
objects made up of nuggets of SQM arranged in a crystal lattice, considering
Alford et al. (2012). Their orbital properties are investigated and their possi-
ble detection. Next, we consider the possibility that quark stars would have a
strangelets crust.

2.4 Possibles Strangelet Crusts on Quarks Stars’ Sur-
faces

The possibility that strange star surfaces have crusts was pointed out by Alcock
et al. (1986); Haensel et al. (1986a). Additionally, it has been pointed out that
under certain conditions, the surface of a strange star may be crusted with a
crystal of charged strangelets in a neutralizing background of electrons (Jaikumar
et al., 2006; Alford et al., 2006). They investigated the possibility for realizing a
heterogeneous crust (nuggets of strange quark matter + electrons). This phase
resembles the mixed phase of nuclei and electrons in the crusts of normal neutron
stars, where electrons contribute to the pressure while quarks contribute to the
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energy density (Jaikumar et al., 2006). Later, a more careful calculation of the
properties of a strangelet crystal crust was made by Alford and Eby (2008). In
the face of this, here, we consider the possibility that quark stars may be crusted
with strangelets as proposed by Jaikumar et al. (2006); Alford et al. (2006).

The first proposal for a crust on the strange stars was made in Alcock et al.
(1986) where quark stars could have a tiny nuclear crust suspended a few hundred
Fermis above the quark star, supported by large electric fields near the surface.
Besides, in Haensel et al. (1986a) mentioned the possibility of crust nuggets, not
even a qualitative study of its consequences exists. It was Jaikumar et al. (2006)
who developed the first quantitative study of a crust with strangelets. They
analyzed the surface region of strange stars and found that heterogeneous (solid)
crust made of strange nuggets and electrons may be possible. To prove that, they
proposed that a heterogeneous mixed phase with nuggets and electrons may be
favored if the surface and Coulomb energy costs are small. Deeper in the crust,
that mixed phase10 is characterized by voids filled by an electron gas embedded
in quark matter. This mixed phase resembles the mixed phase of nuclei and
electrons in the crust of normal neutron stars where, electrons contribute to the
pressure while quarks contribute to the energy density.

Assuming that the crust is in a non-superconducting, globally neutral mixed
phase of strangelets and electrons, we follow the configuration described in Jaiku-
mar et al. (2006) which has stable strangelets coexisting with electrons.

Hence, the pressure is only due to electrons by

Pcrust = µ̃4
e

12π2 , µ̃e = nQ
χQ

(
1−

√
1− ξ

)
, ξ = 2P0χQ

n2
Q

, (2.26)

where
nQ = m2

sµq
2π2 , (2.27)

and
χQ =

2µ2
q

π2 , (2.28)

represent the quark charge and quark susceptibility, respectively, and P0 is the
pressure of electron-free quark phase. µq is the quark chemical potential.

10At low temperature, the mixed phase is a solid
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While the energy density is due to the nuggets, and is given by,

ε = xε0, (2.29)

where x is the volume fraction of the quark phase given by

x = µ̃3
e

3π2nQ

(
1− χQµ̃e

nQ

)−1

, (2.30)

and ε0 denotes the energy density inside nuggets (see Jaikumar et al. (2006)
for more details of the terms). In this first study, we have chosen this model
of strangelets crust due to its simplicity. To ascertain if strange nuggets are
indeed stable with respect to fusion at low pressure requires a proper account of
Debye screening and curvature energy. If theses are small enough, then almost
all strange stars should have a crust and strangelets at zero pressure should have
a finite stable size (Jaikumar et al., 2006; Alford et al., 2006; Alford and Eby,
2008). We explore in chapter 4 the consequences of the presence of a crust of
strangelets on the cooling calculations and thermal relaxation of those quark
stars.

2.5 The Equation of State for Strange Quark Matter

Finally, here we study the equation of state (EOS) for strange quark matter,
that is, the relationship between pressure and energy density. The EOS is fun-
damental to determining the macroscopic properties of stars, such as radii and
masses. The most prominent models used to describe strange quark matter is the
model known as MIT bag model (Farhi and Jaffe, 1984; Chodos et al., 1974b,a;
Weber et al., 2009). In this thesis, we will describe quark matter using the MIT
bag model for massive strange quarks and with first order corrections in αc (the
strong interaction coupling constant).

We describe strange quark matter as a degenerate gas of fermions composed
of up, down and strange quarks, along with electrons. The chemical equilibrium
is maintained by weak-interaction processes:

d↔ u+ e+ ν̄e,

s↔ u+ e+ ν̄e,



2. Strange Quarks Matter 16

s+ u↔ u+ d.

From these relations, it follows that at equilibrium the chemical potential obey:

µd = µs ≡ µ, (2.31)

µu + µe ≡ µ, (2.32)

we set µi, for i = u, d, s and e as the chemical potential for the up, down and
strange quarks and, the electron, respectively. Equations (2.31)- (2.32) imply
that there are only two independent chemical potentials (µs and, µe for instance).
On the other hand, the neutrinos play no role for the composition of equation of
state (they will be very important later) and therefore are ignored for now.

The Landau potential is written as

Ω = U − TS − µN, (2.33)

where U is the internal energy density, T is the temperature, S is the entropy
density, µ is the chemical potential, and N is the particle density. Here, we
consider first order correction in αc, which is the coupling constant for the quark-
quark interaction. We also consider a finite mass for the strange quark (ms).
The quarks and electron Landau potential with first order corrections in αc and
for massive s quarks are given by (Farhi and Jaffe, 1984)

Ωu = − µ4
u

4π2

(
1− 2αc

π

)
, (2.34)

Ωd = − µ4
d

4π2

(
1− 2αc

π

)
, (2.35)

Ωe = − µ4
e

12π2 , (2.36)
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Ωs = − 1
4π2

{
µs

√
µ2
s −m2

s

(
µ2
s −

5
2m

2
s

)
+ 3

2m
4
s ln

µs +
√
µ2

2 −m2
2

m2


− 2αc

π

[
3
(
µs

√
µ2
s −m2

s −m2
s ln

(
µs +

√
µ2
s −m2

s

ms

))2

− 2(µ2
s −m2

s)2

+ 3m4
s ln2 ms

µs
+ 6 ln Σ

µs

(
µsm

2
s

√
µ2
s −m2

s −m4
s ln

(
µs +

√
µ2
s −m2

s

ms

))]}
.

(2.37)

In equation (2.37) ms is the strange quark mass and Σ is a renormalization
constant, whose value should be of the typical order of the chemical potentials.
In this study, we set Σ = 300 MeV.

The number density of each species is given by

ρi = −∂Ωi

∂µi
, (2.38)

with i = u, d, s, e. As is usually assumed to be the case for a bulk system, charge
neutrality must be imposed. The charge neutrality equation is given by

∑
i=u,d,s,e

qiρi = 2
3nu −

1
3nd −

1
3ns − ne = 0, (2.39)

combining equation (2.39) with equations (2.31) and (2.32) leaves only one inde-
pendent chemical potential, which we chose to be µ. In the MIT bag model, the
particles are assumed to exist inside a bag. The energy density of the fermions
needs to be complemented by the energy density associated with the bag, in this
way the expression for the energy density is given by

ε =
∑

i=u,d,s,e
(Ωi + µiρi) +B, (2.40)

where B is the bag constant. In the same way, the pressure of fermions is
counterbalanced by the pressure of the bag, and thus the expression for the
pressure is

p = −B −
∑

i=u,d,s,e
Ωi (2.41)

In the limit, when αc → 0 and ms → 0, we obtain the simple analytical equation
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of state given by
p = ε− 4B

3 (2.42)

It is important to mention that more sophisticated quark models have been
proposed in Nambu and Jona-Lasinio (1961a,b); Fukushima (2003, 2004); Ratti
et al. (2006) (and reference therein) as well there has been great improvement
in the bag model, accomplished by modern perturbation calculations, see for
instance Fraga et al. (2014). We note, however, that such improved and more
sophisticated models lead to qualitatively similar compositions, thus it is unlikely
that they would strongly modify the thermal evolution, which is the focus of
chapter 4.

2.6 Summary

In this chapter, we have presented our basis of this thesis, that is, the strange
quark matter (SQM) hypothesis, the strangelets mass formula and the possibility
of strangelets crust on the surface of quark stars, and the equation of state for
strange quark matter. According to strange quark matter (SQM) hypothesis,
strange matter which contains, roughly equal numbers of up, down and strange
quarks may be the ground state of the strong interaction (Bodmer, 1971; Witten,
1984; Terazawa, 1979), that is, strange quark matter may have an energy per
baryon that is less than that of nuclear matter. If true, strange matter could
exist from small lumps of strange matter called strangelets to large compact
stars made entirely of strange matter. In the next chapter, we assume the SQM
hypothesis and explore the possible existence of planet-like objects made of a
crystal–strangelets structure following Alford et al. (2012) and Heiselberg (1993),
as well as to discuss their orbital properties, we call them strangelet crystal
planets (Zapata and Negreiros, 2020). Next, in chapter 4, we focus our attention
by studying quark stars surrounded by a crust comprised of strangelets embedded
in a uniform electron background following Alcock et al. (1986), Jaikumar et al.
(2006), and the strange quark matter equation of state (section 2.5). We will
also include their thermal properties and compare them with quark stars crusted
by ordinary nuclear matter (Zapata, J. et al., 2022). We can argue a possible
sequence of compact objects that consist a core of strange matter enveloped
within strangelet crystal planets matter. Specially, we focus on planetary-like
objects and quark stars with strangelets crust.



Chapter 3

Strangelets Crystal Planets

3.1 Introduction

We begin this chapter considering the possibility that strange quark matter
(SQM) may manifest in the form of strangelet crystal planets (Zapata and Ne-
greiros, 2020). These planet-like objects are made up of nuggets of SQM, orga-
nized in a crystalline structure. We assume the so-called strange matter (SQM)
hypothesis proposed by Bodmer (1971); Witten (1984); Terazawa (1979). In this
context, we analyze planets made up entirely of strangelets arranged in a crystal
lattice (Heiselberg, 1993; Alford et al., 2012). Furthermore, we proposed that
a solar system with a host compact star may be orbited by strangelet crystal
planets. Under this assumption, we calculate the relevant quantities that could
potentially be observable, such as the planetary tidal disruption radius1, and
the gravitational-wave signals that may arise from potential star-planet merger
events (Huang and Yu, 2017; Geng et al., 2015). Our results, under hypothesis,
shown that strangelet crystal planets2 could potentially be used as an indicator
for the existence of SQM (Zapata and Negreiros, 2020).

Under the SQM hypothesis, compact stars can be considered strange quark
stars, self-bound objects composed of SQM, as opposed to traditional, gravita-
tionally bound neutron stars (Witten, 1984; Alcock et al., 1986; Haensel et al.,
1986b). Furthermore, in Witten (1984); Alcock et al. (1986); Glendenning et al.
(1995); Haensel et al. (1986b); Kettner et al. (1995), the authors further devel-
oped the concept of strange quark stars, that is, objects consisting of a SQM

1Tidal disruption radius rtd is the critical distance at which the tidal force is exactly balanced
by the self-gravity of the planet. If the distance is smaller than rtd, the tidal force will dominate
and the planet will be completely broken up.

2The work of this chapter was published in Zapata and Negreiros (2020).
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core surrounded by nuclear crust. They found a complete sequence of strange
stars that range from very compact members, with properties similar to those
of neutron stars, to white dwarfs-like objects (strange dwarfs), to planetary-like
strange matter objects. It was pointed out that the minimum-mass configuration
in such a sequence is ∼ 0.017M�, and that such values depend on the chosen
value of inner crust density (Glendenning et al., 1995; Kettner et al., 1995). If
abundant enough in our Galaxy, such low-mass strange stars, whose masses and
radii resemble those of ordinary planets, could be seen by gravitational microlens-
ing searches (Weber et al., 1996). Furthermore, Alford et al. (2012) performed a
study on strangelet dwarfs, which consist of a crystalline structure of strangelets
in a sea of electrons. In their work, they showed that if the surface tension of the
interface between strange matter and the vacuum is less than a critical value,
there is, at least, one stable branch in the mass-radius relation for strange stars.

In this chapter, we follow the work of Alford et al. (2012), except we focus on
planetary objects characterized by low pressures. In addition, recently there have
been great advances in the detection of exoplanets with a wealth of data available
(Perryman, 2000; Schneider et al., 2011; Armstrong et al., 2016; Borucki, 2016).
Recently, Huang and Yu (2017) and Geng et al. (2015) proposed the use of such
data to search for strange quark matter (SQM) planets (in the context defined
by Kettner et al. (1995); Glendenning et al. (1995)) by analyzing two possible
observational signatures: the tidal disruption radius and the gravitational–waves
(GWs) emission from a binary system composed of a host compact star and a
strange planet. They identified candidates of SQM planets using the following
specifications: very small orbital period (< 6100 s), and orbital radius smaller
than 5.6 × 1010 cm, and possible strong GW emission by strange planets with
masses > 10−5M�. The idea is that if any of these planets are, in fact, strange
planets, then due to their strange matter properties (increased compactness, for
instance) their observational signatures should be different. In this first chapter,
we also follow in the footsteps of Huang and Yu (2017); Geng et al. (2015) by
searching for signatures of SQM in the observed data of exoplanets. We consider,
however, a somewhat more sophisticated model for strange quark planets, one
that resembles the actual structure of a planet. We recall that in the original
proposal, strange planets were in fact very low-mass strange stars (the order
of a few Jupiter masses), with a small seed of strange matter in its core and
a relatively large nuclear crust extending all the way to the surface. In our
model, as will become clear, we consider the possibility of strangelets forming a
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crystalline structure such that, as in a white dwarf, the objects are supported
against gravitational collapse by electron degeneracy pressure. Differing from
a white dwarf (or the crust of neutron stars), in our proposed model instead
of ions we have strangelets. Such objects could be formed by the same process
that hypothetically generated the compact star host (in a supernova, or stellar
merger event, for instance), with the high-density matter giving birth to the
high-density strange quark star (composed of homogeneous strange matter) and
lower-density lumps, giving rise to crystalline strange planets.

This chapter is divided as follows: first, we will describe the microscopic
model for strangelet crystal planets made up strangelets following the section
2.3 and then, we calculate the equation of state (EOS) of strangelet crystal
matter. Later, the EOS allows us to compute the structure of the strangelet
crystal planets by imposing the appropriate hydrostatic equilibrium conditions
in such manner, we get the sequences of planet-like objects that we call strangelet
crystal planets (SCPs). Next, we investigate the orbital properties of the SCPs
and discuss their possible observational implications. Finally, we argue their
possible applications to sub-stellar objects.

3.2 Microscopic Model: Equation of State

Here, we follow Glendenning (2012) to do a simple calculation of the equation of
state of planet-like objects consisting of a single nuclear species. Only, instead of
a single nuclear species, we consider strangelets as described in the section 2.3.
Except at the very lowest densities, we can consider the lowest approximation,
that is, a fully ionized strangelets immersed in a background of uniform den-
sity electrons. The positively strangelet charged will arrange themselves into a
lattice with the strangelet at the lattice sites to minimize the Coulomb energy
(Wigner–Seitz approximation, see the Fig. 3.1); that is, by considering a sphere
surrounding each nucleus and touching the neighboring spheres (there is no in-
teraction between spheres). Each sphere containing a strangelet and its electrons
will be neutral.

For one of them, most of the mass is contributed by strangelets, whereas
most of the pressure by the electrons (Glendenning, 2012). The energy in each
sphere consists of the strangelet mass, the electron mass and kinetic energy, the
energy of Coulomb repulsion among the electrons, and the attractive Coulomb
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Figure 3.1: Illustration of Wigner–Seitz approximation. In this graphic repre-
sentation, we have a crystal structure of a strangelet E(A,Z). At the center of
each sphere is the strangelets surrounded by an electron cloud. R is the cell’s
radius.

energy between the electron sea and the strangelets.

The Coulomb energy needed to assemble the electrons into the cell of radius
R is known. We need to integrate the interaction between the charge within
radius r and the charge in a shell at r of thickness dr (Glendenning, 2012),

Eself = e2
∫ R

0

1
r

(
4πr3

3 ρe

)(
4πr2drρe

)
, (3.1)

where the electron number density is given by ρe = Z/V , and

V = 4πR3

3 , (3.2)

with Z the atomic number of the strangelets and therefore the electron number
per cell. The electron gas will have an attractive interaction with the strangelet
at the center of the cell,

Eint = −
∫ 1
r

(Ze)(4πr2dreρe) = −3(Ze)2

2R (3.3)
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Thus, the total Coulomb energy of the cell is

Elat = Eself + Eint = −9(Ze)2

10R . (3.4)

Using Z = V ρe and V = 4πR3/3, we have the lattice contribution to the pressure,

Plat = −∂Elat
∂V

= − 3
10

(4π
3

)1/3
Z2/3e2ρ4/3

e . (3.5)

We may choose a baryon density ρ in which case the cell radius R is given by

A = 4πR3ρ

3 , (3.6)

where A is the baryon mass number of the strangelets and Z is the strangelet
charge. For a chosen density ρ, the electron density is

ρe =
(
Z

A

)
ρ, (3.7)

and, we treat the free electrons as a degenerate Fermi gas with maximum wave
number

ke = (3π2ρe)1/3. (3.8)

Denoting the corresponding energy density and pressure by εe(ke) and Pe(ke),
respectively, given in Appendix B. The energy density is

ε = Etotal
V

, (3.9)

with V = A/ρ. So the energy density and pressure are

ε(ρ) = ρ

A

(
E(A,Z)− Zme −

9(Ze)2

10R

)
+ εe(ke), (3.10)

P (ρ) = Pe(ke)−
3
10

(4π
3

)1/3
Z2/3e2ρ4/3

e , (3.11)

where E(A,Z) is the strangelet mass, e is the charge of electrons, and εe(ke) and
Pe(ke) are the energy density and pressure of electrons, respectively (according to
equations (B.1) from Appendix B). This equation of state cannot be valid above
the density at which high-energy electrons are capture (neutronization processes
by inverse beta decay). At higher densities, the lattice contribution to pressure
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become important. On the other hand, to estimate the lower density range at
which the approximation of fully ionized nuclei is valid, we use the limit non–
relativistic electrons from Glendenning (2012), this predicts that P = 0 when
the baryon densities should satisfy

ρ >
3Z4

2π
1

r3
Bohr

or energy densities
ε > 5.4Z4 (g.cm−3) (3.12)

where rBohr = ~2/mee
2 is the Bohr radius of the inner orbit of the atomic species.

Note that for the low-pressure regime we consider here, the energy density is
mostly dominated by the E(A,Z) contribution. The negative term on equation
(3.11) is the lattice contribution to the total pressure. Furthermore, the third
term on equation (3.10) represents electrostatic correction to the total energy
density3. Recalling that strangelets were discussed in the section 2.3 and their
properties are in table 2.3. Thus, we adopt here the Wigner–Seitz approximation,
much like in Alford et al. (2012) and then, we consider a crystal structure of
periodic spheres in which each cell of radii R consists of a strangelet residing at
its center, surrounded by an electronic cloud (see Fig. 3.1). Each cell contains the
amount of electrons needed to make it electrically neutral (Glendenning, 2012;
Shapiro and Teukolsky, 2008). As we have mentioned before, we are interested
in planetary objects characterized by low pressure/density, thus the constant
electron density approximation is appropriate (Alford et al., 2012), and we ignore
the effect of pressure when calculating the strangelet properties, in particular
Z(A).

The EOS of such matter is represented in Figure 3.2 from Eqs. (3.10)-(3.11),
where we have used the E(A,Z) for strangelets masses from table 2.3. In that fig-
ure, we show the pressure as a function of energy density for the EOS associated
with each of the studied strangelets.

As we can note in that figure, the crystalline matter proposed for planet-like
objects have relatively low densities and pressure (in particular when compared to
other works dealing with SQM (Alford et al., 2012)). We might intuitively think
that larger strangelet masses correspond to massive objects, but we found the
opposite. As we can observe in that figure, less massive strangelets (as the stra1

3Note that as in Heiselberg (1993), we are using e2 = α, the fine structure constant.
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Figure 3.2: Equations of state for strangelet crystal planets made of different
strangelet labeled as “Stra” from Table 2.3 and Eqs. (3.10)-(3.11).

label) are associated with “stiffer” equation of state, i.e., higher pressures at the
same energy density. This can be understood from an analysis of the Z/A ratio
that appears in equation (3.7) for electron density. Fixing the baryon density, ρ,
as A increases, the number of electrons that contribute to the pressure decreases,
so we have a reduction in pressure. As a consequence, massive strangelets (larger
A) correspond to lower-mass planetary objects. Whereas, strangelets with less A
correspond to objects of greater mass. This will be evident in the next section.
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3.3 Strangelet Crystal Planets

3.3.1 Tolman–Oppenheimer–Volkoff Equations

With the complete description of the microscopic physics (last section), we now
proceed to determine the macroscopic properties of self-gravitating objects. For
this study we use the structure equations of a non-rotating, static spherically
symmetric objects4.

The metric of such an object has the form (Weber, 2017)

ds2 = −e2Φ(r)dt2 + e2Λ(r)dr2 + r2dΩ2 (3.13)

where Φ(r) and Λ(r) are the radially metric functions and, dΩ is given by

dΩ2 = dθ2 + sin2 θdφ2. (3.14)

With the aid of Einstein’s equation and assuming that the matter is a perfect
fluid5, one gets the Tolman-Oppenheimer-Volkoff (TOV) equation (Oppenheimer
and Volkoff, 1939; Tolman, 1939), which represents the hydrostatic equilibrium
equation of a spherical body given by

dP

dr
= − [ε(r) + p(r)][m(r) + 4πr3p(r)]

r(r − 2m(r)) , (3.15)

with the central pressure P (r = 0) = P (εc) and εc as the star’s central mass
energy density. The quantities Φ(r) and Λ(r) are given by

e−2Λ(r) = 1− 2m(r)
r

(3.16)

and
dΦ(r)
dr

= 4πr3P +m(r)
r2(1− 2m(r)/r) . (3.17)

Equation (3.15) is fundamental to the description of the structure of a hy-
drostatically stable stellar configuration treated in the framework of Einstein’s
theory, which needs to be solved in conjunction with the mass continuity equa-

4see Appendix C
5A perfect fluid in relativity is defined as one that has neither viscosities nor heat conduction

in the frame of reference that moves along with the fluid.
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tion,
dm(r)
dr

= 4πr2ε(r) (3.18)

for a particular equation of state, P = P (ε). In the classical limit one has
P << ε, P << m, and 2m/r << 1 in (3.15), which leads to a pressure gradient
given by

dP

dr
= −ε(r)m(r)

r2 (3.19)

This relation revels that Einstein’s theory increases (the magnitude of) the
pressure gradient over what one obtains from the Newtonian treatment, which
is quite crucial for stellar bodies.

Let us see how this comes out when integrating (3.15). First, one has to
specify a model for the equation of state in the form P (ε) and a value of central
density εc. This determines Pc while dP/dr and m vanish at r = 0. Equation
(3.18) then determines m for an infinitesimal increase in r. In this way, the
computation of P , ε, andm for successively increasing values of r goes on until we
arrive at P = 0, which is identified as the radius, R, of the star, and the value m
there is the star’s total mass–energy, M . The metric function Φ can be obtained
by simultaneously integrating (3.17) too. The iteration of equation (3.15) is
repeated for different values of εc, leading each time to a particular relativistic
stellar model, whose structure functions m, ε, P , ρ (and Φ, if desired) satisfy
the equations of stellar structure. Notice that for any fixed choice of equation
of state, P (ε) or P = P (ρ), ε = ε(ρ), the stellar models form a one-parameter
sequence (parameter εc). Once the central density has been specified, the model
is determined uniquely. In the next section, we will solve the TOV’s equation to
find the sequence of planets-like objects.

3.3.2 Sequence of Strangelet Crystal Planets

We now employ the EOS developed in Section 3.2 for a strangelet crystal con-
figuration to obtain the macroscopic properties of such objects. Since we are
considering a solid, fully crystallized object, we found it appropriate to name
them strangelet crystal planets, to differentiate them from previous models of
strange planets (in which SQM is not crystallized, but present in bulk in a small
region of the object’s core (Alcock et al., 1986; Glendenning et al., 1995; Kettner
et al., 1995; Alcock and Olinto, 1988)).
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Figure 3.3: Sequence of the strangelet crystal planets for different strangelets
from Table 2.3.

We are interested in the macroscopic properties of the planets, namely mass
and radii. This is possible from the solution of TOV’s equations of general rela-
tivity and the EOS given by Eqs (3.10)-(3.11). This system of differential equa-
tions is numerically integrated for a given central energy density εc from r = 0
to r = R, where the pressure vanishes, P (R) = 0, which defines the planet’s sur-
face. Hence, we obtain the radius R and the gravitational mass M of the planet.
The family of strangelet crystal planets is shown in Figure 3.3 which shows the
gravitational mass as a function of radius until each family reaches the maximum
mass. Each point in that figure is a unique planet structure with a particular
mass and radius. Given the planet’s low mass and their planetary nature, the
mass is given in Jupiter’s mass units. The results of that figure show that, as
expected, a stiffer EOS leads to planetary sequences with higher maximum mass.
On the other hand, lower-mass planets associated with smaller central densities,
the mass is proportional to R3, which typical for planetary objects because they
are mostly composed of incompressible matter. An interesting result is that, as
we had mentioned, contrary to what one would expect, crystal planets made of
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heavier strangelets lead to a lower maximum mass for planets. Furthermore, for
a given mass, planets made of lighter strangelets are larger, which is expected.
The reason for such behavior has already been discussed: heavier strangelets
have a smaller Z/A ratio, thus they have a less dense electron gas surrounding
them, which yields less pressure and hence lower masses. The properties for the
maximum-mass of the strangelet crystal planets families found in our study are
shown in Table 3.3.2.

Table 3.1: Properties of maximum mass strangelet crystal planets for each
strangelet studied. MJ is Jupiter’s mass (MJ ∼ 10−3M�). ε is the average
density, rtd is the tidal disruption, Porb is the orbital period and, h is the

gravitational waves’ amplitude (see the next section).

Stra Mmax(MJ) R(km) ε (g/cm3) rtd (cm) Porb (ms) h
1 48.88 98 2.4× 1010 3.9× 107 110 3.0× 10−21

2 19.29 55 5.3× 1010 2.9× 107 73.9 1.5× 10−21

3 1.51 6.9 2.1× 1012 8.6× 106 11.7 4.2× 10−22

4 0.38 4.25 2.2× 1012 8.4× 106 11.3 1.1× 10−22

3.4 Orbital Properties of Strangelet Crystal Planets

Here, we follow in the footsteps of Huang and Yu (2017) and Geng et al. (2015)
and determine the relevant properties associated with strangelet crystal planets.
The first possibility that we explore is the orbit of exoplanets. Since strange
planets are more compact, they can survive in closer orbits, where traditional
hadronic planets would be subject to tidal disruptions. When a planet orbits
around its host star, the tidal force tends to tear the planet apart, but it can be
resisted by the self-gravity of the planet when the two objects are far from each
other (Gu et al., 2003). The critical distance, i.e., the so-called tidal disruption
radius (rtd) at which the tidal force6 is exactly balanced by the self-gravity of

6Tidal force, by technical definition, is the differential force of gravity which arises because
the force exerted on one body by another is not constant across the diameter in that the side
which is the nearest to the second body is subject to more gravitational force compared to the
side farther away. If a body is rigid or the complete opposite – flimsy, tidal forces can tear the
body in half.



3. Strangelets Crystal Planets 30

the planet, is defined as (Hills, 1975)

rtd ≈
(6M?

πε

)1/3
, (3.20)

where M? is the mass of the central host star and, ε is the average density of the
planet. If the distance is smaller than rtd, the tidal force will dominate and the
planet will be completely broken up. Eq. (3.20) can be conveniently rewritten,
as

rtd ≈ 1.5× 106
(

M?

1.4M�

)1/3 ( ε

4× 1014 g cm−3

)−1/3
cm. (3.21)

One can also determine the period associated with orbits at the tidal disruption
radius. From the Kepler’s law7, the radius and period of the orbit are related
by (Huang and Yu, 2017)

r3

P 2
orb

≈ GM?

4π2.
(3.22)

If we take ε = 30 g.cm−3 and M? = 1.4M�, the tidal disruption and the orbital
period will be: ∼ 5.6 × 1010 cm and ∼ 6100 s, respectively. On the other
hand, for strange planets, with typical densities ∼ 4× 1014 g.cm−3, we will have
∼ 1.5×106 cm as well as ultra-short period Porb ∼ 0.845 ms. These results show
us a possible way to identify SQM planets: if the tidal disruption and orbital
period is significantly less than ∼ 5.6× 1010 cm and ∼ 6100 s, respectively, so it
must be a strange planet (Huang and Yu, 2017).

We can apply this analyses to our model. The results are shown in Table 3.3.2
where we have obtained the tidal disruption, rtd, and the orbital period, Porb,
from Eqs. (3.21) and (3.22), respectively, using M? = 1.4M�. In the table, M is
the total mass of the planet, R is the radius, ε = mass/volume is the average
density, rtd is the tidal disruption radius, and Porb is the orbital period. We
note that the tidal disruption and the rotation periods of these planets are, as
expected, much smaller than those of ordinary planets (5.6×1010 cm; 6100 s). In
addition, we see that their densities are much higher when compared to ordinary
planets (∼ 1− 30 gcm−3).

Another analysis that we can do here is as follows: according to general
relativity, the orbital motion of a binary system can lead to gravitational waves
(GW) emission and spiral-in of the system. Geng et al. (2015) showed that

7More specifically, here we refer to Kepler’s third law.
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due to extreme compactness, strange planets can spiral very close to their host
compact stars without being tidally disrupted. These systems could potentially
serve as a new source for gravitational waves. GW emission from these events
happening in our local universe may potentially be strong enough to be detected
by upcoming detectors such as Advanced LIGO (aLIGO) (Acernese et al., 2006;
Abbott et al., 2016) and the future Einstein Telescope (Hild et al., 2008; Punturo
et al., 2010)8. This analysis can thus be used as possible evidence for the existence
of SQM. In contrast to normal matter planets moving around a compact star,
their GW signals are negligibly small since the planet cannot get very close to
the central star due to the tidal disruption effect. Following Geng et al. (2015),
the strain amplitude of GW from a strange matter system9, at the last stage of
the inspiraling (i.e., when the planet approaches the tidal disruption radius) and
at distance d from us, is

h = l

(
M?

1.4M�

)2/3 ( ε

4× 1014 g cm−3

)4/3 ( R

104 cm

)3 ( d

10 kpc

)−1
(3.23)

where l = 1.4 × 10−24, d (in kpc) is the distance of the binary to us, and R is
the radius of the star (in cm). If rtd is too large, the GW emission will be very
weak. For example, at d = 10 kpc, for a typical planet with M = 5× 10−4MJup,
ε ∼ 10 g.cm−3 and, R ∼ 3.6× 108 cm; disrupted at 5.1× 1010 cm, the maximum
GW amplitude is only h ≈ 4.9× 10−29, screen for high density ∼ 30 g.cm−3, the
GW amplitude is h ≈ 7.05×10−26, which is too weak to be detected. For strange
planets, however, the strain amplitudes of GWs are between h ∼ 10−23 − 10−22,
at a distance of d ∼ 10 kpc (Geng et al., 2015).

Now employing Eq. (3.23) to strangelet crystal planets, we obtain the results
shown in Table 3.3.2. From this table it is clear that a binary system with
strangelet crystal planets can emit GW with amplitudes of the order of ∼ 10−22−
10−21 with GW frequencies (= 2/Porb) between 18 − 177 Hz. These frequency
values are within in the most sensitive range of GW detectors like Advance LIGO
and the Einstein Telescope (Geng et al., 2015).

8The Advanced LIGO (Laser Interferometer Gravitational-Wave Observatory) detectors will
be able to see inspiraling binaries made up of two 1.4M� neutron stars to a distance of 300
Mpc. This horizon distance would even be pushed to 3 Mpc by the future Einstein Telescope.

9Indeed, the measurable signals of GWs are the amplitudes of two polarized components
(h+ and h−), for merging binaries, we assume the waves to be sinusoidal and define an effective
strain amplitude h, after averaging over the orbital period (Geng et al., 2015)
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Figure 3.4: Diagram representing different orbital properties between strange
planets (SP), strangelet crystal planets (SCP), and ordinary planets (OP). The
dashed area indicate possible orbital region only for SP, gray area for SP and
SCP and the region beyond for OP. rtd is tidal disruption radius (and their
orders of magnitude for each model). In this picture, we can see that SCPs
exhibit intermediate properties between SPs and OPs. [The distances are not in
scale.]

Finally, we can summarize the properties of strange crystal planets (SCP)
and compare them with the ordinary planets (OP) and strange planets (SP).
In the Fig. 3.4, we see schematically the difference between them. The hashed
area indicate orbits that can only be explained by SPs. The gray area represents
orbits that can be explained by SPs and SCPs. As for the region beyond the
ordinary planet orbit, one cannot distinguish between models. These differences
are summarized in the Table 3.4, we see that our model differs from other cases in
which: they have higher rtd and Porb compared to strange planets, and lower rtd
and Porb compared to ordinary planets. Besides, strangelet crystal planets and
strange planets have the strain amplitude in the same order, whereas, ordinary
planets have a much lower strain amplitudes than the other SQM objects.
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Table 3.2: Comparisons: strangelet crystal planets vs ordinary planets and
strange planets.

Object Planets ε rtd Porb h
(g/cm3) (cm) (s)

Ordinary Planets
Low density ∼ 10 5.1× 1010 ∼ 5263 4.9× 10−29

High density ∼ 30 5.6× 1010 ∼ 6100 7.1× 10−26

Strangelet Crystal
Planets ∼ 1010 − 1012 ∼ 8× 106 − 4× 107 . 0.110 ∼ 10−22 − 10−21

Strange Planets ∼ 4.0× 1014 ∼ 1.5× 106 ∼ 8.45× 10−4 ∼ 10−23 − 10−21

3.5 Application to Sub-stellar Objects

Since our objects have masses within ∼ 10−3 − 50MJ (∼ 10−6 − 0.05M�) and,
crystalline internal structure, then we can use it as a possible application to some
sub-stellar objects such as Brown Dwarfs (BD), Exoplanets, dwarf planets. Ac-
cording to Burgasser (2009), Brown dwarfs (“failed” stars) are “stellar” objects
with insufficient mass to sustain core hydrogen fusion reactions. The mass limit
for sustained hydrogen fusion is roughly ∼ 75 − 90 MJ (Chabrier and Baraffe,
2000). This mass limit establishes a formal division between stars (or very low
mass stars (Auddy et al., 2016)) and brown dwarfs. Following the mass regime,
the distinction between giant planets (such as Jupiter) and brown dwarfs is that
objects between ∼ 12− 90MJ , are arbitrarily designated as brown dwarfs (Bur-
rows and Liebert, 1993). The possible dividing line limit between brown dwarfs
and planets is ∼ 12MJ , thus objects with masses less than this are considered
planets (Basri and Brown, 2006). On the other hand, an exoplanets is an object
orbiting a star host like our sun (Basri and Brown, 2006). Finally, due to spheri-
cal format and lower masses for strangelets crystal planets made of strangelets4,
these objects could be considered into the dwarf planets (∼ 10−4MJ) category
according to International Astronomical Union (IAU) (Sarma et al., 2008; Brown
and Schaller, 2007). Thus, in this sense our objects called strangelet crystal plan-
ets could be regarded as possible theoretical models for brown dwarfs, exoplanet
and dwarf planets studies with comparable masses.
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3.6 Summary

In this chapter, we have proposed a novel planet-like configuration: Strangelet
crystal planets (Zapata and Negreiros, 2020). These objects are low-pressure,
made up of strangelets arranged in periodic crystals (Glendenning, 2012; Heisel-
berg, 1993). This model differs from previously proposed strange star mod-
els (Alcock et al., 1986; Glendenning et al., 1995; Kettner et al., 1995; Alcock
and Olinto, 1988) in that in those models SQM is found in bulk and possibly
crusted by ordinary hadronic matter. Here we have followed the approach of
Alford et al. (2012) and Jaikumar et al. (2006) in which SQM takes a crystalline
form. Within such scenario, self-bound strangelets can organize themselves in
a crystal lattice, permeated by electron gas (needed for charge neutrality); such
matter could then form self-gravitating objects supported against gravitational
pull by the electronic pressure, much like the white dwarfs do (Glendenning,
2012). We have determined the masses and radii of such objects, and we found
that their mass remind us objects like brown dwarfs and exoplanets or ordi-
nary planets, but with slightly smaller radii than ordinary sub-stellar objects.
Furthermore, we have calculated possible observable signatures of such a model
using the concept of tidal disruption radius and amplitude of GWs that could
be emitted by such systems. As expected, we have found that due to their com-
pactness, the tidal disruption radii of strangelet crystal planets are significantly
smaller than those of ordinary planets. We have found, however, that when com-
pared to previously proposed strange planet models, our scenario leads to higher
tidal disruption radii. This means that strangelet crystal planets exhibit an in-
termediate behavior, with possible orbital properties not as extreme as those of
strange planets but not as mild as those of ordinary planets.



Chapter 4

Strange Quark Stars

4.1 Introduction

In this chapter, we assume the strange quark matter (SQM) hypothesis (Bod-
mer, 1971; Witten, 1984; Terazawa, 1979) and we explore the cooling of isolated
quark stars (QS). These objects are composed of a quark matter core and crusted
by matter. We adopt two kinds of crust for the star’s core: (i) a crust made of
purely nuclear matter following the Baym-Pethick-Sutherland (BPS) equation
of state (Baym et al., 1971) and, (ii) a crust made of nuggets of strange quark
matter, i.e. strangelets as described by Jaikumar et al. (2006). Both theoretical
models have the same quark matter core according to the MIT bag model equa-
tion of state (EoS) (Farhi and Jaffe, 1984; Chodos et al., 1974b,a; Weber et al.,
2009). Our main purpose is to quantify the effects of strangelets crust matter
on the cooling calculation and relaxation times of theses strange stars (Zapata,
J. et al., 2022). We also include the possible color superconductivity effect in
the quark core. Finally, the numerical results are compared with the recently
observed data found in Potekhin et al. (2020). we have found that objects with
a strangelet crust have a significantly different thermal behavior.

As Chapter 3, we take into account the strange quark matter (SQM) hy-
pothesis (Bodmer, 1971; Witten, 1984; Terazawa, 1979) and consider compact
stars that are made up of absolutely stable strange matter. If the SQM hy-
pothesis is true, the strange stars would be a new class of astronomical compact
objects (Witten, 1984; Alcock et al., 1986; Weber, 2005; Baym and Chin, 1976;
Haensel et al., 1986b). Relevant to the work we present in this chapter is the

35
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research of Alcock et al. (1986), in which they considered the possibility for a
strange star to maintain a thin crust of normal matter. They pointed out that
the crust was mainly influenced by two factors: (i) the tunnel effect through
which ions might penetrate the core-crust gap and, (ii) that the density at the
base of the crust can not be denser than the neutron drip (εdrip) since free neu-
trons would come out of nuclei and fall into the strange core (Alcock et al., 1986;
Glendenning et al., 1995; Glendenning and Weber, 1992). The latter considera-
tion was revised by Huang and Lu (1997) where they found that the maximum
density at the base of the crust is about ∼ εdrip/5 giving a maximum mass of
∼ 3.4 × 10−6M� for the crust, which is about one order of magnitude smaller
than what had been found before. In the traditional picture, the surface of a bare
strange star has a sharp edge of thickness ∼ 1 fm (Alcock et al., 1986). Below
the surface lies quark matter which on the outermost layer should be positively
charged (due to exhaustion of massive strange quarks), and above which resides
a cloud of electrons (that guarantees the star’s charge neutrality) (Alcock et al.,
1986; Stejner and Madsen, 2005; Usov, 1997). It has been shown, however, that
if the surface tension σ of the interface between quark matter and the vacuum
is less than a critical value, σcrit then large lumps of strange matter become
unstable against fission into smaller pieces (Jaikumar et al., 2006; Alford et al.,
2006). As a result, the lower density surface region is replaced by a “mixed-
phase” involving nuggets (strangelets) of positively charged strange matter in a
neutralizing background of electrons. Jaikumar et al. (2006), assuming zero sur-
face tension and neglecting Debye screening, estimated that the “mixed-phase”
crust might be 40− 100 m thick. Later, Alford and Eby (2008) found that if the
surface tension of quark matter is low enough, the surface of a strange star will be
a crust consisting of a crystal of charged strangelets in a neutralizing background
of electrons. They calculated the thickness of the crust, taking into account the
effects of surface tension and Debye screening of electric charges. Their results
showed that the strangelet crust’s size can range from zero to hundreds of meters
and, the thickness is greater when the strange quark is heavier and the surface
tension is smaller (Alford and Eby, 2008). In this work, we will further explore
the possibility of a strangelet crust on strange stars and their implications to the
thermal evolution of such stars.
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Since the proposal of strange stars, many efforts have been devoted to indi-
cate observational properties (if any) that may be useful to distinguish strange
stars from neutron stars, as they share many similar (observable) macroscopic
properties (such as gravitational mass, for instance). One possibility to reach
that goal is by their thermal evolution, as quark stars may exhibit a fairly dis-
tinct cooling as opposed to ordinary neutron stars. The cooling of neutron stars
is dominated, mainly, by neutrino emissions for the initial ∼ 1000 years, later
being replaced by surface photon emissions (Page et al., 2006; Tsuruta, 1998).
Due to very different compositions/morphology between the neutron star core
and crust, it takes ∼ 1 − 100 years for the star to thermalize1 (Lattimer et al.,
1994; Sales et al., 2020).

The situation for crusted strange stars is significantly different, since the
presence of unconfined quark matter plays an important role in the cooling of
the star (Blaschke et al., 2000; Grigorian et al., 2005). In this chapter, we will
revisit the cooling of strange quark stars, considering the effects of a strangelets
crust as described by Jaikumar et al. (2006). We will compare our findings to
the cooling of quark stars (QS) with nuclear matter crusts. Our main goal is
to quantify the effects of a strangelet crust on the cooling calculation of quark
stars. We will also study the thermal relaxation2 of quark stars, which to the
extent of our knowledge has never been studied in details, therefore we study
such properties here.

We proceed as follows: first, we will describe the microscopic model for
crusted strange stars, and we present the results for the macroscopic structure
of our two models of quark stars. Second, we will explore the thermal behavior
of these stars and analyze the thermal relaxation times as well. Furthermore,
we also include superconductivity effect and compare them with the current
observations.

1Thermalisation is the process of physical bodies reaching thermal equilibrium through mu-
tual interaction.

2This is a typical time for the cooling wave to reach the star’s surface.
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4.2 Microscopic Model

4.2.1 The Equation of State: Core + Crust

We assume that the quark stars crust matter is a crystal lattice of a single
species of atomic nucleus (A,Z) (or strangelets) embedded in an electron gas.
For comparison reasons, we adopt two kinds of crust for the star’s core: (i)
a crust made of purely nuclear matter following the Baym-Pethick-Sutherland
(BPS) equation of state and, (ii) a strangelets crust. The traditional nuclear
matter is the Baym, Pethick, and Sutherland (BPS) equation of state (Baym
et al., 1971), in which case the crust must necessarily have a maximum density
limited by neutron drip density (εdrip ∼ 4× 1011 g cm−3). The most significant
aspect of this density domain is that it consists of a Coulomb lattice of heavy
ions immersed in an electron gas. The heavy ions become ever more neutron rich
as the neutron drip density is approached from below (see Baym et al. (1971)
for more details). On the other hand, we use the EOS for strangelets crust as
described in chapter 2, section 2.4. That is, if the surface tension of the interface
between quark matter and the vacuum is less than a critical value, then large
lumps of strange matter become unstable against fission into smaller pieces; as a
result the crust consists of a crystalline structure of charged spherical strangelets
in a neutralizing background of electrons. In this picture, electrons contribute
to the pressure while strangelets contribute to the energy density. Finally, we
adopt the strange quark matter equation of state to the core of the quark star
as shown in chapter 2, section 2.5. The parameters are set as ms = 100 MeV ,
B1/4 = 128.9 MeV and αs = 0.4 (the strong interaction coupling constant)3.

Hence, the structure of strange stars (core + crust) model for strange quark
stars here is schematically illustrated in Figure 4.1, where we have the cross–
section of a strange star. The equation of state should consist of two parts: core
and crust. The core matter follows the MIT bag model (see section 2.5), involved
by a crust matter (pure nuclear matter or strangelets). The Figure 4.2 shows the
equation of state of a quark star with a nuclear (BPS) matter (“BPS” labelled)
and strangelets crust (“Strangelets” labelled). The transition point between core
and crust occurs at εtr ∼ 153.76 MeV.fm−3 ∼ 2.74× 1014g cm−3.

3αs has a little effect on the equation of state, which remains largely unaltered for different
values of this constant (Negreiros, 2009).
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Figure 4.1: Cross–section of a strange star (core + crust) model used in this
work. The star’s core consists of pure 3-flavor strange quark matter following
the MIT bag model, and the crust consists of a pure low-density nuclear matter
(or strangelets).

-12

-10

-8

-6

-4

-2

 0

 2

 4

-6 -5 -4 -3 -2 -1  0  1  2  3

Lo
g 

(P
) 

[M
eV

.f
m

-3
]

Log (ε) [MeV.fm-3]

Core
Strangelets

BPS

Figure 4.2: Equation of state for strange quark matter (SQM) surrounded by (i)
a nuclear BPS crust and (ii) a Strangelets crust.
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Figure 4.3: Mass-radius diagram for quark stars, whose equations of state are
shown in Fig. 4.2. Both sequences have the same maximum mass ∼ 2.41M�

4.2.2 Structure of Quark Stars

With the EOS in Figure 4.2, we can solve the Tolman-Oppenheimer-Volkoff4

(TOV) equation (Oppenheimer and Volkoff, 1939; Tolman, 1939) and find the
structure of the quark stars. In Figure 4.3 we show the sequences of quark stars
obtained from EOSs. We note that, as expected, the only difference between
the models studied is the description of the crust, both sequences have the same
maximum mass ∼ 2.41M�. Furthermore, due to the different crust modelling,
we also see a significant difference between the stellar radius in each sequence.

We summarize the macroscopic properties found for the two models stud-
ied in Table 4.1. The most notable distinction between them can be found as:
quark stars with nuclear BPS matter crust have larger radii, crust thickness
and mass crust: ∆Rcrust ∼ 500 m, ∼ 10−4M�, respectively. Quark stars with
strangelets crust, on another hand, have smaller radii, crust thickness and crust
mass: ∆Rcrust ∼ 20 m and ∼ 10−5M�, respectively. At this point, our results
from Table 4.1 are in agreement with recent observational measures and esti-
mates. We have found that they are within the latest estimates from Neutron
Star Interior Composition Explore (NICER) data.

4See Appendix D
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For instance, the observed gravitational mass and radius of isolated millisec-
ond pulsar PSR J0030+0451 are estimated to be 1.34+0.15

−0.16M� and 12.71+1.14
−1.19

km, respectively (Riley et al., 2019; Miller et al., 2019). Also, with the pulsars
PSR J1614-2230, with M = 1.97 ± 0.04M� (Demorest et al., 2010), and PSR
J0348+0432, with M = 2.01± 0.04M� (Antoniadis et al., 2013); which could be
explained by the model we employed in our analysis.

Table 4.1: Properties of some quark stars from Fig. 4.3. We differentiate them
with the label strangelets or nuclear (BPS) crusts.

εc
(MeV/fm3)

M
(M�)

Strangelets crusts Nuclear (BPS) crusts
R (km) R(km)

237.24 1.42 12.78 13.27
257.49 1.60 13.19 13.62
288.59 1.82 13.55 13.93
327.36 2.00 13.77 14.11

4.3 Cooling on Quark Stars

4.3.1 Thermal Evolution Equations

The following cooling calculation are performed for spherically symmetric, non–
rotating stars models, which are constructed in the framework for general relativ-
ity theory. The cooling of a compact star is governed by the general relativistic
thermal energy balance and transport equations given5 by (G = c = 1) (Weber,
2017; Thorne, 1977; Van Riper, 1991)

∂(l(r, t)e2Φ(r))
∂m

= − 1
ε
√

1− 2m(r)/r

(
εν(r, T )e2Φ(r) + cv(r, T )∂(T (r, t)eΦ(r))

∂t

)
(4.1)

∂(T (r, t)eΦ(r))
∂m

= − (l(r, t)eΦ(r))
16π2r4κ(r, T )ε(r)

√
1− 2m(r)/r

, (4.2)

5See Appendix D
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where the macroscopic dependencies are: the radial distance r, the energy density
ε(r) and, the stellar massm(r). Moreover, the thermal properties are represented
by the temperature T (r, t), luminosity l(r, t), neutrino emissivity6 εν(r, T ), ther-
mal conductivity κ(r, T ) and, specific heat cv(r, t).

The boundary conditions of Eqs. (4.1) and (4.2) are determined both by the
luminosity at the stellar center

L(r = 0) = 0, (4.3)

this means that there is no heat flux at the center of the star, and at the stellar
surface

T (r = R) = Ts, (4.4)

this is, the luminosity is defined by the relationship between the mantel tem-
perature and the temperature outside the star (Page et al., 2006; Blaschke
et al., 2000) (see appendix D). These equations need to be solved numerically.
Since the central star temperature at the beginning of its life is not larger than
1011 K ∼ 1 MeV (Weber, 2017), the effects of finite temperatures on the equa-
tion of state can be relegated to a very good approximation. Consequently,
TOV’s equations do not depend on time and thus need to be solved only once
- which is fortunate as the thermal and structural properties are then uncou-
pled (Weber, 2017). Now, we will discuss the microphysical processes for the
cooling equations of quark stars.

4.3.2 Microphysical Processes

The microphysical properties of quark stars are analogous to those of neutron
stars, except in this case they involve quarks rather than baryons. Additionally,
the thickness of the crust of quark stars will have a strong impact on the cooling
of those objects, as we will see later.

6Neutrino emissivity is a quantity that quantifies the amount of energy emitted per unit
volume per unit time at a given position within the star. It is the kinetic energy of neutrinos
and antineutrinos produced by a certain type of reaction, such as beta decay.
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Core

Neutrino emission is the main mechanism driving the cooling of quark stars. Due
to the distinct composition of the core and the crust, we have different neutrino
emission processes. The core’s neutrino emissivity can be written as

εcoreν = εν,DU + εν,MU + εν,BR. (4.5)

The sub-indices DU stands for direct Urca, MU for modified Urca and BR for
Bremsstrahlung, processes.

The direct Urca process in quark stars involve quarks. These processes
are given by

d→ u+ e− + ν̄e, (4.6)

u+ e− → d+ ν̄e. (4.7)

The emissivity of such process was calculated in Iwamoto (1982) and it is given
by

εν,DU = 8.8× 1026αc

(
ρb
ρ0

)
Y 1/3
e T 6

9 erg cm−3 s−1, (4.8)

where αc is the strong coupling constant, ρb is the baryon number density, ρ0 =
0.16 fm−3 is the nuclear matter density, Ye = ρe/ρ is the number of electron
per baryon, and T9 is the temperature in units of 109 K (that is, T9 = T/109

K). The direct Urca process will only take place if the triangle inequalities (and
cyclic permutations of it) are satisfied, that is,

kFi + kFj ≥ kFe , (4.9)

where kFe is the fermi momentum of the electron, and kFi,j is the fermi momen-
tum of quark (just like in neutron stars), in this case however, due to the high
abundance of quarks this condition is more easily achieved. In general, as long
as electrons are present, the direct Urca process will take place in quark stars.

The modified Urca process is similar to the direct Urca except for the
presence of a bystander particle q whose function is to guarantee the conservation
of momentum. This process is represented by the following reaction

q + d→ u+ q + e− + ν̄e. (4.10)
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The emissivity associated with this process is given in Iwamoto (1982); Negreiros
(2009) by

εν,MU = 2.83× 1019α2
c

(
ρb
ρ0

)
T 8

9 erg cm−3 s−1. (4.11)

As before, αc is the strong coupling constant, ρb is the baryon number density,
ρ0 = 0.16 fm−3 is the nuclear matter density, Ye = ρe/ρ is the number of
electron per baryon, and T9 is the temperature in units of 109 K. Finally, the
quark Bremsstranhlung7 process was calculated in Iwamoto (1982); Negreiros
(2009) and is given by

εν,BR = 2.98× 1019
(
ρb
ρ0

)
T 8

9 erg cm−3 s−1. (4.12)

The specific heat in quark stars is due to the electrons and quarks (u, d, and
s)

Ccorev = Ce−v + Cqv , (4.13)

These are given respectively (Iwamoto, 1982; Negreiros, 2009)

Cqv = 0.6× 1020
(
Yeρb
ρ0

)2/3
T9 erg cm

−3 K−1, (4.14)

Ce
−
v = K2

B

3~3 T
√
m2
e− + k2

e−ke− , (4.15)

where KB is the Boltzmann constant and ke− is the Fermi momentum of the
electron.

The thermal conductivity of quark stars is given by (Haensel, 1991)

κcore = 3.4× 1022
(
αc
0.2

)−1/2
T−1

10
ρb
ρ0

erg

cm s K
, (4.16)

where T10 = T/1010 K.
7Bremsstranhlung from bremsen “to break” and Strahlung “radiation”; i.e., “braking radi-

ation” or “deceleration radiation”, is electromagnetic radiation produced by the deceleration
of a charged particle when deflected by another charged particle, typically an electron by an
atomic nucleus.



4. Strange Quark Stars 45

Crust

The quark stars that we are considering have crusts with different composition
than the core. The total neutrino emissivity of the crust is given by the sum of
the emissivity of each of these three processes

εcrustν = εν,BR + εν,pair + εν,plasma, (4.17)

where εν,BR is the emissivity of electron Bremsstrahlung, εν,pais for e−e+ pair
annihilation and εν,plasma of plasmon decay.

The electron Bremsstrahlung8 in the crust, that is, the electrons scatter-
ing off heavy ions [(A, Z), with a certain atomic number Z and mass number
A] in the crust will lead to the production of neutrinos. The emissivity of such
process has been given in Kaminker et al. (1998) by

εν,BR = 10x erg cm−3 s−1, (4.18)

where

x = 11.204 + 7.304τ + 0.2976r − 0.37τ2 + 0.188τr − 0.103r2

+ 0.0547τ2r − 6.77 ln
(

1 + 0.228 ε
ε0

)
,

(4.19)

and τ ≡ log(T/T 8), r ≡ ln(ρ12); and ε0 = 2.8 × 1014 g cm−3 is the nuclear
density.

The annihilation of e−e+ pairs9 in the crust also generates neutrinos. The
emissivity from this process does not have a simple expression, but just say that

εν,pair ∝ 1023 erg cm−3 s−1 (4.20)

(see Yakovlev et al. (2001) for a detailed description.).

The plasmon decay10 (quantizations of plasma oscillations) formed in the
crust of quarks stars produce a pair of neutrinos. We use the following emissivity

8e− + (A,Z)→ e− + (A,Z) + ν + ν̄.
9e− + e+ → ν + ν̄.

10γp → ν + ν̄, where γp represents a quantum of plasma oscillation.
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for this process, given by (Yakovlev et al., 2001)

εν,plasma = Qc
C2
V

96π4α

(
T

Tr

)9
(16.23f6

p + 4.604f7.5
p )e−fp , (4.21)

where Qc ≈ 1.023× 1023 erg cm−3 s−1 is the electron "Compton neutrino emis-
sivity"; Tr ≡ mec

2/KB ≈ 5.93 × 109 K is the electron relativistic temperature;
and fp is the electron plasma parameter (Yakovlev et al., 2001; Negreiros, 2009).

On the other hand, we can write the crust specific heat, as

Ccrustv = Cev + Cnv + Civ (4.22)

It is analogous to the specific heat in the core. Where Cev is the specific heat of
the electrons given by Eq. (4.15), and Cnv is the specific heat for the neutrons
(just for nuclear BPS crust) given by the baryons specific heat,

Cbv = K2
B

3~3 Tm
?
bkb (4.23)

wherem?
b is the effective mass of the baryon and kb the baryon Fermi momentum.

Civ is the specific heat of the ions, and it depends on the properties of the ions
found at the crust. These properties are the Fermi momentum, mass number A
and atomic number Z (Negreiros, 2009).

The thermal conductivity of electrons and neutrons scattering off ions in
the crust was calculated in Potekhin et al. (1999)

κcrust = π2K2
BTρe

3
√
m2
l + k2

l νe
(4.24)

where νe is a variable that depends on the ion’s properties at the desired density.

This summarizes all the neutrino emissivities, specific heats and thermal
conductivities that take place in the core and crust of the quark star studied
here for solving the Eqs. (4.1)– (4.2).

Surface Photon Luminosity

At the late stages of quark star’s thermal evolution, the photon luminosity be-
come the most important cooling process. This can be expressed, for the local
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observer, as (Negreiros, 2009; Weber, 2017)

Lγ = 4πR2σSBT
4
S , (4.25)

with TS is the surface temperature, σSB the Stefan–Boltzmann constant and R
the stellar radius. For an observer at infinite must take into account the red-shift:
R∞ = e−ΦR and T∞ = eΦTS , where e2Φ = g00. Thus, the luminosity observed
at infinite is given by

L∞ = 4πR2
∞σSBT

4
∞. (4.26)

We will use the temperature at infinity T∞ (later as Ts) as a main output of the
cooling simulations, and we will compare it with observed data.

4.3.3 Cooling Results

The previous sections provide us with the description of the different ingredients
that enter the modeling of the thermal evolution of our quark star’s models.
Solving the thermal equations (4.1)- (4.2) with the micro-physical ingredients
(last section) we can get the cooling behavior of quark stars. Remembering that,
for the quark core, we consider the processes involving quarks: the quark direct
Urca (QDU), quark modified Urca (QMU), and quark bremsstrahlung processes
(QBM). If the electron fraction vanishes entirely in quark matter (Ye = 0, in
the limit in which ms → 0), both the quark direct and the quark modified Urca
processes become unimportant, and the neutrino emission is then dominated by
bremsstrahlung processes only. The emissivities of such processes were calcu-
lated in Eq. (4.5), we use the specific heat for the quark phase as calculated in
Eq. (4.14) (and Eq. (4.15) for electrons as well) and, the thermal conductivity
comes from Eq. (4.16). At the crust (both strangelet and nuclear) we consider
all expected thermodynamical processes with thermal conductivity dominated by
the electrons and specific heat connected to (A,Z) of the nuclei (or strangelets).
The equations of the thermal processes taking place in the crust are (4.17)- (4.24).

To investigate the difference between a quark star with nuclear (BPS) crust
and quark stars with strangelets crust, we analyze the cooling behavior of quark
stars of the same gravitational mass for both models. The thermal evolution is
illustrated in Figure 4.4, where we show a typical cooling curve, that is, the red-
shifted surface temperature (Ts) as a function of the age (t) of the star. In this
figure, solid lines represent quark stars with nuclear (BPS) crust, and dashed lines
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Figure 4.4: Cooling curves of quark stars with gravitational masses from Ta-
ble 4.1. Ts denotes the red-shifted temperature and the x-axis the age t. Solid
lines represent quark stars with nuclear (BPS) crusts, and dashed lines are stars
with strangelets crusts. Superfluidity is neglected here.

are stars with strangelets crust. In this first moment, superfluidity is neglected.
The results indicate that there is little difference between the cooling of stars with
different gravitational mass within the same model, both for stars with nuclear
(BPS) crust and for stars with strangelets crust. Additionally, for each model,
as the star’s mass increases then, the surface temperature is slightly lower. This
behavior is maintained in the next sections for different gravitational masses.
On the other hand, we can notice a significant difference when comparing the
cooling behavior exhibited in each model. Most noticeably, quark stars with
strangelets crust cool down significantly faster than quark stars with nuclear
(BPS) crust. We believe that is due to the thinner nature of the strangelets
crust. Next, we talk about the thermal relaxation process suffered by stars due
to the difference in the nature of the matter present in the crust and in the core
and the different behavior of neutrino emissivity, specific heat, and conductivity
in these two regions of the star.

4.3.4 Thermal Relaxation

As we have mentioned, the DU neutrino emissivity, i.e. the loss of thermal energy
due to neutrino escape, is much more intense in regions with estimated densities
of 2−3 times the nuclear saturation density (see Eq.(4.8)). As a consequence, the
temperature of this region reaches a value much lower than that of the upper part
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of it. Due to the difference in the intensity of the neutrino emissivity between
the crust and the core of the star, two temperature gradients are established
inside the star: one between the crust and the upper part of the core, and a
more intense one between the latter and the region where the DU process is
active. During the first moments of cooling, the temperature gradient between
the central region with the DU process and the upper part of it, establishes a
flow of heat from the latter to the former, as a kind of “cold wave” propagates
from the top of the central region towards the surface. Soon, this wave reaches
the base of the crust and the star’s core thermalizes, in addition to the already
existing temperature gradient between the core and the crust being accentuated.
After these first moments of thermal evolution, the cold wave propagates through
the crust and, when it reaches the surface, the surface temperature of the star
drops abruptly, causing these two regions to thermalize, and the star to become
isothermal. Therefore, the time this cold wave reaches the surface of the star is
defined as the thermal relaxation time.

In order to quantify the faster cooling exhibited by quark stars with strangelets
crust, we now discuss their thermal relaxation. As shown by Lattimer et al.
(1994), the thermal relaxation tw is defined as the moment of the most negative
slope of the cooling curve of a young neutron star. It is given in Gnedin et al.
(2001) by

tw = max

∣∣∣∣ dln(Ts)
d(ln(t))

∣∣∣∣ . (4.27)

For ordinary neutron stars, such relaxation times are typically between∼ 10−100
years. The thermal relaxation time for ordinary neutron stars is determined
mainly by the crust thickness ∆Rcrust (Lattimer et al., 1994; Gnedin et al.,
2001). Although it has been recently demonstrated that depending on how
widespread (within the core of the star) the direct Urca process, at such times
may be drastically larger (Sales et al., 2020). To the extent of our knowledge,
the relaxation time of quark stars has never been studied in detail, therefore
we consider such propertied here. In Figure 4.5 we show the ln(Ts) variation
rate with respect to ln(t) for a representative sample of quark stars of our two
models. Solid lines represent the quark stars with nuclear (BPS) crust, and
dashed lines are those with strangelets crust. Diamonds and stars indicate the
maximum absolute value of each curve, thus representing the relaxation time.
We now have a quantitative measure of how fast quark stars with strangelets
crust cool down with respect to those with BPS crust. We perceive that the
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Figure 4.5: The lnTs variation rate with respect to ln t versus ages for our quark
stars from Fig. 4.4. Solid lines are quark stars BPS crusted, and dashed lines
are strangelets crusted. The highlighted diamond and star points represent the
moment of the most negative slope, i.e, their relaxation times.

relaxation times of quark stars with strangelets crust (∼ 1 year) are two orders
of magnitude smaller than quark stars with BPS crust. We can also obtain a
direct relation between the relaxation time of quark stars and their gravitational
masses (much like that obtained for ordinary stars (Sales et al., 2020)), which
is shown in Figure 4.6. We observe that the relaxation time exhibits a linear
behavior for both models, with the slope of the curve being more or less inclined
depending on the average thickness of the crust in each model.
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Figure 4.6: Relaxation time vs gravitational mass. The blue line is for quark
stars BPS crusted, and the red line is for strangelets crusted. The two models
have the same linear behavior, even though the gravitational mass increases while
the relaxation time decreases.

4.3.5 Superfluidity Effects

In this section, we consider the possibility of color superconductivity. The pat-
tern that will be considered is the Color-Flavor-Locked (CFL) phase (Alford,
2001), where all quarks of all colors are paired to form Cooper pairs at densi-
ties of > 2ε0 (ε0 is the nuclear matter density) (Alford et al., 2008). It should
be noted that one expects corrections to the quark matter EOS when pairing
is present, however, the effects of such corrections to the structure of the star
are only noticeable for pairing gaps ∆ ≥ 50 MeV (Alford and Reddy, 2003).
Therefore, for the values of ∆ considered here (0.1− 10 MeV) they can be safely
ignored.

Because of pairing, quark stars in the CFL phase will have its neutrino emis-
sions from the direct Urca, the modified Urca and Bremsstrahlung processes
suppressed at temperatures T ≤ Tc, where Tc is the pairing critical tempera-
ture (Alford, 2001; Alford et al., 2008). The suppression is due to the pairing of
the quarks, and it is given by

εDU → εDUe
−∆/(KBT ), (4.28)

εMU → εMUe
−2∆/(KBT ), (4.29)
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εBR → εBRe
−2∆/(KBT ). (4.30)

Where ∆ is the gap parameter for the CFL phase (Alford, 2001; Rajagopal and
Wilczek, 2001a,b), and kB is the Boltzmann constant. Moreover, the specific
heat of quark matter is also modified according to

CCFLv = 3.2Cv
(
Tc
T

)[
2.5− 1.7

(
Tc
T

)
+ 3.6

(
Tc
T

)2
]
e−∆/(KBT ). (4.31)

Tc is the critical temperature below which the phase transition to the CFL state
takes place. Currently, Tc is not known, however, it is believed to be smaller than
the standard Bardeen-Cooper-Schrieffer (Tc ≈ 0.57∆) (Blaschke et al., 2000).
Here, we use Tc ' 0.4∆.

In Figures 4.7- 4.8 we have plotted the cooling curve for quark stars whose
quark core is composed of strange quark matter in the CFL state, for different
values of gap (∆) and, we also compare them with stars without superfluidity. In
that figures, the quarks stars have masses of ∼ 1.4M� and ∼ 2.0M�, respectively.
We limit our study to pairing with small gaps, given by ∆ = 0.1, 1.0, 10 MeV. We
have not considered the cooling from processes involving the Goldstones bosons
in the CFL phase. Although these processes are important for the core, they are
not effective at cooling stars with a crust, and thermal relaxation of the crust
is still the key factor. We note a very distinctive behavior, depending on the
value chosen for the superconductivity gap. We see that objects with a higher
∆ (stronger pairing) will result in slower cooling. For completeness, we have
also studied scenarios en which ∆ ≥ 10 MeV and have found that the resulting
thermal evolution is essentially the same ∆ = 10 MeV. This comes from the fact
that the exponential factor e−∆/(KBT ) effectively saturates for ∆ ≥ 10 MeV.

At this point, we would like to observe the following: as the cooling of the
core is mainly driven by the exponential suppression of the gap, we believe the
value of Tc is not so relevant, so we focused on varying the gap instead. The
large value of the CFL gap (0.1−10 MeV) compared to typical core temperatures
implies that the cooling behavior should be relatively insensitive to Tc (Ferrer
et al., 2006; Alford et al., 2007; Gerhold and Schäfer, 2006). For the specific
heat of the CFL phase, we have used the fitted forms that are simply extensions
from nuclear matter. For CFL matter, in principle, one should include the
contribution from the (massless) Goldstone boson of the CFL phase. However,
such “bare” CFL stars can store a lot of heat and would remain hot for a very
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Figure 4.7: Cooling for quark stars with gravitational masses of ∼ 1.4M� for
different values of the CFL gap (∆). Solid lines represent quark stars with nuclear
(BPS) crust, and dashed lines are quark stars with strangelets crust.

long time, in disagreement with the data. Adding a crust allows them to cool,
but the large thermal conductivity due to the same bosons basically means that
the crust determines the cooling rate. In either case, we return to the same
conclusion that the nature of the crust (nuclear or strangelet) plays the main
role in cooling strange stars. Also, we note that superconductivity effects were
only considered in the quarks at the stellar core. Although there could be pairing
in the strangelets, we believe it would not affect the thermal evolution as they
have only a passive role - with the electrons dominating the thermal conduction
(the strangelets being analogous to the role of ordinary Ions in traditional crust
models).

4.3.6 Comparison with Observed Data

In this instance, we can use our previous results to compare with the current
observations. In Figure 4.9, we compare our theoretical results with a set of
observed data as described in Table 4.2 (see Ref. Potekhin et al. (2020)), in
which the thermally observable neutron stars are grouped in different classes:

(i) the Weakly magnetized thermal emitters, that include central compact
objects and other thermally emitting isolated neutron stars–these mostly
emit soft X-ray thermal-like radiation and do not seem to be very strongly
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Figure 4.8: Cooling for quark stars with gravitational masses of ∼ 2.0M� for
different values of the CFL gap (∆). Solid lines represent quark stars with nuclear
(BPS) crust, and dashed lines are quark stars with strangelets crust.

magnetized;

(ii) ordinary pulsars, which comprise thermal data associated with rotation
powered pulsars with moderate magnetic fields;

(iii) High-B pulsars, objects with strong estimated magnetic fields; and
finally

(iv) neutron stars whose temperatures can only be estimated as an upper
limit, thought to be associated with relatively young objects (see Potekhin
et al. (2020) for more details).

In Fig. 4.9 we show the cooling of ∼ 1.4M� quark stars –with different pairing
gaps– against the observed data described just above. It quickly becomes evident
that without pairing the quark, stars cool down too quickly, thus disagreeing
with the observed data. Such behavior is not unexpected and has been pointed
out in previous works (Negreiros et al., 2012; Alford, 2009). This situation is
changed when pairing is included, as the cooling slows down and matches a few
of the observed stars. Our results seem to indicate that a moderate pairing with
∆ ∼ 1−10 MeV is favored if the cooling tracks are to go through the data points.
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Figure 4.9: Same as Fig. 4.7. The curves are compared with the date from Table
4.2. The data are plotted as indicated in the legend for different neutron stars
classes. The error bars show uncertainties.

At this moment, it is opportune to make a few remarks: (i) Fig. 4.9 shows
that a large set of the data points (mostly in the ordinary pulsars group) lie to the
right of the cooling tracks, indicating old objects. One must note, however, that
unless associated with a supernova remnant (not usually the case for ordinary
pulsars, with a few exceptions) one can only estimate the NS age by their spin-
down11 properties. Such estimates should be regarded mostly as an upper limit,
as the spin-down age is known to be a very crude estimate (in the few cases
in which both spin-down and kinematic ages12 can be estimated simultaneously
they vary drastically); (ii) unfortunately the observed data does not help in
differentiating between the nuclear and strangelets crusts studies. As explained
in the previous section the difference in the crust composition is more strongly
manifested in the process of thermalization of the stars, thus, only observation of
young stars undergoing such processes (which is not the case with the observed
data available) would aid us in differentiating between these models.

11Over time, neutron stars slow, as their rotating magnetic fields in effect radiate energy
associated with the rotation; older neutron stars may take several seconds for each revolution.
This is called spin down. The rate at which a neutron star slows its rotation is usually constant
and very small. Spin-down can also be used to calculate the characteristic age of a pulsar.

12This is obtained by measuring galactic velocity of the pulsar and tracking it back to the
originating supernova remnant
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Table 4.2: Age and surface temperature of cooling of some neutron stars, as
described in Potekhin et al. (2020). The age is calculated from the expansion
rate of the supernova remnant associated with the respective NS, as well as

from the transverse velocity of the NS, or by associating the NS with historical
supernovae. KBT

∞ is the surface temperature (in energy units) for a distant
observer.

Short
name

Age
(Kyr)

KBT
∞

(eV)
I. Weakly Magnetized

1E 0102 2.1± 0.6 240+40
−30

Puppis A NS 4.45± 0.75 276± 15
Vela Jr. NS 2.1− 5.4 90± 10
J1046 11− 30 40− 70
1E 1207 7+14

−5 90− 250
J1601 0.8± 0.2 118± 1
J1713 1.608 138± 1
J1720 0.6− 1.2 161± 9
J1732 2− 6 153+4

−2
J1818 3.4+2.6

−0.7 130± 20
Kes 79 NS 6.0+1.8

−2.8 133± 1
Cas A NS 0.320− 0.338 123− 185

II. Ordinary Pulsars
J0205 5.37 49+5

−6
Vela Pulsar 11.3 57+3

−1
J1357 7.31 64± 4
B1706 17.5 71+140

−30
B1823 21.4 97+4

−5
J2021 17.2 63+6

−5
B2334 40.6 38+6

−9
III. High-B pulsars

J0726 186 74+6
−11

J1119 1.61 ∼ 80− 210
B1509 1.56 142+7

−9
J1718 33.2 57− 200
J1819 120 138+3

−25
IV. Upper limits

J0007 13.9 < 200
Crab pulsar 1.26 < 180
B1727 80.5 < 30
J2043 1.20× 103 < 80
Guitar pulsar 1.13× 103 < 110
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4.4 Summary

In this chapter, we have studied the structure and cooling behavior of quark
stars with two different crust models: nuclear (BPS) matter and, strangelets
crust. Our goal was to identify possible differences in the cooling behavior of each
model, as well as to quantify the thermal relaxation properties of those quark
stars (Zapata, J. et al., 2022). Quark stars with nuclear crusts were modeled in
the traditional manner, assuming a BPS EOS for the crust beginning at neutron
drip density, while for strangelets crusts we followed the foundations laid in
reference Alford and Eby (2008); Jaikumar et al. (2006); Alford et al. (2006),
i.e., we consider the possibility that the surface tension of quark matter is low
enough to allow for the formation of strangelets. Under this hypothesis, it would
be energetically favorable for the quark mater at the low densities of a quark
star to rearrange itself into a lattice–akin to the manner in which the nuclei
organize themselves in the traditional crust model for neutron stars. As shown
in Jaikumar et al. (2006) strangelets crust tend to be smaller than their nuclear
matter counterpart with spatial extent ∼ 20 m, while a nuclear matter crust
has a thickness ∼ 0.5 km. Furthermore, according to Jaikumar et al. (2006), the
small mean free path for electrons scattering off nuggets implies that the thermal
conductivity in the crust is much smaller than in the core, and they pointed
out that the thermal conductivity of strangelets crusts to be similar to that of
nuclear crusts. This will influence thermal revolution since the crust will act as an
insulator, effectively keeping the surface temperature low (Jaikumar et al., 2006;
Gnedin et al., 2001). Given such differences, we sought to quantify how they
manifest themselves in a thermal evolution context. Our results indicate that
most of the thermal differences between the two models studied are manifested
in the initial years of cooling. We have found that quark stars with nuclear (and
thus thicker) crusts display a slower cooling behavior when compared with QS
with strangelets (thinner crusts). Our assessment is that such behavior is mostly
due to the difference in crust thicknesses, as the crust acts mostly as a blanket
for the initial years of thermal evolution (Lattimer et al., 1994; Sales et al., 2020;
Gnedin et al., 2001). We have also found that the fact that the crust of the
QS’s studied is populated with strangelets (as opposed to the traditional ions),
does not seem to affect the cooling in any major manner. The reason is that
as is the case for the ions in regular NS, the strangelets are mostly inert in the
context of thermal processes, with the free electrons being the major agents of
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heat conduction. In order to quantify our findings, we investigated the thermal
relaxation time of quark stars under both models studied, that is, the typical
instant when the cold wave reaches the surface of the star. Following the study
of Sales et al. (2020), we have found that the star’s relaxation time is linearly
dependent on the gravitational mass–with a more sloped curve for the QS with
strangelets crust (thus indicating a faster relaxation time). Overall we have
found that QS with strangelets crust thermalize in ∼ 1 year whereas QS with
ordinary crust do it in ∼ 100 years. We have found that this is mostly due to
the fact that strangelet crusts are significantly thinner than ordinary hadronic
ones. The different mass of the strangelets (in comparison to ordinary nuclei
that compose the crust, also affect the specific heat in the region, although this
does not seem to affect the thermal evolution in any major way.



Chapter 5

Conclusions

The purpose of this thesis was to explore the strangelets manifestation in astro-
physical environments. We have focused on two particular objects: strangelet
crystal planets (Zapata and Negreiros, 2020), and strange quark stars with
strangelets crusts (Zapata, J. et al., 2022). We have adopted the theoretical
strange quark matter hypothesis (Bodmer, 1971; Witten, 1984; Terazawa, 1979),
in which matter composed of up, down, and strange quarks could be absolutely
stable. In this context, we have followed the foundations laid in references Al-
cock et al. (1986); Heiselberg (1993); Alford et al. (2012); Jaikumar et al. (2006);
Alford and Eby (2008) to compute such objects. Thus, our conclusions are:

Firstly, We begin by studying the foundations of this thesis in chapter 2,
that is, the strange quark matter (SQM) hypothesis, strangelets and their mass
formula, the possibility to have a strangelets crusts on quarks stars’ surfaces,
and the strange quark matter equation of state in the context of MIT bag model.
According to the SQM hypothesis (Bodmer, 1971; Witten, 1984; Terazawa, 1979),
matter consisting by up, down and strange quarks have energy per baryon lower
than nuclear matter (see estimations in section 2.2). If this were true, there is the
possibility that there are nuggets (dimensions of a few Fermis) of strange quark
matter called strangelets, and large (dimensions ∼ km) compact objects made
entirely of such matter called strange quark stars. Here, we have focused on these
two possibilities: strangelets and strange quark stars. Strangelets have been
investigated in Farhi and Jaffe (1984); Berger and Jaffe (1987); Heiselberg (1993),
particularly, Heiselberg (1993) found the correct strangelets mass formula taken
into account the screening effects (see section 2.3) inside strangelets. Following
this latter work, we have calculated the strangelet masses, E(Z,A), in table 2.3,
which change very little for different constant surface tension values σ. On the
other hand, Jaikumar et al. (2006) explored the possibility of the existence of a
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strangelets crust on the surfaces of quark stars under certain conditions. They
proposed the possibility that the quark stars’ crust would consist of strangelets
embedded in a uniform electron background. This strangelets crust would behave
similarly to the mixed–phase of nuclei and electrons in the crust of ordinary
neutron stars. We have adopted this in section 2.4. Finally, in section 2.5, we
have explored the strange quark matter equation of state, which is fundamental
to determine the stars’ properties. We have used the MIT bag model to describe
strange quark matter and first order corrections in the strong interaction coupling
constant.

In chapter 3, we have started studying the possibility of strangelets are orga-
nized in a crystalline structure inside planet-like objects. We have called them
strangelet crystal planets (Zapata and Negreiros, 2020). We have followed the
ideas from Heiselberg (1993) and Alford et al. (2012) for computing strangelet
crystal planets (SCP). Besides, we have investigated the relevant orbital proper-
ties associated with these planet-like objects following the references Huang and
Yu (2017); Geng et al. (2015). We found in table 3.3.2 that strangelet crystal
planets have masses remind us objects like ordinary planets (or sub-stellar ob-
jects), but with slightly smaller radii than ordinary planets. Furthermore, we
have calculated possible observable signatures of such a model using the con-
cept of tidal disruption radius and amplitude of gravitational waves that could
be emitted by such systems. We have found that due to their compactness,
the tidal disruption radii of strangelet crystal planets are significantly smaller
than those of ordinary planets, however, when compared to previously proposed
strange planet models, our scenario leads to higher tidal disruption radii. In
addition, ordinary planets have a much lower strain amplitudes than the other
SQM objects whereas, strangelet crystal planets and strange planets have the
strain amplitude in the same order which could potentially be detected by the
future Einstein Telescope or the Advanced LIGO Geng et al. (2015), providing,
if detected, evidence for SQM in the form of a strange solar system. Therefore,
strangelet crystal planets exhibit intermediate behavior with possible orbital
properties not as extreme as those of strange planets (already proposed) but not
as mild as those of ordinary planets.

Our assumptions for the existence of strangelet crystal planets are based on
the following possible scenarios: first, after the birth of strange quark stars (hot
and highly turbulent environment), they may eject low-mass quark nuggets. It
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has been suggested that ejection of planetary clumps may happen simultane-
ously due to the strong turbulence of the strange star surface (Horvath, 2012;
Ren-Xin and Fei, 2003). Thus, the strange planetary system can form directly.
Second, the contamination processes during the supernova explosion that give
birth to a strange star, if the planets of the progenitor star can survive the vi-
olent process, may be contaminated by the abundant strange nuggets ejected
from the new strange star and then converted to strange planets (Geng et al.,
2015; Wolszczan and Frail, 1992). If these planets are remnants of the progenitor
star, then there is a possibility that they can be strange planets (Madsen, 1999;
Kettner et al., 1995; Caldwell and Friedman, 1991). Third, stellar and planetary
strange matter objects could be a remnant of a quark phase in the primordial
universe, which may have survived until now (Cottingham et al., 1994); such
objects could be very numerous, and they can be captured by strange stars (or
neutron stars) to form planetary systems (Chandra and Goyal, 2000). Finally,
it was suggested in Caldwell and Friedman (1991) that a high enough cosmic-
ray flux of strangelets, produced by strange star mergers, would imply that all
neutron stars should be strange stars, as they would have been contaminated by
the influx of strangelets.

We intend to pursue further the idea of strangelet crystal planets by adding
further sophistication to the model, like a better description of curvature and
surface tension effects, exploring their transport and thermal properties, and
studying their seismic properties. We are currently investigating the effects of
different values for the bag constant on the properties of these objects; this would
allow us to investigate the small strangelet flux scenario, as discussed in Bauswein
et al. (2009), in which neutron stars and strange stars could potentially coexist.
Nonetheless, we believe that the idea set forth in this work introduces interest-
ing possibilities to the already rich study of strange planets and their possible
observable signatures (Zapata and Negreiros, 2020). Finally, it is interesting to
know how many GW bursts from strange planetary systems could be observed
by future GW telescopes each year. It was estimated that the number of strange
planetary systems in our Galaxy could be ∼ 106 (Geng et al., 2015), and the
timescale for a single planetary system to undergo a collision is ∼ 105 yr. Thus,
we estimate that ∼ 106/105 = 10 coalescence events could be detected as GW
bursts by the future Einstein Telescope (see Geng et al. (2015)).

In chapter 4, we have analyzed the properties of strange quark stars (QS),
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that is, their structures and their cooling behavior as well as to quantify the
thermal relaxation of those QS. Strange quark stars are structured of a quark
matter core and crusted by matter. We have adopted two kinds of crust: a crust
made of purely nuclear matter following the BPS equation of state (Baym et al.,
1971) and a crust made of strangelets from Jaikumar et al. (2006). Both model
have the same quark matter core according to the MIT bag model equation of
state. Our goal was to identify possible differences in the cooling behavior of
each model, as well as to quantify the thermal relaxation properties of QS. As
shown by Jaikumar et al. (2006) strangelet crusts tend to be smaller than their
nuclear matter counterpart with spatial extent ∼ 20 m, while a nuclear matter
crust has a thickness ∼ 0.5 km. Given such differences, we sought to quantify
how they manifest themselves in a thermal evolution context (Zapata, J. et al.,
2022).

Our results indicate that most of the thermal differences between the two
models studied are manifested in the initial years of cooling. Hence, quark stars
with nuclear (and thus thicker) crusts display a slower cooling behavior when
compared with QS with strangelets (thinner crusts). Our assessment is that
such behavior is mostly due to the difference in crust thicknesses, as the crust
acts mostly as a blanket for the initial years of thermal evolution (Lattimer et al.,
1994; Gnedin et al., 2001; Sales et al., 2020). We have also found that the fact
that the crust of the QS’s studied is populated with strangelets (as opposed to the
traditional ions), does not seem to affect the cooling in any major manner. The
reason is that as is the case for the ions in regular NS, the strangelets are mostly
inert in the context of thermal processes, with the free electrons being the major
agents of heat conduction. In order to quantify our findings, we investigated the
thermal relaxation time of quark stars under both models studied, that is, the
typical instant when the cold wave reaches the surface of the star. Following
the study of Sales et al. (2020), we have found that the star’s relaxation time
is linearly dependent on the gravitational mass - with a more sloped curve for
the QS with strangelet crust (thus indicating a faster relaxation time). Overall
we have found that QS with strangelet crust thermalize in ∼ 1 year whereas QS
with ordinary crust do it in ∼ 100 years. We have found that this is mostly due
to the fact that strangelet crusts are significantly thinner than ordinary hadronic
ones. The different mass of the strangelets (in comparison to ordinary nuclei that
compose the crust, also affect the specific heat in the region, although this does
not seem to affect the thermal evolution in any major way.
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We aimed to investigate the thermal relaxation of quark stars as well as to
explore the thermal properties of previously proposed strangelet crust model.
We have found that there is a significant decrease in the relaxation time of QS
with strangelet crusts (corresponding to a faster thermal evolution). We have
also presented the thermal relaxation time of quark stars as a function of their
mass, which as far as we know have not been studied before. We currently are
expanding this study to consider the effects of rotation and high magnetic field
in the structure of the stars we discussed in this research.

Finally, in this thesis, we have used the strange quark matter hypothesis
and explored the manifestation of strange matter in astrophysical environments.
Under the strange quark matter hypothesis, we have focused on the context of
compact objects (quark stars crusted by strangelets) and planets-like objects
(strangelets crystal planets). We can argue that the connection between these
two objects lies in the behavior of strange matter at different densities. That
is, as the density changes, a possible equilibrium sequence of compact objects
ranges from massive strange stars (consisting of a core of strange quark matter
surrounded by crusts made of strangelets) to planets-like objects (consisting of
crystalline structure made of strangelets). We also have provided some methods
to test the strange quark matter in the astrophysical environment, such as tidal
disruption radius, orbital period, and gravitational waves signal from the possi-
ble existence of strangelet crystal planets. Additionally, thermal behavior and
relaxation times from possible existence of strange quarks crusted by strangelets.
In Chapter 3, we used strangelets with large A values to develop strangelets crys-
tal planets. Hence, future works can be developed from the following question:
What kind of objects would have for strangelets with small A . 100? We think
that if we consider strangelets with A small, the result would be white dwarf-like
objects. Thus, we would have a complete equilibrium sequence of compact ob-
jects. However, in this case, it is necessary to study the behavior of strangelets
with small A, their mass formula, and so on. Then, we could explore the range
of white dwarf densities obtaining white dwarf-like objects and compare them
with the ordinary white dwarf stars.
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Appendix A

Physical Constants

The following Table A lists the values of physical constants relevant to this thesis.

Table A.1: Table of physical constants.

Physical constant Symbol Value
Electron charge e 1.602× 10−19 C
Electron mass me 9.10938356× 10−31 kg
Speed of light c 2.99792× 108 m/s
Planck’s constant ~ 1.0546× 10−34 J.s
Boltzmann’s constant KB 1.3807× 10−23 J.K−1

Stefan-Boltzmann’s constant σSB 5.6697× 10−8 Wm−2K−4

Bohr radius rBohr 5.29× 10−11 m
Baryon number density ρ0 0.16 fm−3

Density of nuclear matter ε0 2.8× 1014 g/cm3

Gravitational constant G 6.6726× 10−11 m3kg−1s−2

Solar mass M� 1.99× 1030 kg
Jupiter’s mass MJ 10−3M�
Parsec pc 3.08568× 1016 m
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Appendix B

Fermi-gas Equation of State
for Nucleons and Electrons

Here, we describe the equation of state for nucleons and electrons appropriate for
the description of compact objects. Here, we consider an idealized composition
of dense matter for compact stars (white dwarfs and neutron stars), that is,
a non-interacting neutrons, protons, and electrons gas in such proportions at
each baryon number density that the gas has its lowest possible energy (i e.,
beta equilibrium). Additionally, we must demand that the minimum energy be
found subject t the constraint of electrical neutrality. Baryon density is usually
employed as an independent variable in calculating an equation of state because
baryon number is conserved. We consider a prototype for any more sophisticated
model of equation of state of dense charge-neutral matter.

We deal with a degenerate ideal Fermi gas (since neutrons, protons, and
electrons are fermions). Ideal in this context means that interactions are ignored.
Degenerate means that all quantum states up to a given energy, called the Fermi
energy, are occupied. We wish to calculate the equation of state, which is the
pressure and energy density at a common value of the density, or alternately,
the value of the pressure at a given energy density. Each Fermion type (n,p,e)
contributes to the energy density, pressure, and number density according to
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Glendenning (2012)

ε = 1
4π2

[
µk

(
µ2 − m2

2

)
− 1

2m
4ln

(
µ+ k

m

)]
,

p = 1
12π2

[
µk

(
µ2 − 5m2

2

)
+ 3

2m
4ln

(
µ+ k

m

)]
,

ρ = k3

3π2

(B.1)

where µ = (m2 + k2)1/2, is the Fermi energy (or the chemical potential), and k
the Fermi momentum.

The high-density limit k >> m, which may also be called the relativistic
limit if m is not ignored, or the ultra-relativistic limit if it can be. The results
are Glendenning (2012)

ε ≈ 1
4π2

[
k4 − 1

2m
4ln

(2k
m

)]
,

p ≈ 1
12π2

[
k4 + 3

2m
4ln

(2k
m

)]
.

(B.2)

The logarithmic terms are small compared to k4 in the ultra-relativistic limit, so
we have

ε→ 3p ≈ 1
4π2 (3π2ρ)4/3 (high density, k >> m) (B.3)

where ρ is the density of fermion type considered. The very low density, the
non-relativistic approximation is:

ε ≈ ρm+ (3π2ρ)5/3

10π2m
,

p ≈ (3π2ρ)5/3

15π2m
(low density, k << m)

(B.4)

It is observed that the term ε proportional to ρ does not contribute to the
pressure. These are the contributions of each type of fermion to the equation of
state.



Appendix C

Tolman-Oppenheimer-Volkoff
Equations

Here, we proceed to derive the stellar structure equations of a non-rotating,
static, spherically symmetric compact star. The metric of such an object has the
form Weber (2017)

ds2 = −e2Φ(r)dt2 + e2Λ(r)dr2 + r2dΩ2, (C.1)

where Φ(r) and Λ(r) are the radially metric functions and, dΩ2 = dθ2+sin2 θdφ2.
Introducing the covariant components of the metric tensor as,

gtt = −e2Φ, grr = e2Λ, gθθ = r2, gφφ = r2sin2θ. (C.2)

The contravariant components of the metric tensor are obtained via the relation:
gµνgνλ = δµν , where δµν is the four-dimensional Kronecker delta. So we find

gtt = −e−2Φ, grr = e−Λ, gθθ = r−2, gφφ = 1
r2sin2θ

(C.3)

Because of the underlying symmetries, the only functional dependence that
enters the metric is the dependence on radial distance r, measured from the
star’s origin. We can also find the mixed components of the metric tensor (re-
membering gµλ = gµνgνλ, and the metric tensor obey gµλ = δµν ) and therefore:
gtt = grr = gθθ = gφφ = 1. The determinant of gµν is from (C.2):

g ≡ det(gµν) = −e2Φe2Λr4sin2θ. (C.4)
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With these things, we can now proceed to calculate the Einstein tensor associated
with the metric (C.2). To do that, we need to find the Riemann tensor Rτµσν and
the curvature scalar R given in terms of the components of the metric tensor
and derivatives thereof. The source of the gravitational field for the static star
model consists simply of the matter that makes up the star. Thus, the energy-
momentum tensor will be solely related to the properties of the matter that
makes up the star.

First, we determine the Christoffel symbols Γσµν . The non-vanishing symbols
to the form of line element (C.1) of a spherically symmetric body are,

Γrtt = e2Φ−2ΛΦ′,Γttr = Φ′,Γrrr = Λ′,

Γθrθ = r−1,Γφrφ = r−1,Γrθθ = −re−2Λ,Γφθφ = cosθ

sinθ

Γrφφ = −rsin2θe−2Λ,Γθφφ = −sinθcosθ.

(C.5)

Where primes denote differentiation with respect to the radial coordinate r, (Φ′ ≡
dΦ/dr and Φ′′ ≡ d2Φ/dr2). With the Christoffel symbols we calculate of the
Riemann tensor Rτµνσ, the Ricci tensor Rµν and the Ricci scalar R, respectively,
of which the Einstein tensor is composed (see in Weber (2017)). After some
algebra, the non-vanishing components of the Riemann tensor:

Rtrtr = −Φ′′ − (Φ′)2 + Φ′Λ′,

Rtθtθ = −rΦ′e−2Λ, Rtφtφ = −rΦ′sin2θe−2Λ,

Rrttr = {−Φ′′ − (Φ′)2 + Φ′Λ′}e2Φ−2Λ,

Rrθtθ = rΛ′e−2Λ, Rrφrφ = Λ′rsin2θr−2Λ,

Rθttθ = −Φ′re2Φ−2Λ, Rθrrθ = −1
r

Λ′,

Rθφθφ = sin2θ(1− e−2Λ), Rφttφ = −Φ′re2Φ−2Λ,

Rφrrφ = −1
r

Λ′, Rφθθφ = −1 + e−2Λ.

(C.6)
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The components of Ricci tensor are

Rtt = {−Φ′Λ′ + Φ′′ + (Φ′)2 + 2r−1Φ′}e2Φ−2Λ,

Rrr = −Φ′′ − (Φ′)2 + Φ′Λ′ + 2
r

Λ′,

Rθθ = {−rΦ′ + rΛ′ + e2Λ − 1}e−2Λ,

Rφφ = −sin2θ{rΦ′ − rΛ′ − e2Λ + 1}e−2Λ,

(C.7)

The Ricci scalar has the form

R = {+2Φ′Λ′r2 − 2Φ′′r2 − 2(Φ′)2 − 4rΦ′ + 4rΛ′ + 2e2Λ − 2}r−2e−2Λ. (C.8)

The Einstein tensor, Gµν , could now be calculated. However, it is more conve-
nient to transform Gµν to its mixed representation Gµν , according to the rules
gµκGκν and summing over κ. Thus, the Gµν tensor in the mixed representation
reads

Gµν ≡ Rµν −
1
2δ

µ
νR = 8πTµν . (C.9)

with the energy-momentum tensor:

Tµν = (ε+ P )dx
µ

dτ

dxν
dτ

+ δµνP. (C.10)

where T tt = −ε and T rr = T θθ = T φφ = P .

The components of the Einstein tensor in the mixed representation

Gtt = Rtt −
1
2R = e−2Λ

( 1
r2 − 2Λ′

r

)
− 1
r2 ,

Grr = Rrr −
1
2R = e−2Λ

(
2Φ′

r
+ 1
r2

)
− 1
r2 ,

Gθθ = Rθθ −
1
2R = e−2λ

(
Φ′′ − Φ′Λ′ + (Φ′)2 + Φ′ − Λ′

r

)
,

(C.11)

and Gφφ = Gθθ. We can therefore go back to Einstein’s field equations and obtain
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the differential equations that determine the metric inside the star:

e−2Λ
(

2Λ′

r
− 1
r2

)
+ 1
r2 = 8πε,

e−2Λ
(

2Φ′

r
+ 1
r2

)
− 1
r2 = 8πP,

e−2Λ
(

Φ′′ − Φ′Λ′ + (Φ′)2 + Φ′ − Λ
r

)
= 8πP,

(C.12)

and Gφφ = Gθθ, and T
φ
φ = T θθ . The stellar structure equations in their final form

are now readily found as follows. Let us introduce the quantity m(r) as,

m(r) ≡ 4π
∫ r

0
drr2ε(r),→ dm

dr
= 4πr2ε(r). (C.13)

which can be interpreted as the amount of mass energy contained in a sphere
of radius r. At the star’s origin, we impose the condition m(0) = 0. With
this definition, Einstein’s field equation (C.12) can be integrated. From the first
expression of (C.12), we have

e−Λ = 1− 2m
r
. (C.14)

In the next step we add the first two expression from (C.12) which gives

8π(ε+ P ) = 2
r
e−2Λ(Λ′ + Φ′). (C.15)

The metric function Λ can be eliminated (using (C.14)) and after some algebraic
manipulations ones arrives at

8πP = −2m
r3 + 2

(
1− 2m

r

) Φ′

r
. (C.16)

and then, this expression for Φ gives

Φ′ = 4πr3P +m

r2(1− 2m/r) (C.17)

Finally, we arrive for the pressure gradient inside a spherically symmetric con-
figuration

dP

dr
= − [ε(r) + p(r)][m(r) + 4πr3p(r)]

r(r − 2m(r)) (C.18)

With the central pressure P (r = 0) = P (εc) and εc as the star’s central mass
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energy density. This final result is known as the Tolman-Oppenheimer-Volkoff
(TOV) equation Tolman (1939). This equation is fundamental to the description
of the structure of a hydrostatically stable stellar configuration treated in the
framework of Einstein’s general theory of relativity. As in classical Newtonian
mechanics, so also in Einstein’s theory. The force that acts on a mass shell
inside the star is the pressure force of the stellar matter enclosed in that shell,
which acts in the radial outward direction. Gravity pulls on that mass shell in the
radial inward direction such that both forces, because of hydrostatic equilibrium,
counterbalance each other.



Appendix D

Stellar Cooling Equations

We present the mathematical model used to describe the thermal evolution of a
star. The star is assumed to be a rigid object, so there is no transport of matter.
Thus, there is no heat exchange by convection, there is no differential rotation1,
there is no heat from friction. Even a rigid rotation for the star is not assumed, as
well as in the calculation of its structure. Therefore, the equations adopted and
the quantities involved, such as temperature T , will all be spherically symmetric,
depending only on the radial position r and the time t.

The exchange of energy will take place, finally, only by thermal conduction,
inside the star; and irradiation, on its surface. It is also necessary to take into
account the amount of energy lost at each position in the interior of the star due
to the escape of neutrinos Weber (2017); Thorne (1977); Van Riper (1991). For
each location within the star, the expression for the conservation of energy must
then have three terms. One that denotes the exchange of heat by conduction
between a given location and adjacent regions, a second that represents the
amount of energy lost by the escape of neutrinos from that location, and the
last one related to the variation of the internal energy, and therefore of the
temperature, of the matter at that location.

The amount of energy lost by neutrinos is determined by a quantity known
as the neutrino emissivity, εν = εε(r, T ), a function of position r and temperature
T . The neutrino emissivity is calculated separately from the reaction probability
rate of each neutrino-producing process. Thus, before calculating the cooling,
the behavior of neutrino emissivity εν(r, T ) is already known. Therefore, this
quantity dictates, at each instant, the amount of energy per unit of volume, per

1Differential rotation is seen when different parts of a rotating object move with different
angular velocities (rates of rotation) at different latitudes and/or depths of the body and/or in
time. This indicates that the object is not solid.
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unit of time, lost in a given position within the star.

The conservation of energy alone is not, however, sufficient to show how
the system evolves, since there are two other terms in it that, in principle, are
indeterminate. However, the heat flux by thermal conduction can be determined
by the heat transport equation, which relates such flux to a given temperature
gradient. The amount of energy that flows from the warmer to the cooler layer
depends on the thermal conductivity κ = κ(r, T ) of matter at a given location
and temperature. With the determination of the heat flux and the energy lost by
the neutrinos, conservation of energy dictates how the temperature will change
at a given position. How much the temperature varies depends on the specific
heat cv of that location, for a given value of T .

The differential equations that govern, therefore, the thermal evolution of a
star are Weber (2017); Thorne (1977); Van Riper (1991)

∂(l(r, T )e2Φ(r))
∂m

= − 1
ε(r)

√
1− 2m(r)/r

×(
εν(r, T )e2Φ(r) + cv(r, T )∂(T (r, T )eΦ(r))

∂t

) (D.1)

∂(T (r, T )eΦ(r))
∂m

= − (l(r, T )eΦ(r))
16π2r4κ(r, T )ε(r)

√
1− 2m(r)/r

, (D.2)

The first is precisely the energy balance equation, or energy conservation, and
the second is the heat transport equation. They are, therefore, the luminosity
gradient l = l(r, t) and the temperature gradient T = T (r, t), respectively. The
luminosity gradient represents the amount of energy that is lost per unit of time
from a given layer by thermal conduction. Thus, if we take the difference of the
luminosity at a certain position r+dr with the luminosity at r and divide it with
the volume (dV = 4πr2dr) of the layer comprised between these two positions,
we obtain (in the limit dr → 0), the amount of energy lost per unit volume, per
unit time, at a given position within the star:

lim
dr→0

l(r + dr)− l(r)
4πr2dr

= 1
4πr2

∂l

∂r
(D.3)

Fig. D.1 illustrates what is expressed in Eq. (D.3) The outgoing arrow indicates
the position r of a certain layer of thickness dr and volume dV = 4πr2dr, while
the incoming arrows indicate the luminosity on spherical surfaces of radius r
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Figure D.1: Illustration of the amount of energy lost in a certain layer of the
star.

and r + dr (they point to the center of the star, as in the initial phases of
the star’s cooling, the luminosity inside the star is negative, that is, heat flows
from the most superficial layers towards the center, this is because the intense
emissivity of neutrinos in the innermost layers lowers the temperature in these
regions, generating a temperature gradient of so that the center is cooler than
the outermost layers).

It happens that the star is a very compact object (for example NS and QS),
causing its gravitational field to be intense, thus curving the surrounding space-
time. This curvature ends up altering the energy flow between the layers due
to the redshift that energy suffers when crossing the layer and also to the time
dilation existing between these two surfaces, causing it to be corrected by the
factor eΦ(r) (see Weber (2017)). Also, because of gravity we must use the proper
value of the layer thickness, corrected by the factor eΛ(r) (where e2Φ(r) and e2Λ(r)

are the temporal component of the metric and the radial component of the
metric, respectively).

The amount of energy lost per unit volume, per unit time, ε, through thermal
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conduction to a given position r, is given by:

ε(r) = 1
4πr2

1
eΛ(r)

∂(le2Φ(r))
∂r

= 1
4πr2

√
1− 2m(r)

r

∂(le2Φ(r))
∂r

= 1
4πr2

√
1− 2m(r)

r

dm

dr

∂(le2Φ(r))
∂r

= 1
4πr2

√
1− 2m(r)

r
(4πr2ε(r))∂(le2Φ(r))

∂r

= ε(r)

√
1− 2m(r)

r

∂(le2Φ(r))
∂r

(D.4)

In order to obtain the two other terms in parentheses in Eq. (D.1) consider
the amount of energy lost by neutrino emission per unit volume, per unit time;
and the rate of change of internal energy per unit volume of matter, denoted,
respectively, by εν(r, T ) and ρ ∂∂t

(
u(r)
ρ(r)

)
, where u and ρ being the internal energy

per unit volume and the baryonic number density, respectively. These terms
have to be corrected also by the e2Φ(r) term, in addition to taking the derivative
with respect to proper time ∂

∂τ = 1
eΦ(r)

∂
∂t . We therefore obtain

εν(r, T ) · e2Φ(r),

ρ(r)
eΦ(r)

∂

∂t

(
u(r)
ρ(r)

)
· e2Φ(r).

(D.5)

The second term can be rewritten as:

ρ(r)
rΦ(r)

∂

∂t

(
u(r)
ρ(r)

)
· e2Φ(r) = ρ(r) ∂

∂T (r, t)

(
u(r)
ρ(r)

)
∂T (r, t)
∂t

· eΦ(r), (D.6)

such that the derivative with respect to temperature is made at constant volume
and baryonic number (there is no expansion or contraction of the layer in ques-
tion, and the reactions that occur between the particles conserve the baryonic
number). The expression c̄v = ∂

∂T (r,t)

(
u(r)
ρ(r)

)
is the definition of specific heat at

constant volume per particle, which in turn is equal to cv/ρ(r). Then, the term
in (D.6) can therefore be rewritten as:

cv
∂T (r, t)
∂t

· eΦ(r) = cc
∂(T (r, t)eΦ(r))

∂t
(D.7)
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In order that, for each position r, energy is conserved, the amount of energy
per unit volume, per unit time, that leaves this position by conduction, plus the
energy also per unit volume and time that leaves this position. position, due to
neutrino leakage, must be equal to the rate of decrease of the internal energy
density:

ε(r)

√
1− 2m(r)

r

∂(le2Φ(r))
∂m

+ εν(r, T ) · e2Φ(r) = −cv
∂(T (r, r)eΦ)(r)

∂t
, (D.8)

where we get Eq. (D.1).

Equation (D.2) can be obtained by generalizing the classical theory of heat
transport. The expression for the heat flux through a cross-sectional area A is
given by:

l = −κA∂T
∂x

. (D.9)

For a spherical shell, the cross–section has area A = 4πr2, with heat propagating
in the radial direction r. the previous equation becomes:

l = −4πr2κ
∂T

∂r
. (D.10)

Here it is also necessary to make the necessary relativistic corrections (see Weber
(2017) for more details). In this way, Eq. (D.10) takes the following form:

leΦ = −4πr2κ

√
1− 2m(r)

r

∂TeΦ

∂r
(D.11)

after a little algebra on the previous equation, we get:

leφ = −4πr2κ

√
1− 2m(r)

r

dm

dr

∂TeΦ

∂r

leφ = −4πr2κ

√
1− 2m(r)

r
(4πr2ε(r))∂Te

Φ

∂r

leφ = −16π2r4κε(r)

√
1− 2m(r)

r

∂TeΦ

∂r

(D.12)

and, finally, from Eq. (D.12), we obtain Eq. (D.2).

In this research, Eqs. (D.1) and (D.2) were solved numerically. The emissivity
of neutrinos εν is given by an analytical expression, being different in the crust
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and in the core of the star. The same is true for the specific heat cv and the
thermal conductivity κ. However, other quantities present in these equations,
as the accumulated gravitational mass m(r) and the energy density ε(r), were
previously obtained from the structure equations, and from the equation of a
microscopic model from which one obtains the equation of state (EOS) of matter
inside the star relating ε and the pressure p.
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