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Abstract

We study the single-band Hubbard model under the action of an external magnetic field using the cu-

mulant Green’s functions method [CGFM]. The starting point of the method is to diagonalize a cluster

containing N correlated sites (“seed”) and employ the cumulants calculated from the cluster solution to

obtain the full Green’s functions for the lattice. All calculations are done directly, and no self-consistent

process is needed. We benchmark the one-dimensional results for the gap, the ground-state energy, and

the double occupancy as functions of the electronic correlation U at half-filling obtained from the CGFM

against the corresponding exact results of the thermodynamic Bethe ansatz and the quantum transfer

matrix methods. The results for the CGFM tend systematically to the exact one as the cluster size in-

creases. The particle-hole symmetry of the density of states is fulfilled. The method can be applied to any

parameter space for one, two, or three-dimensional Hubbard Hamiltonians and can also be extended to

other strongly correlated models, like the Anderson Hamiltonian, the t−J , Kondo, and Coqblin-Schrieffer

models.

We also calculate the effects of positive magnetic fields in the occupation numbers, and identify

a finite cluster effect (Phase VI) characterized by a partially filled band and negative magnetization

(nup < ndown). This phase survives for clusters containing up to N = 8 sites but tends to disappear as

the size of the cluster increases. We calculate the phase diagram, including the new cluster phase, using

the magnetic field and chemical potential as parameters for N = 7 and N = 8. We include a simple

application to spintronics, where we used the clusters as correlated quantum dots to realize a single-

electron transistor when connected to Hubbard leads and calculate the conductance of the transistor.

Keywords: Hubbard model. Green’s functions. Cumulant expansion. Mott insulator. Quantum

phase transition. Phase diagram.
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Resumo

Estudamos o modelo de Hubbard de banda única sob a ação de um campo magnético externo usando

o método das funções de Green cumulantes [CGFM]. O ponto de partida do método é diagonalizar um

cluster contendo N śıtios correlacionados (“semente”) e empregar os cumulantes calculados a partir da

solução do cluster para obter as funções de Green completas para a rede. Todos os cálculos são feitos

diretamente, e nenhum processo auto-consistente é necessário. Nós comparamos os resultados unidimen-

sionais para o gap, a energia do estado fundamental e a ocupação dupla como funções da correlação

eletrônica U em metade do preenchimento obtidos a partir do CGFM com os resultados exatos corres-

pondentes do ansatz de Bethe termodinâmico e da matriz de transferência quântica. Os resultados para

o CGFM tendem sistematicamente para o exato à medida que o tamanho do cluster aumenta. A simetria

part́ıcula-buraco da densidade de estados é satisfeita. O método pode ser aplicado a qualquer espaço de

parâmetros para Hamiltonianos de Hubbard uni, bi ou tridimensionais e também pode ser estendido para

outros modelos fortemente correlacionados, como o Hamiltoniano de Anderson, os modelos t− J , Kondo

e Coqblin-Schrieffer.

Também calculamos os efeitos de campos magnéticos positivos nos números de ocupação e iden-

tificamos um efeito de cluster finito (Fase VI) caracterizado por uma banda parcialmente preenchida

e magnetização negativa (nup < ndown). Esta fase sobrevive para clusters contendo até N = 8 śıtios,

mas tende a desaparecer à medida que o tamanho do cluster aumenta. Calculamos o diagrama de fases,

incluindo a nova fase de cluster, usando o campo magnético e o potencial qúımico como parâmetros para

N = 7 e N = 8. Inclúımos uma aplicação simples para spintrônica, onde usamos os clusters como pontos

quânticos correlacionados para realizar um transistor de um único elétron quando conectado a terminais

Hubbard e calculamos a condutância do transistor.

Palavras-chave: Modelo de Hubbard. Funções de Green. Expansão em cumulantes. Isolante de

Mott. Transição de fase quântica. Diagrama de fase.
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Chapter 1

Introduction

The Hubbard model was proposed independently in 1963 by Gutzwiller [4], Kanamori [5], and Hubbard

[6]. Hubbard worked hard to understand the model and published a series of six papers in the period

[1963 − 1967] [6–11], where he developed different approaches for solving it. The Hubbard Hamiltonian

is the simplest interacting particle model in a lattice: it extends the tight-binding model, accounting

for the electron-electron correlation U between electrons on the same site, neglecting the effects of non-

local correlations, multiple orbitals, or higher-order hoppings. It was originally developed to describe

the properties of narrow partially filled d band in transition metals. It has been shown that the model

describes the relevant collective characteristics of these materials, namely itinerant magnetism and metal-

insulating transition. For a pertinent review, see the references [3, 12,13].

The one-dimensional [1D] Hubbard model was solved exactly in a seminal paper by E. H. Lieb

and F. Y. Wu [14], employing the technique of the Bethe ansatz [15]. They showed that it could reduce the

Hamiltonian spectral problem to a set of algebraic equations. They calculated analytically the ground-

state energy demonstrating that, at half-filling, the model goes through a Mott metal-insulator transition

[8, 16] at temperature T = 0 and local critical electron correlation Uc = 0 [17]. A complete and didactic

discussion of the development of the subject can be found in reference [3].

The following fundamental advance in the Bethe ansatz formulation was attained by Takahashi,

who employed a particular classification of the Lieb-Wu solutions in terms of a “string hypothesis” [3].

He derived an infinite set of non-linear integral equations at finite temperatures and calculated the Gibbs

free energy [18–20]. Those integral equations are known as the thermodynamic Bethe ansatz [TBA] or

TBA equations. They are fundamental to the study of low-temperature properties of the model but

challenging to implement numerically. One step further was attained by employing a different route

than TBA equations, by the development of the quantum transfer matrix [QTM] method [21]. The

calculation of the properties of the 1D Hubbard model has been addressed in recent years employing

different approaches associated with TBA or QTM methods [22–25].

Another class of approximations, useful in some circumstances, that approximate the many-body

wave function as an antisymmetric function of one-body orbitals includes the mean-field Hartree-Fock

[HF] approximation, the random phase approximation [RPA] [26], and the configurational interaction
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technique [CI] [27]. The latter is based on a linear combination of Hartree-Fock wave functions to restore

some broken symmetries of the mean-field approach and recover some features of the exact 1D Bethe

ansatz solution [27]. These approximations have several drawbacks, either limiting the effect of quantum

many-body correlations, as in the HF approximation, or converging very slowly, as in CI applications.

Cluster methods, which approximate the physics of the infinite system by solving the problem

for a corresponding finite cluster, are promising as the interaction part can be treated numerically exact.

One type of cluster methods is the direct cluster approach, which uses exact diagonalization to study the

effect of short-range correlations for a small isolated cluster. However, phase transitions and long-range

order can not occur in a system of finite size. Another type of cluster methods includes the dynamical

mean-field theory [DMFT] [28], where the lattice model is mapped onto an impurity model consisting of

a correlated site coupled to an infinite number of uncorrelated “bath” sites. The bath must be determined

self-consistently. The DMFT directly works in the thermodynamic limit and is able to describe phases

with long-range order. However, it fails to incorporate the effects of short-range correlations. This has

been the reason for the development of cluster extensions of the DMFT [C-DMFT] [29] that replaces the

correlated impurity site by a finite cluster to obtain both short-range correlations and long-range order.

Beyond mean-field approximations, Quantum Monte Carlo [QMC] is a way to directly study the

many-body problem [30–32]. The QMC algorithm for clusters is based on the Hirsch and Fye algorithm

which was developed to simulate the Anderson impurity problem [33] and was later generalized to solve

the C-DMFT [34]. A major advantage of QMC is that there is no restriction on the form of the wave

function, hence any insight, as regards the nature of the many-body correlations, can be built into the wave

function and tested. Other advantages include the ability to treat relatively large clusters, and that it is

numerically exact with small and controllable sources of systematic and statistical error. Its disadvantages

include an unpredictable numerical minus sign problem, difficulties to reach low temperatures due to the

processing of a large number of Matsubara frequencies that must be considered in the imaginary axis,

difficulties in calculating real-frequency results, and the numerical expense of the approach [30–32].

The Hubbard model has been the subject of a tremendous revival of interest in the eighties

after the discovery of high temperature (high-Tc) cuprate superconductors and has been considered

the most promising model to explain strong correlations. In recent years, numerical simulations on

the two-dimensional [2D] Hubbard model show regions on the parameter space that exhibits d−wave

superconductivity, antiferromagnetic correlations, stripes, pseudogaps, Fermi liquid, and bad metallic

behaviour [13]. However, the connection of these phases with real high-Tc superconductors is not direct.

A new interest in Hubbard model physics came from the fast and efficient experiments of ultracold

atoms in optical lattices after achieving the Bose-Einstein condensation. This research area set an ideal

platform to verify and explore new physics associated with correlated electronic systems [35–37]. The

confinement of fermionic atoms in optical lattices allows the observation of the Mott metal-insulator

transition, antiferromagnetic correlations, and spin-charge separation in one-dimensional systems with

hundreds of lattice sites [38–42]. Recently, the level of control and flexibility (geometry-lattice) was

improved in an eight-site Fermi-Hubbard chain near half-filling achieved with lithium-6 atoms in an

optical tweezer array [43], which provides another motivation for the present study.
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The present work belongs to a broad class of exact diagonalization [ED] methods that generally

start from the diagonalization of a finite number of lattice sites that constitutes a cluster and employs

an embedding process to reconstruct the total Hamiltonian [44]. One example of this technique is the

variational cluster approach [VCA] [2, 45]. Here, we developed the cumulant Green’s functions method

[CGFM] for the single-band Hubbard model in the presence of an external magnetic field and published

the resulting work in the arXiv repository [46]. The general formalism of the cumulant expansion, as

outlined here, has been previously applied to treat the impurity Anderson model [47] and a detailed

review can be found in the arXiv repository [48]. Still, it can be generalized to the Anderson or Hubbard

lattice models and variants like the t− J , Kondo, and Coqblin-Schrieffer models.

This work can be divided into two parts. The first part (chapter 2) is comprised of the study

of methods currently used to treat the Hubbard Hamiltonian. The second part (chapters 3 and 4) is

comprised of the development of a novel alternative methodology to these methods, the CGFM, and the

results obtained from it. Therefore, this work has the following structure:

� In chapter 2, the Hamiltonian of the model is introduced in the presence of an external magnetic

field, and a brief discussion of its physical meaning is made. In the sections contained in this

chapter, several pre-established methods to treat the model will be presented and discussed, such

as the atomic limit, the Hubbard I approximation, the analytical solution for the 1D half-filled case

(the Bethe ansatz solution), and the 1D thermodynamic Bethe ansatz [TBA] solution outside of

the half-filled case. The 1D results will be used as a benchmark for the CGFM;

� In chapter 3, the core of this thesis, we introduce the basic ideas of the cumulant Green’s functions

method in four steps: 1. Choice of a cluster of correlated sites to solve exactly employing exact

diagonalization [ED] methods; 2. Using the Lehmann representation, we calculate all atomic Green’s

functions associated with the possible transitions of the Hubbard model; 3. Employing these atomic

Green’s functions, we obtain the atomic cumulants that will be used as an approximation to 4.

Calculate the Green’s functions for the lattice. From the Green’s functions for the lattice, the

density of states, the single-particle gap, the occupation numbers, the ground-state energy, and the

ground-state phase diagram will be calculated;

� In chapter 4, we present the results for the method. In section 4.1, we benchmark the single-particle

gap, the double occupancy, and the ground-state energy as functions of the electronic correlation

obtained from the CGFM against the Bethe ansatz [BA], the Hartree-Fock [HF] approximation,

and the variational cluster approach [VCA] and also show the density of states and the occupation

numbers at zero magnetic field. In section 4.2, we present a discussion of the effect of the magnetic

field on the occupation numbers and present the phase diagram in magnetic field vs. chemical

potential coordinates. In section 4.3, we present a simple application of the method to spintronics,

where we use the clusters as correlated quantum dots to realize a single-electron transistor when

connected to Hubbard leads and calculate the conductance of the system;

� In chapter 5, we discuss the conclusions and perspectives of the work.



Chapter 2

The Hubbard model

The single-band Hubbard model [6] is the simplest many-body Hamiltonian that allows a relevant de-

scription of two opposite trends in systems where electronic correlations are essential. The first trend

is the electron delocalization that favours metallic behaviour, accounted for by the kinetic energy that

describes electrons moving from site to site in the crystal lattice. The second trend is the localization

of electrons in atomic sites, favouring the Mott transition [49] and magnetic ordering, accounted for by

the local electronic correlation. The single-band Hubbard model in the presence of an arbitrary magnetic

field is given by

H = H0 +H1, (2.1)

where H0 represents the unperturbed local terms

H0 =
∑
i

[ϵ0(ni↑ + ni↓)− himi] +
U

2

∑
iσ

niσniσ̄, (2.2)

and the perturbation H1 is the kinetic energy

H1 = −
∑
i ̸=j,σ

tijc
†
iσcjσ. (2.3)

The operators c†iσ and ciσ represent the creation and annihilation of electrons, respectively, and

niσ = c†iσciσ is the electron number operator. The first term of the unperturbed local Hamiltonian, H0,

represents the local energy E0 of the electrons subtracted from the chemical potential µ, (ϵ0 = E0 − µ),

here assumed site-independent. The second term is the magnetization defined by mi = ni↑ − ni↓, with

hi being the site spin-dependent external magnetic field. The last term represents the local electronic

correlation term, characterized by the parameter U , which favors the localization of electrons on the

same site. The correlation energy is responsible for the Mott transition exhibited by this Hamiltonian.

In the cumulant expansion of the Hubbard model [1] the kinetic energy term, H1, is considered the

perturbation, where (−tij) corresponds to the electron transfer integral between the i and j sites of the

crystal lattice. In the single-band Hubbard model, each site has only one orbital that can be occupied by

no electron (|0⟩), a spin up electron (|↑⟩), or a spin down electron (|↓⟩, or by two electrons of opposing

spin (|↑↓⟩ = |d⟩).



5

2.1 The Green’s functions of Zubarev and the atomic limit

The method that will be used in this work is based on the Green’s functions technique described by

Zubarev [50]. The definitions and equations for this technique is introduced below, and the density of

states in the atomic limit is discussed.

Let X be any operator. Then

⟨X⟩ = Z−1 tr
[
Xe−β(H−µN)

]
, (2.4)

where Z = tr
[
e−β(H−µN)

]
, H is the Hamiltonian, N is the total number operator, β = 1

kBT , kB is the

Boltzmann constant, T is the absolute temperature and µ is the chemical potential of the electrons.

Now let A(t) = eiHtA(0)e−iHt (in units where h̄ = 1) and B(t′) be two operators. The retarded

(+) and advanced (−) Green’s functions can be defined by

⟨⟨A(t);B(t′)⟩⟩(±)
= ∓iθ [±(t− t′)]

⟨
[A(t), B(t′)]η

⟩
, (2.5)

where [A,B]η = AB− ηBA, η = ±1 (depending if the operators are fermionic or bosonic) and θ(x) is the

step function θ(x) = 1 if x > 0, 0 otherwise. These Green’s functions satisfy the Heisenberg equation of

motion [EOM]

i
d

dt
⟨⟨A(t);B(t′)⟩⟩(±)

= δ(t− t′)
⟨
[A(t), B(t′)]η

⟩
+ ⟨⟨[A(t),H] ;B(t′)⟩⟩(±)

. (2.6)

Since ⟨⟨A(t);B(t′)⟩⟩(±)
are functions of t− t′ only, the Fourier transform

⟨⟨A;B⟩⟩(±)
E =

∫ ∞

−∞
⟨⟨A(t);B(0)⟩⟩(±)

eiEtdt (2.7)

can be defined for real E. For the case of the retarded function (+), the integral also converges to complex

E since Im{E} > 0, then ⟨⟨A;B⟩⟩(+)
E is a regular function of E in the upper half of the complex plane in

E. Similarly, ⟨⟨A;B⟩⟩(−)
E is a regular function in the lower half of the complex plane in E. So, one can

define

⟨⟨A;B⟩⟩E =

⟨⟨A;B⟩⟩(+)
E if Im{E} > 0

⟨⟨A;B⟩⟩(−)
E if Im{E} < 0

, (2.8)

which will be a regular function throughout the complex plane in E with the exception of the real axis.

From (2.6) it can be shown that ⟨⟨A;B⟩⟩E satisfies

E ⟨⟨A;B⟩⟩E =
⟨
[A,B]η

⟩
+ ⟨⟨[A,H] ;B⟩⟩E , (2.9)

which is the expression that will be used to calculate the Green’s functions throughout this work.

Let us go back to the Hubbard Hamiltonian given in equation (2.1) at zero magnetic field. At

the atomic limit there is no electron hopping between sites, so tij = 0. Then:

H =
∑
iσ

ϵ0c
†
iσciσ +

U

2

∑
iσ

niσniσ̄. (2.10)

Using the equations of motion for the Green’s functions of Zubarev [50], one gets for the single-

particle GF,

ω ⟨⟨A,B⟩⟩ω =
⟨
[A,B]+

⟩
+

⟨⟨
[A,H]− , B

⟩⟩
ω
. (2.11)
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If A = ciσ and B = c†jσ, it follows that

ωGσ
ij(ω) = ω

⟨⟨
ciσ; c

†
jσ

⟩⟩
ω
=

⟨[
ciσ, c

†
jσ

]
+

⟩
+

⟨⟨
[ciσ,H]− ; c†jσ

⟩⟩
ω
. (2.12)

Using fermionic commutation ([A,B]−) and anti-commutation ([A,B]+) relations and their properties

[A,BC]− = [A,B]− C +B [A,C]− ,

[A,BC]+ = [A,B]+ C −B [A,C]− ,[
c†i , cj

]
+
= δij ,[

c†i , c
†
j

]
+
= 0,

[ci, cj ]+ = 0,

(2.13)

it follows that

ωGσ
ij(ω) = δij +

⟨⟨
(ϵ0ciσ + Uniσ̄ciσ) ; c

†
jσ

⟩⟩
ω
. (2.14)

However, ⟨⟨
(ϵ0ciσ + Uniσ̄ciσ) ; c

†
jσ

⟩⟩
ω

= ϵ0

⟨⟨
ciσ; c

†
jσ

⟩⟩
ω
+ U

⟨⟨
niσ̄ciσ; c

†
jσ

⟩⟩
ω

= ϵ0G
σ
ij(ω) + U

⟨⟨
niσ̄ciσ; c

†
jσ

⟩⟩
ω
.

(2.15)

Then,

(ω − ϵ0)G
σ
ij(ω) = δij + UΓσ

ij(ω), (2.16)

where
⟨⟨
niσ̄ciσ; c

†
jσ

⟩⟩
ω

≡ Γσ
ij(ω) is the Gamma function that defines the next hierarchy of Green’s

functions:

ωΓσ
ij(ω) = ω

⟨⟨
niσ̄ciσ; c

†
jσ

⟩⟩
ω
=

⟨
[niσ̄ciσ, cjσ′ ]+

⟩
+

⟨⟨
[niσ̄ciσ,H]− ; c†jσ

⟩⟩
ω
. (2.17)

Calculating the commutation relations, it follows that:

ωΓσ
ij(ω) = δij ⟨niσ̄⟩+ ϵ0Γ

σ
ij(ω) + UΓσ

ij(ω). (2.18)

Then,

ωΓσ
ij(ω) = δij

⟨niσ̄⟩
ω − ϵ0 − U

. (2.19)

Substituting the Gamma function in the single-particle Green’s functions, one obtains

Gσ
ij(ω) = δij

{
1− ⟨niσ̄⟩
ω − ϵ0

+
⟨niσ̄⟩

ω − ϵ0 − U

}
. (2.20)

The density of states

ρσij(ω) =
1

π
Im

{
Gσ

ij(ω)
}
, (2.21)

using the fact that the Green’s functions can be written as

Gσ
ij(ω) = δij

{
1− ⟨niσ̄⟩

(ω − ϵ0)− iη
+

⟨niσ̄⟩
(ω − ϵ0 − U)− iη

}
, (2.22)

with infinitesimal η, and using the relation

lim
η→0+

(
1

x± iη

)
= P

(
1

x

)
∓ iπδ(x), (2.23)
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where P denotes the Cauchy principal part, becomes

ρσ(ω) = (1− ⟨niσ̄⟩) δ (ω − ϵ0) + ⟨niσ̄⟩ δ (ω − ϵ0 − U) . (2.24)

This result shows that the atomic limit has two energy levels: ϵ0 and ϵ0 +U containing 1−⟨niσ̄⟩

and ⟨niσ̄⟩ electrons, respectively. Thus, if electrons are added to the system, the chemical potential µ

remains fixed at ϵ0 until that energy level is filled. The ground-state becomes full when 1−⟨niσ̄⟩ = ⟨niσ̄⟩,

that is, the occupation n = 1
N

N∑
σ,j=1

nj,σ is equal to n = 1. Thereafter, if the total number of electrons in

the system continues to be increased, the chemical potential jumps to the double occupancy level ϵ0 +U ,

when then the occupation number continues to increase until it reaches n = 2.

2.2 The Hubbard I approximation

Hubbard obtained an approximate solution for the Hamiltonian (2.1), known as the Hubbard I approx-

imation, in his first work [6] of a series of six. It became important in the physics of strongly correlated

systems, as it was the first approximation to obtain the Mott transition [49] in a consistent way. However,

this approach has serious fundamental flaws:

� It does not preserve the particle-hole symmetry, manifested in the non-conservation of the area of

the sub-bands at half-filling;

� It overestimates the electronic correlation U : for any value of U a gap opens in the density of states,

which leads to a Mott transition at U = 0;

� It does not adequately describe the loosely coupled limit, where U/D ≪ 1 with D being half the

bandwidth. That is, it does not describe the character of a renormalized Fermi liquid in this limit.

In this section, we will study the correlation problem in the Hamiltonian (2.1) at zero magnetic

field for a finite bandwidth using the same method adopted in the previous section. However, this time,

some additional terms appear and will have to be treated approximately. From the equation (2.12) from

the previous section, we have that

ωGσ
ij(ω) = ω

⟨⟨
ciσ; c

†
jσ

⟩⟩
ω
=

⟨[
ciσ, c

†
jσ

]
+

⟩
+

⟨⟨
[ciσ,H]− ; c†jσ

⟩⟩
ω
. (2.25)

Using that

[ciσ,H]− =
∑
j

tijcjσ + Uniσ̄ciσ, (2.26)

[niσ,H]− =
∑
j

tij(c
†
iσcjσ − c†jσciσ), (2.27)

the equation for Gσ
ij(ω) becomes

ωGσ
ij(ω) = δij +

∑
k

tikG
σ
kj(ω) + UΓσ

ij(ω), (2.28)
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where Γσ
ij(ω) is once again defined by (2.17), but satisfies the equation

ωΓσ
ij(ω) = δij ⟨niσ̄⟩+ (ϵ0 + U)Γσ

ij(ω)+

+
∑
k ̸=i

tik

⟨⟨
niσ̄ckσ; c

†
jσ

⟩⟩
ω
+

+
∑
k ̸=i

tik

{⟨⟨
c†iσ̄ckσ̄ciσ; c

†
jσ

⟩⟩
ω
−

⟨⟨
c†kσ̄ciσ̄ciσ; c

†
jσ

⟩⟩
ω

}
.

(2.29)

To break the hierarchy of the Green’s function equations, an approximate expression will be used

in each of the last two terms of the equation (2.29). These approximations are obtained by the methods

indicated by Zubarev [50] and are given by⟨⟨
niσ̄ckσ; c

†
jσ

⟩⟩
ω
≈ ⟨niσ̄⟩Gσ

kj(ω), (2.30)⟨⟨
c†iσ̄ckσ̄ciσ; c

†
jσ

⟩⟩
ω
≈

⟨
c†iσ̄ckσ̄

⟩
Gσ

ij(ω), (2.31)⟨⟨
c†kσ̄ciσ̄ciσ; c

†
jσ

⟩⟩
ω
≈

⟨
c†kσ̄ciσ̄

⟩
Gσ

ij(ω). (2.32)

Substituting these approximations into equation (2.29), one obtains that

ωΓσ
ij(ω) = δij ⟨niσ̄⟩+ (ϵ0 + U)Γσ

ij(ω) + ⟨niσ̄⟩
∑
k ̸=i

tikG
σ
kj(ω) (2.33)

and, therefore,

Γσ
ij(ω) =

⟨niσ̄⟩
ω − ϵ0 − U

δij +∑
k ̸=i

tikG
σ
kj(ω)

 . (2.34)

Substituting it in (2.28) we have that

ωGσ
ij(ω) = ϵ0G

σ
ij(ω) +

{
1 +

U ⟨niσ̄⟩
ω − ϵ0 − U

}δij +∑
k ̸=i

tikG
σ
kj(ω)

 . (2.35)

This equation can be solved using the discrete Fourier transform. Writing

Gσ
ij(ω) =

1

N

∑
kkk

Gσ(kkk, ω)eikkk(RRRi−RRRj), (2.36)

we get from equation (2.35) that

(ω − ϵ0)G
σ(kkk, ω) =

{
1 +

U ⟨niσ̄⟩
ω − ϵ0 − U

}{
1

N
+ (ϵkkk − ϵ0)G

σ(kkk, ω)

}
. (2.37)

Finally,

Gσ(kkk, ω) =
1

N

ω − ϵ0 − U(1− ⟨niσ̄⟩)
(ω − ϵkkk)(ω − ϵ0 − U) + ⟨niσ̄⟩ (ϵ0 − ϵkkk)U

, (2.38)

which is the Hubbard I approximation to the correlation problem.

The solution given by equation (2.38) will be investigated next. Equation (2.38) is a rational

function of ω and may be resolved into partial fractions according to

Gσ(kkk, ω) =
1

N

1

ϵ
(1)
kkkσ − ϵ

(2)
kkkσ

{
ϵ
(1)
kkkσ − ϵ0 − U(1− ⟨niσ̄⟩)

ω − ϵ
(1)
kkkσ

−
ϵ
(2)
kkkσ − ϵ0 − U(1− ⟨niσ̄⟩)

ω − ϵ
(2)
kkkσ

}
, (2.39)

where ϵ
(1)
kkkσ < ϵ

(2)
kkkσ are the two roots of

(ω − ϵkkk)(ω − ϵ0 − U) + ⟨niσ̄⟩ (ϵ0 − ϵkkk)U = 0. (2.40)
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It can be shown that ϵ
(1)
kkkσ < ϵ0 + U(1− ⟨niσ̄⟩) < ϵ

(2)
kkkσ , then the Green’s functions (2.39) take the form

Gσ(kkk, ω) =
1

N

{
A

(1)
kkkσ

ω − ϵ
(1)
kkkσ

+
A

(2)
kkkσ

ω − ϵ
(2)
kkkσ

}
, (2.41)

with A
(1)
kkkσ , A

(2)
kkkσ > 0.

Summing over the values of the wave vector kkk,

Gσ(ω) =
1

N

∑
kkk

Gσ(kkk, ω) =
1

N

{
A(1)

(ω − ϵ(1))− iη
+

A(2)

(ω − ϵ(2))− iη

}
(2.42)

and again using the relation

lim
η→0

[
1

(ω − ϵ)− iη

]
= P

[
1

(ω − ϵ)

]
+ iπδ(ω − ϵ), (2.43)

we get

ρ(ω) =
1

N

∑
kkk

Im{Gσ(kkk, ω)} (2.44)

for any distribution.

To facilitate the interpretation of the properties of the solution, we consider a constant, or rect-

angular, conduction band of bandwidth 2D defined by

ρ0 =


1
2D , for −D ≤ ϵ− µ ≤ D

0 , otherwise

, (2.45)

where µ is the chemical potential. The bandwidth of real materials is approximately 1 to 5 eV, which

roughly scales the parameter 2D. For a rectangular distribution of width 2D, the integrated Green’s

function is as follows:

Gσ(ω) =
1

2D

∫ D+µ

−D+µ

dϵ Gσ(ϵ, ω). (2.46)

For the Green’s functions of our problem,

Gσ(ϵ, ω) =
1

N

ω − ϵ0 − U(1− ⟨niσ̄⟩)
(ω − ϵ)(ω − ϵ0 − U) + ⟨niσ̄⟩ (ϵ0 − ϵ)U

, (2.47)

making the convenient changes of variables, we get that

Gσ(ω) =
1

2D

∫ D+µ

−D+µ

dϵ

ϵ−B
=

1

2D
ln

(
−B +D + µ

−B −D + µ

)
, (2.48)

where

B =
ω(ω − ϵ0 − U) + ⟨niσ̄⟩U ϵ0
(ω − ϵ0 − U) + ⟨niσ̄⟩U

. (2.49)

Here is an important observation: since the GF obtained depends on the occupation numbers

⟨niσ̄⟩, these quantities must be calculated self-consistently from the GF given by equation (2.48), which

can be done from the relation

n =

(
1

π

)∫ ∞

−∞
dznF (z)Im (Gσ(z)) , (2.50)

which can be obtained from the fluctuation-dissipation theorem [50], where z = ω + iη, with η being an

infinitesimal quantity and nF (z) = (exp(βz) + 1)
−1

is the Fermi distribution.
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Figure 2.1: Density of states for different values of energy ϵ0 and electronic correlation U .

There is a very important subtlety in the calculation of the occupation numbers that often goes

unnoticed. When we apply the relation (2.50) considering the Hubbard I approximation expressed by

the equation (2.48), we obtain an occupation n = ns + nd, where ns is the single occupancy and nd the

double occupancy, as the Hubbard I GF includes both processes. To extract the double occupancy from

the calculations we must calculate it separately, which is done using the Green’s function Γ(ω), calculated

in Hubbard’s original work [6]. This relationship is given by:

Γσ(ω) = A(B − ϵ0)G
σ(ω), (2.51)

where

A =
⟨niσ̄⟩

(ω − ϵ0 − U)
. (2.52)

Thus, with the Γ function, we can calculate the double occupancy from the relation:

nd =

(
1

π

)∫ ∞

−∞
dz nF (z)Im (Γσ(z)) . (2.53)

Thus, having obtained the double occupation number nd, the single occupation number ns is obtained

from the relation ns = n − nd. Finally, the number of unoccupied states nvac is obtained by equation

(2.50), but with the Fermi distribution function nF replaced by (1 − nF ). Having calculated all the

occupation numbers we can obtain the completeness relation C = nvac + ns + nd = 1, which is satisfied

by the Hubbard I approximation.
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Figure 2.2: Occupation numbers as functions of the chemical potential µ.

In figure 2.1 we represent the density of states for two different values of energy ϵ0 and electronic

correlation U at half-filling. The interesting point is that the total area of the density of states is always

equal to unity for any parameter space, whether at half-filling or not. This is the correct result, however,

the areas of the sub-bands are not conserved and at half-filling, they are different from 0.5. We calculated

the area of the lower Hubbard sub-band for both cases, which is associated with the single occupancy,

and the results are 0.42 for ϵ0 = −0.25D and U = 0.5D, and 0.39 for ϵ0 = −0.5D and U = 1.0D. Another

important point here is that the Hubbard I approximation overestimates the electronic correlation and

the Mott transition occurs for any electronic correlation U greater than zero. No matter how small this

value is, a gap opens in the density of states. Thus, we can say that the critical value of U where the

Mott transition occurs in the Hubbard I approximation is Uc = 0. Our first motivation for this work is

to get this value correctly for the model.

In figure 2.2 we represent the occupation numbers as functions of the chemical potential µ. For

µ far below the level ϵ0 = −0.25D, the Hubbard bands are completely unoccupied and this is reflected

in the numbers of unoccupied states nvac = 1. As µ grows, the number of unoccupied states decreases

and the number of single occupied states ns (here including electrons with spin up and down) increases.

However, the lower Hubbard sub-band is completely filled when ns = 0.42, and reaches a constant value

as µ keeps increasing near µ = 0. We can also observe that there are a small number of doubly occupied

states in the region corresponding to the lower Hubbard sub-band. From the moment µ leaves the gap,
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Figure 2.3: Limiting cases for the density of states for different values of chemical potential µ.

the double occupancy states grow monotonically until reaching their maximum value nd = 1 while the

unoccupied and single occupancy states tend to zero. Another point to be observed in the graph is

that the completeness relationship is satisfied by the Hubbard I approximation. Thus, we see that this

approximation presents some positive aspects, mainly regarding the threshold values for the occupation

numbers, which are correctly described.

In figure 2.3 we analyze the limiting cases for the density of states for different values of chemical

potential µ. In the first case, we represent the density of states for µ = −0.90, which corresponds to the

case where the band is practically empty, which leads to the electronic correlation having no effects due

to the absence of electrons. This way, the gap in the density of states tends to close and for smaller values

of the chemical potential the gap effectively closes, thus recovering the empty band limit. In the second

case, we represent the density of states for µ = 0.0, which is the usual half-filled case with a gap in the

density of states. Finally, we consider the case with µ = 1.5, with the band completely filled with doubly

occupied states and the gap does not exist due to the collapse of the Hubbard lower sub-band, but now

we have a highly correlated system. This result of the Hubbard I approximation is interesting because it

shows that we can have an insulator or a highly correlated metal depending on the value of the chemical

potential µ, simply by increasing the number of charge carriers in the system, which can be achieved by

doping.

In his third work, Hubbard significantly improved his first decoupling, introduced two new cor-

rections to the Green’s functions chain, and obtained the Hubbard III approximation, which alleviates
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some of the issues presented by the Hubbard I approximation. In particular, the correlation is no longer

overestimated, and the Mott transition happens for Uc =
√
3D. However, the renormalized Fermi liquid

character is not recovered by Hubbard III (the dynamical mean-field theory [DMFT], for example, can

recover this property).

2.3 The analytical solution for the one-dimensional Hubbard model

In this section, we study the thermodynamic limit of the ground-state properties of the one-dimensional

Hubbard model. We focus on the calculation of the electron density, magnetization, single-particle gap

and the ground-state energy. We obtain the ground-state phase diagram as function of the magnetic field

and the chemical potential.

2.3.1 The noninteracting case - a point of reference

Before approaching the general case, let us consider the noninteracting case (U = 0) at zero magnetic

field described by a tight-binding Hamiltonian

H1 =
∑
ijσ

tijc
†
iσcjσ. (2.54)

For practical reasons, let us consider only nearest neighbour hopping. Then, the Hamiltonian takes the

form

H1 = −t
∑
⟨i,j⟩σ

(
c†iσcjσ + c†jσciσ

)
. (2.55)

Zero temperature properties can be determined by diagonalizing the Hamiltonian going to momentum

space using a Fourier transformation

c†kσ =
1√
L

L∑
j=1

e−ikjc†jσ, (2.56)

where L is the number of sites in the lattice and the momenta are quantized by k = 2πn
L ;n = −L

2 , ...,
L
2 −1.

The Hamiltonian in momentum space is then

H1 =
∑
kσ

ϵkc
†
kσckσ =

∑
kσ

(−2t cos k nkσ) . (2.57)

where ϵk is the single-particle energy of spin-σ electrons.

If the number of electrons N is equal to number of sites L, each allowed state k can be occupied

by two opposite spins. Then, the ground-state of H0 is constructed by filling the lower half of the band

dispersion (ϵk < 0 or −π/2 < k < π/2). Since half the band is filled, this is called the half-filled case.

The ground-state of the half-filled case is an eigenstate of the Hamiltonian and to get the ground-state

energy we must sum over all occupied states in the first Brillouin zone. Then, the ground-state energy of

the noninteracting system can be obtained as
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Eg =
∑

|k|<π/2,σ

ϵknkσ. (2.58)

In the thermodynamic limit, using the fact that the electron density

nkσ =
∑
σ

∫ π/2

−π/2

dkρkσ, (2.59)

and using a constant density of spin up and spin down electrons ρkσ = 1/2π, the expression becomes

Eg =

∫ π/2

−π/2

dk
1

2π
2(−2t cos k) = −4t

π
. (2.60)

This half-filled state represents a metal, since there are available states immediately nearby an electron

in the highest energy state, given that the dispersion relation is continuous. Therefore, there is no single-

particle gap. This band picture always represents a metallic system when the number of electrons per

unit cell is odd (one in this case). There are situations in which this prediction of the band theory fails

and they will be studied in the interacting case.

Still in the noninteracting case, let us account for the chemical potential and external magnetic

field in the single-particle energy such that

ϵkσ = −2t cos k − µσ, (2.61)

where µ↑ = µ+ h, µ↓ = µ− h and h is the external magnetic field in units of the inverse Bohr magneton

1/µB . In the ground-state, the band for spin σ is filled in the interval [−kFσ, kFσ]

kFσ =


0 if µσ ≤ −2

arccos(−µσ/2) if − 2 < µσ < 2

π if µσ ≥ 2.

(2.62)

The electron density and magnetization per site are given by

n =
∑
σ

∫ kFσ

−kFσ

dkρkσ =
1

π

∑
σ

kFσ, (2.63)

m =
1

2

[∫ kF↑

−kF↑

dkρk↑ −
∫ kF↓

−kF↓

dkρk↓

]
=

1

2π
[kF↑ − kF↓] , (2.64)

where we consider the densities of spin up and spin down electrons constant ρkσ = 1/2π. The ground-state

energy for this case is then

Eg =
∑
σ

∫ −kFσ

−kFσ

dkρkσϵkσ =
1

π

∑
σ

(−2t sin(kFσ)− µσ) , (2.65)

which falls into the previous case when µ = 0 and h = 0.

To investigate the phase diagram, we focus on the case where µ < 0 (the case for µ > 0 is

symmetrical) and we set t = 1. Considering the ground-state composed of a spin up band and a spin

down band, there are four possibilities:
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Figure 2.4: Ground-state phase diagram at zero temperature in h vs. µ coordinates for the noninteracting

case. In terms of the densities and magnetization the four phases are characterized by I: n = m = 0; II:

ndown = 0, 0 < nup < 1; III: ndown = 0, nup = 1; IV: 0 < n < 1, 0 ≤ m ≤ 1/2.

� Phase I - Vacuum - kFσ = 0, n = 0, m = 0. Both bands are empty and the ground-state is

the empty lattice. Both electron density and magnetization are zero. Using equation (2.62), the

chemical potential must be

µ ≤ −2− h. (2.66)

� Phase II - Partially filled and spin polarized band - kF↓ = 0, 0 < kF↑ < π, 0 < n < 1, m = n/2. The

spin down band is empty and the spin up band is partially filled. The electron density is between

zero and one and the magnetization is half the electron density. Then

n = 2m = 2
1

2π
[kF↑ − 0] =

1

π
arccos

(
−µ+ h

2

)
. (2.67)

According to equation (2.62), the chemical potencial must be

µ > −2− h, µ < 2− h, µ < −2 + h. (2.68)

� Phase III - Half filled and spin polarized band - kF↓ = 0, 0 < kF↑ = π, n = 1, m = 1/2. The spin

down band is empty and the spin up band is completely filled. The electron density is one and the

magnetization is 1/2.



16

� Phase IV - Partially filled and magnetized band - 0 < kFσ < π, 0 < n < 1, 0 ≤ m < n/2. Both

bands are partially filled. The electron density is between zero and one and the magnetization is

between zero and 1/2.

n =
1

π

[
arccos

(
−µ+ h

2

)
+ arccos

(
−µ− h

2

)]
, (2.69)

m =
1

2π

[
arccos

(
−µ+ h

2

)
− arccos

(
−µ− h

2

)]
. (2.70)

The phase diagram containing the four phases mentioned above can be seen in figure 2.4.

2.3.2 The interacting case - the Bethe ansatz [BA] solution

The solution of the stationary Schrödinger equation for the one-dimensional Hubbard model can be

reduced to a set of algebraic equations, which is tractable in the thermodynamic limit. These equations

were first obtained by E. H. Lieb and F. Y. Wu [14,51], based on a method called the nested (coordinate)

Bethe ansatz, and they describe the ground-state of the model by a system of integral equations for root

densities. The process to obtain these integral equations and to obtain the properties of the solution from

these equations is rather extensive and out of the scope of this thesis. However, the main aspects and

results of this solution will be discussed in this section as they will be used as a benchmark in chapter 3.

We begin at zero magnetic field. As obtained by Lieb and Wu [14,51], the ground-state energy Eg

(of H + µN) can be calculated exactly by means of the Bethe ansatz at half-filling. For E0 − µ = −U/2,

the model has particle-hole symmetry and the band is half-filled. If L denotes the number of sites, it

follows that the ground-state energy per site at half-filling is

Eg/L = −4t

∫ ∞

0

dx
J0(x)J1(x)

x[1 + exp(xU/2t)]
, (2.71)

where J0(x) and J1(x) are Bessel functions of the first kind. Also, the exact expression for the gap in the

DOS at half-filling is given by [14,51,52]

∆ =
16t2

U

∫ ∞

1

dx

√
x2 − 1

sinh(2πtx/U)
. (2.72)

There is a gap for any U > 0. The critical correlation for the Mott transition is Uc = 0. Another result

is the interpolative formula for the double occupation nd at half-filling [53]

nd =
1 + c1U

4(1 + c2U + c3U2 + c4U3)
, (2.73)

where c1 = 2.445, c2 = 2.581, c3 = 0.090, and c4 = 0.220 for 1D. This formula also works for 2D and

3D, with different coefficients [53]. These results for the ground-state energy, the gap and the double

occupation are valid at the T = 0 limit.

Figures 2.5 a) and 2.5 b) show the results for the Bethe ansatz in the half-filled case for the

single-particle gap and the ground-state energy as functions of the correlation U , respectively. One can

see in figure 2.5 b) that the ground-state energy for U = 0 agrees with the result for the noniteracting

case, equation (2.60), when t = 1, where Eg = −4/π = −1.2732. Figure 2.6 shows the result for the

double occupation number.
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Figure 2.5: Results for the Bethe ansatz in the half-filled case for the a) Single-particle gap and the b)

Ground-state energy as functions of the correlation U .
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Figure 2.6: Results for the Bethe ansatz in the half-filled case for the double occupation number as

function of the correlation U .

In order to study the behaviour of the electron density, magnetization, and the ground-state

phase diagram of the interacting case outside of the half-filled case, we need to introduce the integral

equations describing the root densities of the ground-state. At the T = 0 limit they are [14,51]

ρ(k) =
1

2π
+ cos k

∫ A

−A

dλ a1(sin k − λ) σ(λ), (2.74)

σ(λ) =

∫ Q

−Q

dk a1(λ− sin k) ρ(k)−
∫ A

−A

dλ′ a2(λ− λ′) σ(λ′), (2.75)

where

al(x) =
1

2π

2lu

(lu)2 + x′2
, u =

U

4t
. (2.76)

For a system containing N electrons of which M are spin down electrons, the integrated densities yield

the total number of electrons per site and the number of spin down electrons per site, respectively, as∫ Q

−Q

dk ρ(k) =
N

L
,

∫ A

−A

dλ σ(λ) =
M

L
=
Ndown

L
. (2.77)

The parameters Q and A fix the electron density n and magnetization per site m via

n =
N

L
=

∫ Q

−Q

dk ρ(k), m =
N − 2M

2L
=

1

2

[∫ Q

−Q

dk ρ(k)− 2

∫ A

−A

dλ σ(λ)

]
, (2.78)

and the ground-state free energy per site is given by

f = e− µn− 2hm =

∫ Q

−Q

dk (−2t cos k − µ− 2u− h)ρ(k) + 2h

∫ A

−A

dλ σ(λ) + u, (2.79)
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where the energy per site is e = −2t cos k − µσ − 2u, µ↑ = µ + h, µ↓ = µ − h, and h is the external

magnetic field. The dressed energies satisfy the system of integral equations

κ̄(k) = −2t cos k − µ− 2u− h+

∫ A

−A

dλa1(sin k − λ)ϵ(λ), (2.80)

ϵ(λ) = 2h+

∫ Q

−Q

dk cos ka1(sin k − λ)κ̄(k)−
∫ A

−A

dλ′a2(λ− λ′)ϵ(λ′). (2.81)

They play an important role in understanding the phase diagram. Other than fixing the electron density

and magnetization, the integration boundaries are the points at which the dressed energies change sign.

As functions of the chemical potential and magnetic field, they are determined by the conditions

κ̄(±Q) = 0, ϵ(±A) = 0. (2.82)

The different phases of the system are most easily identifiable considering the integration bound-

aries Q and A as control parameters. First, when Q = 0, A = 0 and this corresponds to an empty system,

where N = 0. Second, one can see, by using equation (2.74) and using the fact that
∫ π

−π
dk cos k f(sin k) =

2
∫ π

0
dk cos k f(sin k) = 0, that when Q = π the system is half-filled where there is one electron per site,

N/L = 1. Third, when A = ∞, using equations (2.74), (4.2) and (2.77), M/L =
∫∞
−∞ dλσ(λ) =

1/2
∫ Q

−Q
dkρ(k) = N/2L and the magnetization m = (N − 2M)/2L is equal to zero. Fourth, for A = 0,

the ground-state is fully magnetized as M = 0 by (2.77). Using these results in the case where µ < 0

(the case for µ > 0 is symmetrical) and t = 1, we can observe the following five different phases:

� Phase I - Vacuum - Q = 0, A = 0, n = 0, m = 0. Both bands are empty and the ground-state is

the empty lattice. Both electron density and magnetization are zero. According to equation (2.79),

the chemical potential must be

µ ≤ µ0(h) = −2− 2u− h. (2.83)

� Phase II - Partially filled and spin polarized band - 0 ≤ Q ≤ π, A = 0, 0 < n < 1, m = n/2. The

spin down band is empty and the spin up band is partially filled. According to equation (2.77), µ,

h and Q are related via

cosQ = −1/2(µ+ h+ 2u) (2.84)

and the magnetic field satisfies the relation

h ≤ hu = 2− µ− 2u. (2.85)

Also, the magnetic field must be greater than the critical value

h ≥ hc =
2u

π

∫ Q

0

dk cos k
cos k − cosQ

u2 + (sin k)2
. (2.86)

The electron density is between zero and one and is given by

n =
1

π
arccos

(
1− µ− µ0(h)

2

)
. (2.87)
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Figure 2.7: Ground-state phase diagram at zero temperature in h vs. µ coordinates for the interacting

case for u = 1. In terms of the densities and magnetization the five phases are characterized by I:

n = m = 0; II: ndown = 0, 0 < nup < 1; III: ndown = 0, nup = 1; IV: 0 < n < 1, 0 ≤ m ≤ 1/2; V: n = 1,

m ≥ 0.

� Phase III - Half-filled and spin polarized band - Q = π, A = 0, n = 1, m = 1/2. The spin down

band is empty and the spin up band is completely filled. The electron density is one and the

magnetization is 1/2. The integral equations for the dressed energies can be solved explicitly

κ̄(k) = −2 cos k − µ− 2u− h, (2.88)

ϵ(λ) = 2h− 4Re(
√

1− (λ− iu)2) + 4u. (2.89)

The requirements κ̄(k) ≤ 0 and ϵ(λ) ≥ 0 imply that

h ≥ h0(u) = 2
√
1 + u2 − 2u, (2.90)

µ ≥ 2− 2u− h. (2.91)

� Phase IV - Partially filled and magnetized band - 0 < Q < π and 0 < A ≤ ∞, 0 < n < 1,

0 ≤ m < n/2. Both bands are partially filled. The electron density is between zero and one and

the magnetization is between zero and 1/2. Generally, the integral equations can only be solved

numerically in this region.
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� Phase V - Half-filled and partially magnetized band - Q = π and 0 < A ≤ ∞, n = 1, m ≥ 0. The

system is half-filled. The electron density is one and the magnetization is greater than zero. For

h > 0, the boundary between phases IV and V is determined by the condition κ̄(±π) = 0. For

h = 0, which corresponds to A = ∞, the integral equations can be solved by Fourier transformation.

The chemical potential µ− separating the two phases is given by

µ−(h = 0) = 2− 2u− 2

∫ ∞

0

dω

ω

J1(ω)e
−ωu

cosh(ωu)
. (2.92)

The phase diagram containing the five phases mentioned above can be seen in figure 2.7 for

u = 1. A few important data points are: h0 = 0.828, µ−(0) = −0.643, −2− 2u = −4, and the quadruple

point separating phases II, III, IV and V is the point (x, y) = (−0.828, 0.828). The main result here is

Phase V, which is not present in the noninteracting case. Throughout this phase the electron density n

is equal to one, but the chemical potential µ varies. Therefore, the chemical potential is not an invertible

function of the electron density. This is a remarkable result: for a given magnetic field h, as soon as the

system is half-filled, it is not possible to add any more electrons in the ground-state by a small increase

of the chemical potential. This can only happen if all possible eigenstates of the Hamiltonian with an

additional electron are separated from the ground-state by a finite energy gap. This indicates that Phase

V represents an insulating phase for the one-dimensional Hubbard model for any u > 0. Since this

insulating phase is driven by the electronic correlation, its nature is unconventional and different from

usual band insulators. Even before these results were obtained, Mott theorized that this phase was a

result of electron-electron interactions splitting the conduction band into two bands, that became known

latter as upper and lower Hubbard bands, separated by an energy gap [49] and, for that, such insulators

are known as Mott insulators.



Chapter 3

The cumulant Green’s functions method

[CGFM]

The cumulant expansion of the Hubbard model was introduced by Hubbard [10, 11] and applied to the

infinite dimension limit by Metzner [1]. Metzner considered the local terms of eq. (2.2) as the unperturbed

Hamiltonian and the kinetic energy, eq. (2.3), as a perturbation. The perturbation expansion was set up

at Matsubara finite temperature T representation, employing the grand-canonical ensemble.

The single-particle temperature dependent Green’s functions are defined by

Gijσ(τ) = −
⟨
T [ciσ(τ), c

†
jσ(0)]

⟩
, (3.1)

where T represents the temporal ordering operator and the “time” τ is defined in the interval [−β, β],

where β = 1/kBT , with kB being the Boltzmann constant.

The Green’s functions diagrammatic expansion for the single-band Hubbard model [1, 10, 11, 54]

can be written in terms of Feynman diagrams. The relevant diagrams for a bipartite lattice are represented

up to the fourth order in reference [1] and in figure 3.1. The analysis of these diagrams shows that they

are formed by irreducible parts connected by hopping lines (irreducible parts are those diagrams that

cannot be divided into two pieces by cutting a single hopping line). Due to this structure, in the limit of

infinite dimension, the entire perturbative series can be formally added up in the temperature Matsubara

representation, as shown in reference [1], resulting in a Dyson equation

Gkkkσ(iωn) =Mσ(iωn) +Mσ(iωn)ϵkkkGkkkσ(iωn), (3.2)

where ωn = (2n+1)πkBT with n = ±1,±2, ... correspond to Matsubara frequencies along the imaginary

axis, and ϵkkk is the dispersion relation. Mσ(iωn) represents the irreducible cumulants corresponding to the

single-particle Green’s functions (3.1). In the infinite dimension limit, these cumulants do not depend on

the wave vector kkk; they only depend on the Matsubara frequencies, which implies a huge simplification

in the calculations, and the formal solution of (3.2) can be written as:

Gkkkσ(iωn) =
Mσ(iωn)

1− ϵkkkMσ(iωn)
=

1

M−1
σ (iωn)− ϵkkk

. (3.3)
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In terms of the self-energy Σ, as commonly used in the Dynamical Mean-Field Theory [DMFT],

M−1
σ (iωn) = iωn + µ− Σ(σ, iωn) . (3.4)

There are other approaches, such as the cellular DMFT [C-DMFT] [29], that consider the spatial depend-

ence of the self-energy.

Figure 3.1: Diagrams that contribute to the one-particle Green’s function for near neighbour hopping in

a hypercubic lattice from zeroth (n = 0) up to fourth (n = 4) order, taken from reference [1].

3.1 The method

In this work, we only consider the 1D Hubbard model, and will benchmark the results obtained against the

available solutions [14,22–25,51–53]. In the first step of the calculation, we employ exact diagonalization

techniques to calculate the eigenvalues and eigenvectors of a linear cluster of N correlated sites. Due to

computational limitations, we diagonalize matrices up to N = 9. We show that the results obtained with

N = 7, 8, compared to the exact results [14, 51–53], produce excellent approximations for the gap in the

density of states, double occupation number, and ground-state energy for the lattice as functions of the

correlation. The results obtained for the occupation numbers as functions of the chemical potential, and

the phase diagrams agree well with the results from the TBA and the QTM method [24].
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Figure 3.2: Schematic of the type of the clusters employed as a “seed” to generate cumulants M and from

them the Dyson equation to calculate the lattice Green’s functions G of the method.

Fig. 3.2 presents a schematic representation of the clusters employed in the calculations. In the

linear chains, the differently coloured sites indicate non-equivalent correlated sites, characterized by the

number of neighbours and proximity to the edge of the chain. In this case, we should perform an average

of the cumulants of those sites. However, all sites are equivalent in two or three-dimensional clusters and

no averages need to be performed.

The first step of the method is to choose a cluster of atoms (“seed”) and diagonalize it to obtain

its eigenvalues and eigenvectors. In an earlier work, the exact solution of the Anderson dimer [47] was

employed as the “seed”. In this work we will use the exact solution of correlated clusters containing two

or more sites modeled by the single-band one-dimensional Hubbard Hamiltonian as “seeds”. In the ED

cluster calculations we use the hopping t = 1 as the energy unit. The local energy E0 of the electrons

is subtracted from the chemical potential in the presence of an external magnetic field h resulting in

ϵ0 = E0−µσ, with µ↑ = µ+h, and µ↓ = µ−h. It represents an important technical programming detail

because we define the energies and the effects of the particle filling through the chemical potential and

magnetic fields on the cluster eigenenergies. We do not need to consider those effects again during the

embedding process of the cluster inside the lattice. The method is sufficiently general, allowing the choice

of more sophisticated “seeds” than 1D as schematically represented in Fig. 3.2. We can also use “seeds” of

2D or 3D shapes to take into account the geometry of the lattice and the richness of interactions present

in 2D and 3D systems.

The second step of the method is to use the eigenvalues and the eigenvectors obtained to calculate

the cluster atomic Green’s functions employing the Lehmann representation. This calculation represents

an additional difficulty over traditional ED calculations, but allows to take into account in a controllable

way all atomic transitions inside the cluster of correlated sites used as a “seed” to generate the cumulants.
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Table 3.1: Representation of the possible transitions present in the Hubbard Hamiltonian.

Ix 1 2 3 4

α = (b, a) (0, ↑) (0, ↓) (↓, d) (↑, d)

gat g11 g33 g13 g31

Ix = 1, 3 (0, ↑) (↓, d) (0, ↑) and (↓, d) (↓, d) and (0, ↑)

gat g22 g44 g24 g42

Ix = 2, 4 (0, ↓) (↑, d) (0, ↓) and (↑, d) (↑, d) and (0, ↓)

(Top row) α = (b, a), a represents the initial state and b the final state. Ix = 1, 3 destroy one electron

with spin up and Ix = 2, 4 destroy one electron with spin down. We use σ =↑ and σ =↓ to represent the

up and down spins, respectively. The double occupation state is represented by the label d. (Middle and

bottom rows) Atomic Green’s functions associated to the processes Ix = 1, 3 and Ix = 2, 4.

Employing the spectral representation (Lehmann representation) [50], we obtain

gatσ (iωs) = −eβΩ
∑
n,r,r′

exp(−βεn−1,r) + exp(−βεn,r′)
iωs + εn−1,r − εn,r′

× ⟨n− 1, r| ciσ |n, r′⟩ ⟨n, r′| c†iσ |n− 1, r⟩ , (3.5)

where Ω is the grand canonical potential, with β = 1/kBT , and the eigenvectors |n, r⟩ and eigenvalues εn,r

correspond to the complete solution of Hamiltonian of the atomic cluster. The atomic Green’s functions

can be rewritten as:

gatσ (iωs) = eβΩ
∑
i

ri,σ
iωs − ui,σ

, (3.6)

where ri,σ are the residues and ui,σ the poles of the atomic Green’s functions.

We should calculate the atomic Green’s functions in matrix form, considering the electron spin

destruction (creation) in the allowed atomic transitions. Here, n to n ± 1 electrons, indicates the total

number of electrons of the considered state as indicated in Table 3.1. This procedure is a central point

of the method, differentiating it from other ED approaches like the VCA [2, 44, 45]. The focus of the

calculation is on the possible atomic transitions within the atomic cluster.

We define the atomic Green’s functions g11, g33, g13 and g31 associated with transitions that

destroy a spin up electron and the functions g22, g44, g24 and g42, associated with transitions that destroy

a spin down electron, as detailed in table 3.1 (the superscript “at” is not used on the matrix components

for simplicity). Also, according to table 3.1, it can be seen that the functions g11 and g22 are associated

with states that initially contain a single electron, whereas g33 and g44 are associated with states that

initially contain two electrons and g13, g31, g24 and g42 are the crossed GFs and are associated to the

simultaneous destruction of electrons in states of single and double occupations. The atomic Green’s

functions associated with all of the allowed transitions within the cluster of correlated sites considered

are calculated, separated, and indexed.
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Choose a cluster containing N correlated sites in 1D, 2D, or 3D
connected by a hopping t. Employing ED techniques, diagonalize

the cluster and obtain the eigenvalues and eigenvectors

Employing the Lehmann representation, calculate the atomic
Green's functions in matrix form, considering the atomic transitions

indicated in Table I 

Collect the atomic Green's functions with non zero residues and use
them as the approximate cumulants

Using the approximate cumulants, calculate the Green's functions
for the lattice, and from them, the properties of the model 

Figure 3.3: Flowchart of the steps of the CGFM.

Thus, one can write the atomic Green’s functions as

gat
σ (iω) =


g11 g13 0 0

g31 g33 0 0

0 0 g22 g24

0 0 g42 g44

 . (3.7)

Equation (3.7) presents itself in a diagonal block form because the selection rules do not allow transitions

with spin inversion, and the spins up and down are disconnected.

In the third step of the method, we collect the atomic Green’s functions (3.7) associated with

the possible atomic transitions with residues different from zero and use them as the approximate atomic

cumulants. They belong to the most straightforward class of cumulants that are connected by two

Fermi-Dirac lines, as discussed by Hubbard in his fifth paper about cumulant expansions of the Hubbard

model [10]:

mat
σ (iω) =


m11 m13 0 0

m31 m33 0 0

0 0 m22 m24

0 0 m42 m44

 =


g11 g13 0 0

g31 g33 0 0

0 0 g22 g24

0 0 g42 g44

 . (3.8)

Finally, in the fourth step of the method, we use the atomic cumulants of eq. (3.8) as approxima-

tions to the formally exact cumulantsMσ(iωn) to calculate the Green’s functions for the lattice Gkkkσ(iωn),

and from them, the dynamical properties of the model: the density of states, single-particle gap, ground-

state energy, occupation numbers, phase diagram and other properties. A flowchart of the steps of the

method is presented in Fig. 3.3.
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Due to the nature of the method, there will always be the simple structure represented by a 4x4

deblocked matrix (3.7) for the atomic Green’s functions and the atomic cumulants (3.8), regardless of the

size or dimension of the atomic cluster used in the calculation. Using the same matrix form introduced

in eq. (3.7) before and carrying out the analytical continuation of the cumulant Green’s functions, eq.

(3.3), to the real frequency axis, the Green’s functions for the lattice become

Gkkkσ(ω) = Mσ(ω) · [I−Wkkkσ ·Mσ(ω)]
−1
. (3.9)

Defining the exact cumulants and Green’s functions for the lattice as

M↑(ω) =

M11 M13

M31 M33

 , M↓(ω) =

M22 M24

M42 M44

 , (3.10)

Gkkk↑(ω) =

G11 G13

G31 G33

 , Gkkk↓(ω) =

G22 G24

G42 G44

 , (3.11)

one obtains the exact Green’s functions Gkkkσ(ω) by performing the matrix inversion in eq. (3.9):

Gkkk↑(ω) =

M11 M13

M31 M33

 ·

1 0

0 1

−Wkkk↑ ·

M11 M13

M31 M33

−1

, (3.12)

and

Gkkk↓(ω) =

M22 M24

M42 M44

 ·

1 0

0 1

−Wkkk↓ ·

M22 M24

M42 M44

−1

, (3.13)

with

Wkkkσ = ϵkkk ·

 1 −1

−1 1

 . (3.14)

Performing the calculations, it follows that

Gkkk↑(ω) =
1

1− ϵkkkΓ13

 M11 M13

M31 M33

− ϵkkkΘ13

 1 −1

−1 1

 , (3.15)

and

Gkkk↓(ω) =
1

1− ϵkkkΓ24

 M22 M24

M42 M44

− ϵkkkΘ24

 1 −1

−1 1

 , (3.16)

where Θ13 = M11M33 − M13M31, Γ13 = M11 + M13 + M31 + M33, Θ24 = M22M44 − M24M42 and

Γ24 =M22 +M24 +M42 +M44. For simplicity, all the results of this work were calculated considering an

uncorrelated rectangular conduction band of bandwidth 2D defined by

ρ0(Ekσ) =

 1
2D , for −D ≤ Ekσ ≤ D

0 , otherwise
, (3.17)

where the parameter 2D is roughly scaled by the bandwidth of real materials, which is approximately 1

to 5 eV. The corresponding GF is given by

G0
σ(ω) =

1

2D
ln

(
ω +D

ω −D

)
. (3.18)
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Integrating Gkkk↑(ω) over the rectangular band, the total spin up Green’s function G↑ (ω) is given

by

G↑ (ω) = G11 (ω) +G13 (ω) +G31 (ω) +G33 (ω)

=
1

2D
ln

(
1 +DΓ13

1−DΓ13

)
,

(3.19)

where

G11 (ω) =
Θ13

Γ13
+

[
M11 −

Θ13

Γ13

]
1

2DΓ13
ln

(
1 +DΓ13

1−DΓ13

)
, (3.20)

G13 (ω) = −Θ13

Γ13
+

[
M13 +

Θ13

Γ13

]
1

2DΓ13
ln

(
1 +DΓ13

1−DΓ13

)
, (3.21)

G13 (ω) = −Θ13

Γ13
+

[
M31 +

Θ13

Γ13

]
1

2DΓ13
ln

(
1 +DΓ13

1−DΓ13

)
, (3.22)

G33 (ω) =
Θ13

Γ13
+

[
M33 −

Θ13

Γ13

]
1

2DΓ13
ln

(
1 +DΓ13

1−DΓ13

)
. (3.23)

The results are analogous if the total spin down Green’s function G↓ (ω) is used instead,

G↓ (ω) = G22 (ω) +G24 (ω) +G42 (ω) +G44 (ω)

=
1

2D
ln

(
1 +DΓ24

1−DΓ24

)
,

(3.24)

where

G22 (ω) =
Θ24

Γ24
+

[
M22 −

Θ24

Γ24

]
1

2DΓ24
ln

(
1 +DΓ24

1−DΓ24

)
, (3.25)

G24 (ω) = −Θ24

Γ24
+

[
M24 +

Θ24

Γ24

]
1

2DΓ24
ln

(
1 +DΓ24

1−DΓ24

)
, (3.26)

G42 (ω) = −Θ24

Γ24
+

[
M42 +

Θ24

Γ24

]
1

2DΓ24
ln

(
1 +DΓ24

1−DΓ24

)
, (3.27)

G44 (ω) =
Θ24

Γ24
+

[
M44 −

Θ24

Γ24

]
1

2DΓ24
ln

(
1 +DΓ24

1−DΓ24

)
. (3.28)

The total Green’s function is given by

Gσ(ω) = G↑ (ω) +G↓ (ω) . (3.29)

Following the standard procedure (substituting ω by ω + iη, taking the limit as η → 0+), the DOS can

be written as

ρσ(ω) =
1

π
Im{Gσ(ω)}. (3.30)

In principle, eq. (3.9) and all Green’s functions obtained from it are exact in the infinite dimension

limit. However, as the full lattice cumulants Mσ (ω), eq. (3.10), are unknown, the atomic cumulants

mat
σ (ω) obtained from eq. (3.8) as the solution of a cluster containing N correlated sites are used as

approximations for Mσ (ω) to calculate the Green’s functions for the lattice, equations (3.19) to (3.29).

The method shows its full potential here because we can use exact diagonalization to solve an increasing

cluster of Hubbard correlated sites, and from these solutions, it is possible to build better approximations

that are increasingly closer to the exact solution of the problem.
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The cluster solutions satisfy the completeness relation per spin of the Hubbard model given by

compσ = nσvac + nσup + nσdown + nσd = 1, (3.31)

where σ = (↑; ↓), with σ =↑ representing the transitions associated with Ix = 1, 3, and σ =↓ those

associated with Ix = 2, 4 (see Table 3.1). The first term of the sum is the vacuum occupation number,

the second and third terms are the spin up and spin down occupation numbers, respectively, and the last

term is the double occupation number. The different averages can be calculated employing the Green’s

functions G11(ω) and G33(ω), associated with the processes Ix = 1, 3, defined by eqs. (3.20) and (3.23):

n↑vac =

(
1

π

)∫ ∞

−∞
dωIm(G11)(1− nF ), (3.32)

n↑up =

(
1

π

)∫ ∞

−∞
dωIm(G11)nF , (3.33)

n↑down =

(
1

π

)∫ ∞

−∞
dωIm(G33)(1− nF ), (3.34)

n↑d =

(
1

π

)∫ ∞

−∞
dωIm(G33)nF , (3.35)

where nF (x) = 1/ [1 + exp(βx)] is the Fermi-Dirac distribution. Similarly, we can employ the Green’s

functions G22 and G44, associated with the processes Ix = 2, 4, defined by eqs. (3.25) and (3.28) to

calculate the corresponding occupation numbers:

n↓vac =

(
1

π

)∫ ∞

−∞
dωIm(G22)(1− nF ), (3.36)

n↓down =

(
1

π

)∫ ∞

−∞
dωIm(G22)nF , (3.37)

n↓up =

(
1

π

)∫ ∞

−∞
dωIm(G44)(1− nF ), (3.38)

n↓d =

(
1

π

)∫ ∞

−∞
dωIm(G44)nF . (3.39)

The completeness relation and the full occupation numbers are then

comp = (comp↑ + comp↓)/2, (3.40)

nvac = (n↑vac + n↓vac)/2, (3.41)

nup = (n↑up + n↓up)/2, (3.42)

ndown = (n↑down + n↓down)/2, (3.43)

nd = (n↑d + n↓d)/2. (3.44)

The electron density per lattice site n (electron concentration or band filling) is defined as

n =
Ne

N
= nup + ndown + 2nd, (3.45)

where Ne is the number of electrons and N is the number of sites. The factor 2 in front of nd refers to

the number of electrons inside of the double occupied state. The maximum number of electrons per site

is n = 2, and the limiting cases n = 0 and n = 1 correspond to empty and half-filled bands, respectively.
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Once the occupation numbers were calculated, the ground-state energy for the lattice Eg(U) of

the single-band Hubbard Hamiltonian (2.1) can be obtained. In general, it is given by [55]

Eg(U) = Eg(U = 0) +

∫ U

0

∑
i

⟨ni↑ni↓⟩U ′ dU
′, (3.46)

where Eg(U = 0) is the ground-state energy for the lattice of the noninteracting system, and the term

⟨ni↑ni↓⟩U ′ is the average occupation number of doubly occupied states at interaction strenght U ′. The

noninteracting ground-state energy was calculated in a previous section (equation(2.60)) and is equal to

Eg(U = 0) =

∫ π/2

−π/2

dk
1

2π
2(−2t cos k) = −4t

π
. (3.47)

Therefore, the ground-state energy for the lattice Eg(U) becomes

Eg(U) = −4t

π
+

∫ U

0

∑
i

⟨ni↑ni↓⟩U ′ dU
′. (3.48)

The term ⟨ni↑ni↓⟩U ′ can be calculated by means of the CGFM, using equations (3.35), (3.39), and (3.44).

Thus, the ground-state energy for the lattice is:

Eg(U) = −4t

π
+

∫ U

0

nd(U
′)dU ′. (3.49)

3.2 The numerical code

To implement the CGFM for the single-band one-dimensional Hubbard model, a numerical code has been

developed in a joint effort using standard Fortran 95. It was the most time-consuming part of the work.

The complexity of the code resides in the calculation and treatment of the large number of residues ri,σ

resulting from the method and using them to calculate the atomic Green’s functions, equation (3.6). The

code was prepared to work for any temperature and any parameter range of the model, and we intend to

make it available to the general public in the future.

The starting point is to define the states (and operators) for a single site (a monomer). Using

Dirac notation, the possible states for the monomer are |↓⟩, |0⟩, |↑↓⟩, and |↑⟩, where we will define

that |↑↓⟩ = c†↑c
†
↓ |0⟩ and, therefore, c†↓ |↑⟩ = − |↑↓⟩. Using these four states, we can define the initial

Hamiltonian as a diagonal 4x4 matrix that has the following increasing quantum numbers for spin Sz

and number of particles n (Sz;n):

|↓⟩ |0⟩ |↑↓⟩ |↑⟩


⟨↓| (− 1

2 ; 1)

⟨0| (0; 0)

⟨↑↓| (0; 2)

⟨↑| ( 12 ; 1)

. (3.50)

The operators c†↑, c
†
↓, n↑n↓, m = n↑ − n↓, and n↑ + n↓ are also 4x4 matrices defined as
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c†↑ =

|↓⟩ |0⟩ |↑↓⟩ |↑⟩


⟨↓| 0 0 0 0

⟨0| 0 0 0 0

⟨↑↓| 1 0 0 0

⟨↑| 0 1 0 0

; c†↓ =

|↓⟩ |0⟩ |↑↓⟩ |↑⟩


⟨↓| 0 1 0 0

⟨0| 0 0 0 0

⟨↑↓| 0 0 0 −1

⟨↑| 0 0 0 0

; (3.51)

n↑n↓ =

|↓⟩ |0⟩ |↑↓⟩ |↑⟩


⟨↓| 0 0 0 0

⟨0| 0 0 0 0

⟨↑↓| 0 0 1 0

⟨↑| 0 0 0 0

; m =

|↓⟩ |0⟩ |↑↓⟩ |↑⟩


⟨↓| −1 0 0 0

⟨0| 0 0 0 0

⟨↑↓| 0 0 0 0

⟨↑| 0 0 0 1

; (3.52)

n↑ + n↓ =

|↓⟩ |0⟩ |↑↓⟩ |↑⟩


⟨↓| 1 0 0 0

⟨0| 0 0 0 0

⟨↑↓| 0 0 2 0

⟨↑| 0 0 0 1

. (3.53)

We can perform the expansion of the vector space (and the operators) by performing tensor

products between two single-site states (and operators). It will generate the states (and the operators)

for two sites. By performing tensor products between two-site states (and operators) and single-site states

(and operators) we can generate the three-site vector space (and operators). We must continue performing

the tensor products of the previous states (and operators) with single-site states (and operators) up to the

point where the space (and the operators) have the appropriate dimension for the number of correlated

sites N used as parameter. After each expansion of the vector space, the states are organized by increasing

Sz and, then, n, as in the first step. It is important to keep track of the quantum numbers, as they will

be used later to identify the possible transitions of the cluster.

The next step is to calculate the elements of the Hamiltonian, using the operators calculated in

the previous step:

H = ϵ0(n↑ + n↓)− h(m) +
U

2
(n↑n↓ + n↓n↑)− t(c†↑c↑ + c†↓c↓), (3.54)

where the matrix operators are calculated for the appropriate sites and ϵ0, h,
U
2 , and t are the input

parameters along the number of sites N . The result is a 4Nx4N matrix that presents itself in block

diagonal form as consequence of organizing the states and operators using quantum numbers Sz and n.

After the Hamiltonian has been constructed in its matrix form, we employ the routine DSYEVR

from the Linear Algebra PACKage (LAPACK) to diagonalize it. Up to this point, this is the standard

procedure for exact diagonalization methods. The following steps differentiate the code from standard

ED as a consequence of the novel method developed.
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From the diagonalization of the Hamiltonian, a series of eigenstates with their respective eigen-

values and quantum numbers Sz and n are obtained. Due to the selection rules regarding the number of

particles and spin, to calculate the atomic residues ri,σ given in equations (3.5) and (3.6), one does not

need to calculate every possible transition from state i to j, since only transitions that increase or decrease

the number of particles by one and the spin by half are allowed. Other than that, transitions that change

the number of particles by creating or destroying a spin down electron are separated from transitions

that do so by creating or destroying a spin up electron, as indicated in equation (3.5). Indexing and

separating states using the quantum numbers facilitates the task of identifying blocks of the Hamiltonian

that have states that can transition to other blocks. For the monomer, for example, equation (3.50), the

state in the second block can transition to the states in the first and fourth blocks, while the states in

the first and fourth blocks can only transition to the state in the third block. Besides that, the transition

from the state in the second block to the state in the first block creates a spin down electron, while the

transition to the state in the fourth block creates a spin up electron and these transitions are separated.

Once the spin up and spin down residues have been calculated, the spin up and spin down atomic

Green’s functions, equation (3.7), can be calculated using the energy differences ui,σ associated with

the residues. From the atomic GF, the atomic cumulants, equation (3.8), are obtained. The atomic

cumulants are used as approximations for the full cumulants to calculate the GF for the lattice using

equation (3.29). Using the GF for the lattice, the properties of the model, such as the density of states,

single-particle gap, occupation numbers, and ground-state energy can be calculated by the subroutines.

The simplified general structure of the numerical code can be found bellow:

PROGRAM AMHUBBARD

GROUND

calculates the ground-state energy using the CGFM, from equation (3.49)

DENSI

calculates the GF for the lattice, DOS, and gap using the CGFM, from equations (3.19) to (3.30)

ATOMIC

calculates the atomic solution

STRUCTURE

constructs the vector space and operators by iteratively adding correlated sites

HAM

calculates the Hamiltonian in matrix form and diagonalizes it using the routine DSYEVR

RESIDUES

calculates the spin up and spin down residues, from equation (3.6)

GREEN

calculates the atomic GF and atomic cumulants, from equations (3.5) and (3.8)

OCCUP

calculates the occupation numbers using the CGFM, from equations (3.32) to (3.39)

END PROGRAM
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Table 3.2: Execution times and RAM usage by the code (time / RAM) when run in the workstation

mentioned in section 3.2.

N
Single-particle gap

(single data point)

Occupation numbers

(six data points)

Ground-state energy

(single data point)

6 3 s / 0.07 GB 5 s / 0.11 GB 2 min 2 s / 2.40 GB

7 2 min 50 s / 1.00 GB 5 min 42 s / 2.00 GB 3 h 28 min / 53.50 GB

8 2 h 10 min / 7.15 GB 10 h 20 min / 40.00 GB -

9 12 d / 150 GB - -

The dash represents calculations that were not made in this work due to computational limitations.

The code runs very quickly and requires very little amount of RAM for N = 2, 3, 4, 5 and can be

run on any modern desktop or laptop. It is advised to use a workstation for N = 6, and it is necessary

for N = 7 or greater. The workstation used in this work has the following specifications:

� Motherboard: ASUS PRIME TRX40-PRO;

� Processor: AMD Ryzen Threadripper 3960X 24-Core (48 threads) 3.8 GHz (4.5 GHz Boost);

� RAM: 192 GB (6 x 32 GB DIMMs) (188.6 GB usable) ECC DDR4 3200 Mhz;

� Storage: Samsung 970 EVO Plus 1 TB NVMe SSD (PCIe Gen 3.0 x4);

� OS: Ubuntu 20.04.2 LTS with GFortran, LAPACK, and BLAS packages and 238.4 GB of SWAP.

A few actions were taken to speed up execution time: subroutines GROUND and OCCUP were

turned off to calculate the gap; the spin down solution was turned off to calculate the gap, nd, and Eg

for h = 0 and µ = 0, since they are identical for spin up and spin down; only µ ≤ 0 was explicitly

considered because the occupation numbers are symmetrical, nup(−µ) = nup(µ), ndown(−µ) = ndown(µ),

nvac(−µ) = nd(µ), nd(−µ) = nvac(µ). The execution times and RAM usage by the code can be found in

table 3.2 for a single data point in the case of the single-particle gap and the ground-state energy, and

for six simultaneous data points for the six occupation numbers (nvac, nup, ndown, nd, comp, and n).

Each graph for the occupation numbers at a certain magnetic field defines a horizontal slice of

the phase diagram, as they show the values of chemical potential where the system transitions between

phases. However, we do not need to calculate the whole occupation number graphs to obtain the phase

diagram because we know that the boundaries of the phase diagram are located in a small interval of

chemical potential near the TBA result. This reduces the amount of data points that need to be calculated

and, therefore, the time to get the full phase diagram. To get the phase diagrams for N = 7 and N = 8,

for instance, we calculated a set of five data points around a specific chemical potential of the TBA

result for the six occupation numbers to obtain each data point for the phase diagram. These results are

independent of each other, and several data points can be calculated at the same time. Each data point

in the phase diagram takes approximately 29 minutes for N = 7 , and approximately 52 hours for N = 8.
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3.3 Using the Hubbard monomer as a “seed”

First, we will apply the cumulant Green’s functions method to the atomic limit of the Hubbard model

at zero magnetic field and use it as the “seed” for the cumulant expansion. This is useful to better

understand how the method works. Using this limit, we will analyze how the solution changes as more

sites are added.

Using Dirac notation, the possible states for the monomer are |0⟩, |↑⟩, |↓⟩ and |↑↓⟩. The states

of the system can be seen in table 3.3 alongside their energies. Using this information, we identify the

possible transitions of the system and the energies associated with them, which can be seen in table 3.4.

In addition to this, we also separate the Green’s functions according to the Sz component of the total

spin that is modified in the transitions, as summarized in table 3.1. Therefore, we can write the atomic

Green’s functions for the monomer in the same way as the equation (3.7), but the components g13, g31,

g24 and g42 are zero. Then, it follows that:

gatσ (ω) =


g11 0 0 0
0 g33 0 0
0 0 g22 0
0 0 0 g44

 , (3.55)

where the Green’s functions gat follow the same definition as equations (3.5) and (3.6). Employing the

cumulant expansion, we obtain for spin up

m11 = g11;

m13 = 0;

m31 = 0;

m33 = g33;

(3.56)

and the Green’s functions for the lattice become

G↑ (ω) =
1

2D
ln

(
1 +DΓ13

1−DΓ13

)
, (3.57)

where Γ13 = m11 +m33. The calculations are analogous for spin down.

Figure 3.4 shows the density of states for two example electronic correlations for this solution

with t = 1. It is worth noting that the particle-hole symmetry was recovered and that the gap increases

as the electronic correlation U increases.

Table 3.3: Exact solution of the Hubbard model for the monomer.

State Eigenvector |n, r⟩ Eigenvalue Ei n Sz

1 = |0⟩ |0, 1⟩ = |0⟩ E1 = 0 0 0

2 = |↑⟩ |1, 1⟩ = |↑⟩ E2 = ϵ0 1 1
2

3 = |↓⟩ |1, 2⟩ = |↓⟩ E3 = ϵ0 1 − 1
2

4 = |↑↓⟩ |2, 1⟩ = |↑↓⟩ E4 = 2ϵ0 + U 2 0

The four eigenvectors |n, r⟩ have energies Ei; where n is the number of electrons, r is the state of the

monomer with n electrons, and Sz is the component of the total spin in the z direction.



35

Table 3.4: Energy differences of the possible transitions of the Hubbard monomer.

Energy difference Transition

u1 = ϵ0 E1,2 = E1,3

u2 = ϵ0 + U E2,4 = E3,4

Energy differences of the possible transitions of the Hubbard monomer, where Ei,j represents the trans-

ition from state i to state j.

-1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
ω−µ

0

0.1

0.2

0.3

0.4

0.5

ρ(
ω

)

ε
0
=-0.25D; U=0.50D

ε
0
=-0.50D; U=1.00D

T=0.0001D

µ=0.0D

Figure 3.4: Density of states ρ as a function of the frequency ω − µ for the half-filling limit, ϵ0 = −U/2,

µ = 0, for the CGFM for some representative values of ϵ0 and U using the monomer.

3.4 Using the Hubbard dimer as a “seed”

In this section, the Hubbard model for two sites, also known as the Hubbard molecule or the Hubbard

dimer, is studied at zero magnetic field. This problem deals with a non-trivial interacting electronic

system that has an exact analytical solution. The Hamiltonian used to model this problem is:

H = ϵ0
∑
i=1,2

∑
σ

c†iσciσ − t
∑
i ̸=j

i,j=1,2

∑
σ

c†iσcjσ +
U

2

∑
i=1,2

∑
σσ′

c†iσc
†
iσ′ciσ′ciσ, (3.58)

where t is the hopping; 1 and 2 denote the sites; σ and σ′ represent spin up (σ or ↑) and spin down (σ̄

or ↓); U denotes the Coulombian interaction between electrons at the same site; ϵ0 is the local energy of

an electron; c and c† are the annihilation and creation operators, respectively.
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Performing the summations over all indexes, the Hamiltonian becomes:

H = − tc†1σc2σ − tc†1σ̄c2σ̄ − tc†2σc1σ − tc†2σ̄c1σ̄+

+ Uc†1σc
†
1σ̄c1σ̄c1σ + Uc†2σc

†
2σ̄c2σ̄c2σ+

+ ϵ0c
†
1σc1σ + ϵ0c

†
2σc2σ + ϵ0c

†
1σ̄c1σ̄ + ϵ0c

†
2σ̄c2σ̄.

(3.59)

Using Dirac notation, the possible states of sites 1 and 2 are |0⟩, |↑⟩, |↓⟩ and |↑↓⟩. Therefore,

when treating two sites, the following Fock space is generated:

States containing 0 electron: |0, 0⟩.

States containing 1 electron: |↑, 0⟩ ; |0, ↑⟩ ; |↓, 0⟩ ; |0, ↓⟩.

States containing 2 electrons: |↑, ↑⟩ ; |↓, ↓⟩ ; |↑, ↓⟩ ; |↓, ↑⟩ ; |↑↓, 0⟩ ; |0, ↑↓⟩.

States containing 3 electrons: |↑, ↑↓⟩ ; |↑↓, ↑⟩ ; |↓, ↑↓⟩ ; |↑↓, ↓⟩.

States containing 4 electrons: |↑↓, ↑↓⟩.

Projecting the Hamiltonian given in equation (3.59) in the Fock space above, the matrix elements

are calculated as follows:

Hmn = ⟨ψm |H |ψn⟩ , (3.60)

where ψm and ψn represent the states of the dimer and H is the Hamiltonian operator given in (3.59).

This procedure gives rise to a 16 x 16 matrix that has a block diagonal structure originating from

the conservation of the spin in the z direction Sz for a given number of particles n, facilitating the

diagonalization process. The matrix blocks obtained from the calculation of the matrix elements are:

Block for states with 0 electron: (
0

)
.

Block for states with 1 electron: 
ϵ0 −t 0 0
−t ϵ0 0 0
0 0 ϵ0 −t
0 0 −t ϵ0

 .

Block for states with 2 electrons:

2ϵ0 0 0 0 0 0
0 2ϵ0 0 0 0 0
0 0 2ϵ0 0 −t −t
0 0 0 2ϵ0 t t
0 0 −t t 2ϵ0 + U 0
0 0 −t t 0 2ϵ0 + U

 .

Block for states with 3 electrons:
3ϵ0 + U −t 0 0

−t 3ϵ0 + U 0 0
0 0 3ϵ0 + U −t
0 0 −t 3ϵ0 + U

 .

Block for states with 4 electrons: (
4ϵ0 + 2U

)
.
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Table 3.5: Exact diagonalization of the Hubbard Hamiltonian for the dimer.

States Eigenvectors |n, r⟩ Eigenvalues Ei n Sz

1 = |0, 0⟩ |0, 1⟩ = |0, 0⟩ E1 = 0 0 0

2 = |↑, 0⟩ |1, 1⟩ = 1√
2
(|↑, 0⟩ − |0, ↑⟩) E2 = ϵ0 + t 1 + 1

2

3 = |↓, 0⟩ |1, 2⟩ = 1√
2
(|↓, 0⟩ − |0, ↓⟩) E3 = ϵ0 + t 1 − 1

2

4 = |0, ↑⟩ |1, 3⟩ = 1√
2
(|↑, 0⟩+ |0, ↑⟩) E4 = ϵ0 − t 1 + 1

2

5 = |0, ↓⟩ |1, 4⟩ = 1√
2
(|↓, 0⟩+ |0, ↓⟩) E5 = ϵ0 − t 1 − 1

2

6 = |↑, ↑⟩ |2, 1⟩ = |↑, ↑⟩ E6 = 2ϵ0 2 +1

7 = |↓, ↓⟩ |2, 2⟩ = |↓, ↓⟩ E7 = 2ϵ0 2 -1

8 = |↑, ↓⟩ |2, 3⟩ = 1√
2
(|↑, ↓⟩+ |↓, ↑⟩) E8 = 2ϵ0 2 0

9 = |↓, ↑⟩ |2, 4⟩ = 1√
2
(|0, ↑↓⟩ − |↑↓, 0⟩) E9 = 2ϵ0 + U 2 0

10 = |↑↓, 0⟩ |2, 5⟩ = 1
b (|0, ↑↓⟩+ |↑↓, 0⟩) + 4t

b(c+U) (|↓, ↑⟩ − |↑, ↓⟩) E10 = 2ϵ0 +
U+c
2 2 0

11 = |0, ↑↓⟩ |2, 6⟩ = 1
a (|0, ↑↓⟩+ |↑↓, 0⟩) + 4t

a(c−U) (|↑, ↓⟩ − |↓, ↑⟩) E11 = 2ϵ0 +
U−c
2 2 0

12 = |↑↓, ↑⟩ |3, 1⟩ = 1√
2
(|↑, ↑↓⟩+ |↑↓, ↑⟩) E12 = 3ϵ0 + U − t 3 + 1

2

13 = |↑↓, ↓⟩ |3, 2⟩ = 1√
2
(|↓, ↑↓⟩+ |↑↓, ↓⟩) E13 = 3ϵ0 + U − t 3 − 1

2

14 = |↑, ↑↓⟩ |3, 3⟩ = 1√
2
(|↑, ↑↓⟩ − |↑↓, ↑⟩) E14 = 3ϵ0 + U + t 3 + 1

2

15 = |↓, ↑↓⟩ |3, 4⟩ = 1√
2
(|↓, ↑↓⟩ − |↑↓, ↓⟩) E15 = 3ϵ0 + U + t 3 − 1

2

16 = |↑↓, ↑↓⟩ |4, 1⟩ = |↑↓, ↑↓⟩ E16 = 4ϵ0 + 2U 4 0

The sixteen eigenvectors |n, r⟩ have energies Ei; where n is the number of electrons, r is the index of the

state with n electrons and Sz is the spin in the z direction. The abbreviations a =

√
2
((

16t2

(c−U)2

)
+ 1

)
,

b =

√
2
((

16t2

(c+U)2

)
+ 1

)
and c =

√
16t2 + U2 were used.

Next, the eigenvectors and eigenvalues of the matrix blocks were calculated, as well as the number

of particles n and the spin in the z-direction Sz for each state. The results can be found in table 3.5.

Using the data presented in table 3.5, all possible transitions of the dimer were identified and the

atomic Green’s functions residues ri,σ along with their respective energy differences ui,σ were calculated.

They can be found in appendix A.

With this data at hand, the procedure described in chapter 3 can be followed to obtain the

atomic Green’s functions. After that, the procedure to calculate the Green’s functions for the lattice and

to calculate the dynamic properties of the model can be followed.

Figure 3.5 shows the density of states for two example electronic correlations for this solution

with t = 1. It is worth noting that the particle-hole symmetry was recovered and that the gap increases

as the electronic correlation U increases. The resulting particle-hole symmetry of the DOS for µ = 0 is

a feature of the model not recovered by the Hubbard I approximation, as shown in section 2.2, and is a

strong result of the CGFM. It can also be seen that, because of the small number of sites used, there is

a strong atomic signature in the resulting DOS.
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Figure 3.5: Density of states ρ as a function of the frequency ω − µ for the half-filling limit, ϵ0 = −U/2,

µ = 0, for the CGFM for some representative values of ϵ0 and U using the dimer.



Chapter 4

Results and discussion for larger clusters

4.1 Zero magnetic field

In the following results, we use the temperature T = 0.0001D, correlation U = 4D, magnetic field h = 0,

and cluster hopping t = 1 unless written otherwise. As stated previously, 2D ≈ 1 to 5 eV. Since 1 eV ≈

11605 K, T = 0.0001D ≈ 0.6 to 3 K. To connect the energy scale of the calculations to the scale of real

systems, we could take advantage of some physical properties of the model, such as maxima in specific

heat or susceptibilities or minimum in thermopower. In Fig. 4.1 we represent the residues ri,up of the

total atomic GF gatup = g11 + g13 + g31 + g33 as functions of the transition energies ui,up for the half-filled

limit, ϵ0 = −U/2, µ = 0, and N = 2, 3, 4, 5, 6, 7. The residues exhibit the characteristic mirror symmetry

of the one-dimensional Hubbard model [24]. The striking point here is that as the cluster size increases,

the number of atomic residues increases very rapidly (for N = 2, we have 4 ri,up; for N = 3, 8 ri,up; for

N = 4, 32 ri,up; and for N = 7, 1322 ri,up) while their weight decreases very rapidly. It is worth pointing

out that the clusters containing N = 7 or N = 8 correlated sites present the best benefit-cost ratio.
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Figure 4.1: Numerical value of the residues ri,up of the total atomic GF gatup = g11 + g13 + g31 + g33 as

functions of the transition energies ui,up for the CGFM for some representative values of N = 2, 3, 4, 5, 6, 7.
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Table 4.1: Number of correlated sites N , atomic cluster ground-state energy per site GSE/N, total cluster

spin in the z direction Sz, and charge Q of the atomic cluster employed in the calculations at half-filling.

For odd N , the GSE/N is two-fold degenerated, corresponding to two spin orientations ±1/2.

N 2 3 4 5 6 7 8 9

GSE/N -2.415 -2.413 -2.488 -2.484 -2.515 -2.511 -2.530 -2.527

Sz 0 ±1/2 0 ±1/2 0 ±1/2 0 ±1/2

Q 2 3 4 5 6 7 8 9

For even N , the total cluster spin is Sz = 0, and the atomic cluster ground-state is nondegenerate;

whereas for odd N , Sz = ±1/2 and the GSE/N is double-degenerate as indicated in Table 4.1. Even

though clusters with even and odd N have different properties, the GSE/N present an unusual behaviour;

they are close together in pairs (2, 3; 4, 5; 6, 7; and 8, 9) and converge in pairs as N increases. Both cluster

solutions, when used as “seeds” to generate the Green’s functions for the lattice, are consistent with the

Lieb theorem [56], the GSE/N of the model are nondegenerate apart from the trivial spin degeneracy and

have a total spin Stot = ||Sz,up| − |Sz,down||. It should be noted that the ground-state of the cluster does

not directly determine the properties of the corresponding infinite system. The cumulants obtained from

the clusters of correlated sites are used in the CGFM as bricks to construct the infinite system that can

exhibit properties not present in the cluster, such as long-range magnetic order or even superconductivity.
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Figure 4.2: Density of states ρ as a function of the frequency ω − µ for the half-filling limit, ϵ0 = −U/2,

µ = 0, for the CGFM for some representative values of N = 2, 7.
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Figure 4.3: Single-particle gap ∆ as a function of the correlation energy U for the BA, the HF approx-

imation, the VCA [2], and the CGFM for some representative values of N = 2, 6, 7, 9.

In figure 4.2, we plot the DOS as a function of the frequency ω − µ for the half-filling limit,

ϵ0 = −U/2, µ = 0, and N = 2 and N = 7. The figure presents a discontinuous shape, with regions of

different widths separated by gaps, which is a consequence of the atomic cluster employed as a “seed” to

calculate the density of states of the lattice. As the size of the cluster increases, the DOS tends to become

denser and fills all the gaps for N sufficiently large. The gap decreases as the cluster size increases and

tends to the BA exact result as indicated in Figs. 4.3 and 4.4. It is also worth noting that the particle-hole

symmetry is fulfilled for all values of N .

In Fig. 4.3 we present the gap ∆ in the DOS at half-filling, ϵ0 = −U/2, µ = 0, for different

cluster sizes, as a function of the electronic correlation U . The exact BA results, eq. (2.72), show that

there is no gap for U = 0, which is a requirement not satisfied by even N , as indicated in the figure for

N = 2, 6. However, this requirement is satisfied for odd N , as indicated in the figure for N = 7, 9. The

results of the CGFM are consistent with other ED approaches [2] (see the one referred to as the direct

approach) and much better than the Hartree Fock [HF] approximation. As the cluster size increases, the

gap gets closer to the BA. We also include in the figure, for the sake of comparison, the result of the

variational cluster approach [VCA] [2] for N = 10 sites. The results obtained by the VCA for a chain

containing N = 10 sites almost agree with the corresponding N = 7 CGFM and entirely agree with the

N = 9 CGFM. However, a good workstation runs the CGFM code in a reasonable time for N = 7 or

N = 8, whereas the VCA needs more computational power due to the self-consistent calculation for the

hopping embodied in the method.
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Figure 4.4: Single-particle gap ∆ as a function of the inverse cluster size 1/N for the CGFM for a) Even

N (2, 4, 6, 8) and b) Odd N (3, 5, 7, 9) for several values of electronic correlation U . The dotted lines

represent the quadratic regression of the calculated data points and converge to the exact BA results

represented by brown points on the vertical axis.
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Figure 4.5: Double occupation number nd as a function of the correlation U for the interpolative “exact”

result [3], the HF approximation, and the CGFM for some representative values of N = 2, 5, 6, 7.

In Figs. 4.4 a), b) we plot the single-particle gap as a function of the inverse cluster size, 1/N ,

for even and odd values of N for half-filling, ϵ0 = −U/2, µ = 0. Since the results present a change in

curvature as a function of 1/N , as indicated in both figures, we performed a quadratic regression to obtain

the converged values. The figures indicate that the gap obtained from even or odd N , by increasing the

atomic cluster size, converge well to the exact BA result represented in the vertical axis by brown points.

The results for the gap for large cluster sizes tend to be insensitive to even or odd N . On the other hand,

for other properties of the model associated with the external magnetic field, the results of odd clusters

present some unexpected effects that will be discussed in section 4.2.

Figure 4.5 shows the double occupation number nd as a function of the correlation U for an

interpolative “exact” result obtained by the formula, eq. (2.73) [3]; the HF approximation and the CGFM

with N = 2, 5, 6, 7 for the half-filled limit, ϵ0 = −U/2, µ = 0. The mean-field HF results do not agree

well with the interpolative “exact” result. However, we include it here only to call the attention that the

CGFM, contrary to HF, goes to the interpolative result as the number of the correlated sites inside the

cluster increases. The CGFM results show that the N = 7 curve agrees well with the interpolative curve,

and only for small U they present a slight deviation. To gather a more precise result in this region, we

need to employ the calculations for larger clusters.
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Figure 4.6: Ground-state energy for the lattice Eg as a function of the correlation U for the BA, the HF

approximation, and the CGFM for some representative values of N = 2, 4, 5, 6, 7.

Employing the results for nd for different values of U and using eq. (3.49) we calculate the

ground-state energy for the lattice Eg as a function of U , as plotted in Fig. 4.6. The exact result is known

from the Bethe ansatz formulation, and it was obtained using eq. (2.71). The HF result systematically

deviates from the exact result and only agrees at small values of U . On the other hand, the CGFM for

N = 2, 4, 5, 6, 7 approaches the exact result as N increases, and for N = 7, the agreement with the Bethe

ansatz is exceptional. We conclude that the CGFM for N = 7 or even N = 8 constitutes a reliable and

easy method to treat the one-dimensional Hubbard model. Even if it is possible to improve the results

using clusters with N > 7, 8, the computational efforts become increasingly high, and for applications to

the one-dimensional Hubbard model, like in quantum dot systems [57], the N = 7, 8 CGFM constitutes

a good way to take into account the strong correlations in a systematic way.

In Fig. 4.7 we plot the occupation numbers as functions of the chemical potential µ considering

the atomic cluster with N = 7 correlated sites and the correlation energy U = 4D. One of the strengths of

the CGFM is to discriminate the partial occupation numbers for each spin. We can follow their behaviour

as the chemical potential goes from small to large occupation density n, which allows a detailed study of

the phase transitions present in the model. The figure shows that the completeness relation per spin, eq.

(3.31), is satisfied for any value of the chemical potential µ.
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Figure 4.7: Occupation numbers as functions of the chemical potential µ for the CGFM with U = 4D,

N = 7, magnetic field h = 0, and T = 0.0001D.

Table 4.2: Spin in the z direction Sz, and charge Q of the atomic cluster ground-state in different regions

as the chemical potential µ increases.

Region µ Sz Q

1 -3.70 ±1/2 1

2 -3.27 0 2

3 -2.90 ±1/2 3

4 -2.40 0 4

5 -1.75 ±1/2 5

6 -1.15 0 6

7 -0.40 ±1/2 7

Starting from the left of the figure, the vacuum occupation number per spin nvac = 1.0, indicating

that the system has no electrons, and as µ increases, it goes to zero on the right. The spin up and down

occupation numbers nup and ndown start at zero, go to a constant value at the center, and then decrease

to zero as the system gets entirely doubly populated, nd = 1.0. The discontinuous jumps in the curves are

consequences of a strong finite-size effect associated with the discontinuous change of the ground-state of
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Figure 4.8: Occupation numbers as functions of the chemical potential µ for the CGFM with U = 4D,

N = 7, magnetic field h = 0, and T = 0.1D.

the cluster which implies a discontinuous change of the cluster Green’s functions and thus of the Green’s

functions for the lattice used to calculate the occupation numbers. In Table 4.2, we show the spin Sz and

the charge Q of the cluster ground-state containing N = 7 for representative values of µ employed in the

calculation of the occupation numbers of Fig. 4.7. The ground-state of the cluster alternates between

states with Sz = ±1/2 and Sz = 0 with charge starting from Q = 1 on the left, increasing one unit in

each jump, and reaching Q = N = 7 at the center of the figure (half-filled case). It is also possible to

see several flat regions, numbered from 1 to 6, where the occupation numbers do not vary with µ, and

the system behaves as an insulator. They constitute unphysical results and are consequences of the small

cluster employed in the calculation. For larger clusters, those insulator regions tend to disappear [24].

The central region, labeled by the number 7 is a physical result that defines a Mott insulator [8, 16].

In Fig. 4.8 we plot the occupation numbers as functions of the chemical potential µ considering

the atomic cluster with N = 7 correlated sites, the correlation energy U = 4D, and the temperature

T = 0.1D. The general behaviour of the occupation numbers is the same as in figure 4.7. However, it

can be seen that the curves are less step-like compared to the result for very low temperatures, where not

every transition that satisfies the selection rules will happen, because some of them would require a large

amount of energy to move the electron from the ground-state. As the temperature increases, the amount

of thermal energy in the system facilitates transitions that would not be possible for low temperatures

and the number of transitions increases significantly, smoothing the resulting occupation numbers.
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4.2 Nonzero magnetic field
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Figure 4.9: Occupation numbers as functions of the chemical potential µ for the CGFM with U = 4D;

magnetic field h = 0.10D/µB ; and a) N = 5, b) N = 6, c) N = 7, d) N = 8.

In Figs. 4.9 a), b), c), d) we plot the occupation numbers as functions of the chemical potential µ

for the CGFM with U = 4D; magnetic field h = 0.10D/µB ; and N = 5, 6, 7, 8. The discontinuous jumps

in the curves are consequences of a strong finite-size effect, as discussed previously, but tend to disappear

as the cluster size increases. The results for even and odd N are completely different near µ = 0, and are

associated with the total spin Sz of the ground-state of the cluster: for even N , Sz = 0, and for odd N ,

Sz = ±1/2. In the latter, a strong coupling between the spin of the cluster and the external magnetic

field happens, but this does not happen for even N . As N increases, the solutions for both cases tend to

the same result because the Sz of large odd size clusters tend to be shielded by the spin of other electrons

present in the cluster, and the effective Sz decreases. The method reproduces all the phase transitions of

the model, and the available computational resources establish the limit of the approximate solutions.

Fig. 4.9 c) also indicates regions where the ground-state of the cluster changes as a function of

µ. Due to the action of the magnetic field h, there are regions where Sz = ±1/2 (regions 1, 2, 4, 6), and

regions where Sz = 0 (regions 3, 5). In regions where Sz = 0, the nup and ndown occupations are almost

equal, but where Sz = ±1/2, in some regions nup > ndown and in others nup < ndown. In regions 2, 6,
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Figure 4.10: Occupation numbers as functions of the chemical potential µ for the CGFM with U = 4D;

N = 7; and magnetic fields a) h = 0.198D/µB , b) h = 0.395D/µB , c) h = 0.692D/µB , d) h = 0.890D/µB .

nup < ndown, which is an unexpected result once the magnetic field h tends to favour the nup solution. In

region 6, for N = 5, nup > ndown; for N = 7, there is an inversion and nup < ndown; and for N = 9 (we

have calculated a single data point in this region, not shown), there is another inversion and nup > ndown.

Besides this, nup and ndown become closer in region 6 as N increases for the odd cases. The low magnetic

fields act in a non-uniform way as a function of the chemical potential, which leads to the generation of

this new behaviour in the occupation numbers. We detect the same behaviour in all curves for N = 5, 6, 7.

We associate to this behaviour a cluster phase that we call phase VI in the phase diagram that will be

shown later, in which the band is partially filled and magnetized (0 < n < 1 and m < 0). However, this

cluster phase should disappear for larger cluster sizes.

Figs. 4.10 a), b), c), d) show the occupation numbers as functions of the chemical potential µ

for the CGFM with U = 4D; N = 7; and magnetic fields h = 0.198D/µB , 0.395D/µB , 0.692D/µB ,

0.890D/µB . The cluster phase VI persists for h = 0.198D/µB , in two regions: the small circled region

and other large region at the center in Fig. 4.10 a). For intermediate to high magnetic fields, nup is

greater than ndown independently of µ. Other than that, the region where ndown is different from zero

narrows and, eventually disappears, showing that the system goes under a transition.
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Figure 4.11: Ground-state phase diagram at low temperature in h vs. µ coordinates for the CGFM for

U = 4D and N = 7, and at zero temperature for the BA for u = 1. In terms of the densities and

magnetization the six phases are characterized by I: n = m = 0; II: ndown = 0, 0 < nup < 1; III:

ndown = 0, nup = 1; IV: 0 < n < 1, 0 ≤ m ≤ 1/2; V: n = 1, m ≥ 0; VI: 0 < n < 1, −1/2 ≤ m ≤ 0.

The Hubbard model presents quantum phase transitions at zero temperature that were studied

using the quantum transfer matrix formalism in reference [24]. The ground-state phase diagram in h vs.

µ coordinates was studied in references [3,19,24] employing the thermodynamic Bethe ansatz and exhibits

five phases that were discussed in section 2.3.2 of this thesis. Figs. 4.11 and 4.12 show the ground-state

phase diagram in h vs. µ coordinates for µ < 0 and h > 0 calculated by means of the CGFM for U = 4D,

N = 7, and N = 8; and the TBA for u = U/4t = 1 (the cases for µ > 0, h < 0, and other combinations

are symmetrical). Regions I to VI are characterized by different values of the electron density per site n,

partial occupation numbers nup and ndown and magnetization m. The result of the boundary between

phases I and II using the TBA is µ0(h) = −2 − 2u − h [3, 24]. For h = 0, µ0(0) = −4.0 and the results

of the CGFM converge to this result as we increase the number of sites, being µ0(0) = −3.99 for N = 7,

and µ0(0) = −4.0 for N = 8. In the same way, the result of the boundary between phases III and V using

the TBA is h0 = 2(
√
1 + u2) − 2u = 0.828 [3, 24], and the corresponding results of the CGFM are, for

N = 7, h0 = 0.79 and, for N = 8, h0 = 0.8. The boundary between phases IV and V using the TBA for

h = 0 is given by µ−(0) = −0.643 [3, 24], and the result of the CGFM for N = 7 is µ−(0) = −0.81 and

for N = 8 is also µ−(0) = −0.81. The boundaries converge to the known results as we increase N and

the phase diagrams exhibit the same shape, same phases, and agree well with the results obtained from

methods such as the TBA and the QTM [3,21–25]. We can observe the following six different phases:
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Figure 4.12: Ground-state phase diagram at low temperature in h vs. µ coordinates for the CGFM for

U = 4D and N = 8, and at zero temperature for the BA for u = 1. In terms of the densities and

magnetization the six phases are characterized by I: n = m = 0; II: ndown = 0, 0 < nup < 1; III:

ndown = 0, nup = 1; IV: 0 < n < 1, 0 ≤ m ≤ 1/2; V: n = 1, m ≥ 0; VI: 0 < n < 1, −1/2 ≤ m ≤ 0.

� Phase I - Vacuum - n = 0, nup = 0, ndown = 0, m = 0. This phase is characterized by zero

occupation numbers. Both bands are empty and the ground-state is the empty lattice. Both

electron density and magnetization are zero.

� Phase II - Partially filled and spin polarized band - 0 < n < 1, 0 < nup < 1, ndown = 0, m = n/2.

The spin down band is empty and the spin up band is partially filled.

� Phase III - Half-filled and spin polarized band - n = 1, nup = 1, ndown = 0, m = 1/2. The spin

down band is empty and the spin up band is completely filled. The electron density is one and the

magnetization is 1/2.

� Phase IV - Partially filled and magnetized band - 0 < n < 1, 0 < nup < 1, 0 < ndown < 1,

0 ≤ m < n/2. Both bands are partially filled. The electron density is between zero and one and

the magnetization is between zero and 1/2.

� Phase V - Half-filled and partially magnetized band - n = 1, m ≥ 0. The system is half-filled. The

electron density is one and the magnetization is greater than zero.

� Phase VI - Partially filled and magnetized band - 0 < n < 1, 0 < nup < 1, 0 < ndown < 1,

−n/2 ≤ m < 0. Both bands are partially filled. The electron density is between zero and one, and

the magnetization is between -1/2 and zero. This phase is not present in the Bethe ansatz solution.
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According to reference [24], the transitions from phases I to II, I to IV, II to IV, IV to V and III

to V are quantum phase transitions and the boundaries between them can be associated with maxima of

the grand-canonical specific heat cv, but we can not study this aspect of the problem in this work. The

main result obtained from the phase diagram is phase V, that, as discussed at the end of section 2.3.2 of

this thesis, is the region where the one-dimensional Hubbard model reproduces the Mott insulator phase

not present in the noninteracting case. Although the boundary between phases IV and V is not as close

to the BA as the others and there is the anomalous region VI, which we believe is a cluster phase detected

at low magnetic fields that should disappear for larger cluster sizes, the results agree very well with the

phase diagram obtained using the TBA and we believe that it will improve even more for larger clusters

or higher electronic correlation U .

4.3 A simple application

This section shows a simple application of the CGFM in spintronics. We study the electronic transport

through a quantum wire [QW] described by correlated 3-site Hubbard rectangular conduction leads with

an immersed correlated 3-site quantum dot [QD]. Fig. 4.13 shows a schematic view of of the setup [57].

When connected to Hubbard leads, the CGFM clusters can be used as correlated quantum dots to realize

a single-electron transistor [SET]. The cluster can be viewed as a complex level structure that works as

a QD. Using the gate voltage Vg we can tune the alignment of the different energy levels of the QD with

the chemical potential µ to realize the polarization of the spin current that is established through the

device by the voltage Vc. The coupling of the Hubbard leads to the QD is given by a hopping term V

that transfers electrons from the leads in and out of the dot.

The local Green’s function of the dot connected to the two 3-site Hubbard rectangular conduction

leads is given by [58],

G00
σ (ω, T ) =

gQD(ω, T )

1− 2|V |2gQD(ω, T )Gσ(ω, T )
, (4.1)

where gQD(ω, T ) is given by eq. (3.7) and the leads Green’s functions, Gσ(ω, T ), by eqs. (3.19) and (3.24).

The dimensionless conductance of the device can be calculated employing the standard relation [59]

G/G0 =

∫
dω

(
−∂f
∂ω

)
T (ω, T ), (4.2)

t t

Vg

Vc

V
L R

V
QD

0

Figure 4.13: Schematic view of a correlated 3-site quantum dot immersed in left (L) and right (R)

correlated 3-site Hubbard rectangular conduction bands.



52

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0

µ

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
G

/G
0

n
up

n
down

h=0.30D/µ
B

V
2
=0.10D

N=3

U=4.0D

T=0.0001D

Figure 4.14: Electrical conductance G/G0 vs. chemical potential µ.

where G0 = 2e2/h is the quantum of conductance (taking spin into account), f(ω) is the Fermi-Dirac

distribution and T (ω, T ) = ΓIm(G00
σ (ω, T )) is the transmittance, with Γ = 2|V |2Im(Gσ(ω, T )).

Fig. 4.14 shows the polarized G/G0 vs. µ. For simplicity, we considered the trimer, N = 3, and

the parameters employed in the calculation are: T = 0.0001D, U = 4.0D, V 2 = 0.10D, and the magnetic

field h = 0.30D/µB . There is a region, approximately in the interval [0.29, 0.42]D/µB , where we have

well-defined polarized spin currents; for other values of h, there are components of spin up and down

currents corresponding to the same µ. Since these QDs interact strongly with an external magnetic field

generating polarized spin regions as a function of µ, they can be valuable for applications in spintronics.



Chapter 5

Conclusions and Perspectives

We developed a method to solve the single-band Hubbard Hamiltonian employing cumulants to construct

the Green’s functions for the lattice, the CGFM. The method focuses on a cluster solution (“seed”)

employing exact diagonalization and can be extended to other strongly correlated systems: the Anderson,

t − J , Kondo, and Coqblin-Schrieffer models. The method is sufficiently general to be applied to any

parameter space of the model, and although the physics in this thesis did not go beyond known BA results,

the method allows us to study problems in higher dimensions that BA can not tackle. One central point

of the CGFM that differentiates it from other exact diagonalization approaches like the VCA [2,44,45] is

the calculation of all atomic Green’s functions employing the Lehmann representation. It constitutes the

hard part of the method and allows the investigation of the relevant physical processes in each parameter

space of the Hubbard model, providing clues to clarify the different ground-states present in the model.

The calculations of the method are direct and no self-consistent process is needed. We presented

the mathematical derivation of the formalism and applied it to the single-band one-dimensional Hubbard

Hamiltonian. We benchmarked the results from the CGFM against the results obtained with the thermo-

dynamic Bethe ansatz and the quantum transfer matrix method [21–25]. We calculated the single-particle

gap, ground-state energy, and occupation number density. Systematically, all results tend to be exact as

the number of correlated sites N in the cluster increases. The precision of the approximations depends

on the computational resources available. It is possible to run the CGFM code in a reasonable time for

N = 7 or N = 8 using a good workstation, whereas more sites require heavy computation systems.

We recovered all five phases exhibited by the single-band one-dimensional Hubbard model in

the presence of a magnetic field. We calculated the ground-state phase diagram in h vs. µ coordinates

for N = 7 and N = 8 for U = 4D. Regions I to V are characterized by different electron density n,

partial occupation numbers nup and ndown and magnetization m, and agree well with the phase diagram

obtained with the TBA. In addition to this, we identified a cluster phase (phase VI) that exists only for

low magnetic fields and corresponds to a partially filled band 0 < n < 1, but with ndown > nup and a

negative magnetization m < 0. We identified the existence of this phase for N = 5, 6, 7, 8, but it must

be a finite cluster size effect and should not survive for larger N . It deserves an additional check within

other formalisms, like the TBA and QTM methods [21–25].
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This work opens up a set of possibilities for future applications. In addition to a better under-

standing of the Hubbard model, its application in traditional systems where the model is believed to have

a relevant role. As immediate applications of the method, we mention the use of the cluster solutions as a

correlated quantum dot [QD] connected to Hubbard chains. This kind of setup can be used to study the

Kondo effect [57] and different kinds of transport properties. We also presented a simple application of

the CGFM in spintronics, where we studied the electronic transport through a 3-site cluster quantum dot

[QD] immersed in correlated 3-site Hubbard rectangular conduction bands and obtained spin-polarized

currents. The extension of the method to 2D and 3D opens the possibility of applying it to study high-TC

superconductivity [13] and the Mott transition. In applications to 2D or 3D systems, we must change the

geometry of the correlated cluster to a closed one, as indicated in Fig. 3.2. Another promising application

of the method is in the simulations of ultracold atoms in optical lattices. This research area has defined

an ideal platform to verify and explore new physics associated with correlated electronic systems [35–37].
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Appendix A

Atomic Green’s functions residues and

transition energies for the dimer

Employing the spectral representation (Lehmann representation) [50], the Green’s functions residues,

given by equations (3.5) and (3.6) as

ri,σ = [exp(−βεn−1,r) + exp(−βεn,r′)]× ⟨n− 1, r| ciσ |n, r′⟩ ⟨n, r′| c†iσ |n− 1, r⟩ , (A.1)

are, for the dimer:
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Table A.1: Energy differences of the possible transitions of the Hubbard dimer.

Energy differences Transitions

u1 = ϵ0 + t E1,2 = E1,3 = E4,6 = E4,8 = E5,7 = E5,8 = E9,14 = E9,15

u2 = ϵ0 − t E1,4 = E1,5 = E2,6 = E2,8 = E3,7 = E3,8 = E9,12 = E9,13

u3 = ϵ0 + t+ U E4,9 = E5,9 = E6,14 = E7,15 = E8,14 = E8,15 = E12,16 = E13,16

u4 = ϵ0 − t+ U E2,9 = E3,9 = E6,12 = E7,13 = E8,12 = E8,13 = E14,16 = E15,16

u5 = ϵ0 + t+ U+c
2 E4,10 = E5,10

u6 = ϵ0 + t+ U−c
2 E4,11 = E5,11

u7 = ϵ0 − t+ U+c
2 E2,10 = E3,10

u8 = ϵ0 − t+ U−c
2 E2,11 = E3,11

u9 = ϵ0 + t+ U − U+c
2 E10,14 = E10,15

u10 = ϵ0 + t+ U − U−c
2 E11,14 = E11,15

u11 = ϵ0 − t+ U − U+c
2 E10,12 = E10,13

u12 = ϵ0 − t+ U − U−c
2 E11,12 = E11,13

Energy differences of possible transitions in the Hubbard dimer, where Ei,j represents the transition from

the state i to the state j.

Also using equations (3.5) and (3.6), the energy differences for the possible transitions, given as

ui,σ = εn−1,r − εn,r′ , (A.2)

are, for the dimer, the results presented in table A.1.




