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Abstract

In this thesis, we study confining strings in effective field models of percolating center

vortices, which have been observed in lattice simulations of pure Yang-Mills theory. This

analysis is based on three main pillars: modelling the ensemble components detected in the

lattice, deriving effective field representations, and contrasting the associated properties

with Monte Carlo lattice results. The integration of the present knowledge about these

areas is essential to get closer to a unified physical picture for confinement. Our findings

point to the importance of including the nonoriented center-vortex component and non-

Abelian degrees when modelling the center-vortex ensemble measure. These inputs are

responsible for the emergence of topological solitons and the possibility of accommodating

the asymptotic scaling properties of the confining string tension.

In particular, in a three-dimensional spacetime, we derive an effective field descrip-

tion for the center-element average where center vortices get represented by N flavors of

effective Higgs fields transforming in the fundamental representation. This field content

is required to accommodate fusion rules where N vortices can be created out of the vac-

uum. The inclusion of a nonoriented sector, formed by center-vortex worldlines attached

to pointlike defects, leads to a discrete set of Z(N) vacua. This type of SSB pattern

supports the formation of a stable domain wall between quarks, thus accommodating not

only a linear potential but also the Lüscher term. Moreover, after a detailed analysis of

the associated field equations, the asymptotic string tension turns out to scale with the

quadratic Casimir of the antisymmetric quark representation. These behaviors reproduce

those derived from Monte Carlo simulations in SU(N) 3D Yang-Mills theory, which lacked

understanding in the framework of confinement as due to percolating magnetic defects.

In a four-dimensional spacetime, we explore vortex solutions for a class of effective

SU(N) Yang-Mills models with N2−1 Higgs fields in the adjoint representation. Initially,

we show that there is a collective behavior that can be expressed in terms of a small N -

independent number of field profiles. Then, we find a region in parameter space where the

nontrivial profiles coincide with those of the Nielsen-Olesen vortex, and the energy scales

exactly with the quadratic Casimir. Out of this region, we solve the ansatz equations

numerically and find very small deviations from the Casimir law. The coexistence of

Abelian-like string profiles and non-Abelian scaling features is welcome, as these properties

have been approximately observed in pure YM lattice simulations. At a particular point

in parameter space, the stability of this scaling law is supported by a set of BPS equations

that provide vortex solutions and their energies for arbitrary representations.

At a fundamental level, we explore a recent approach where the gauge fields are

mapped into an auxiliary space. This space can be used to initially determine sectors

labeled by center vortices, and then separately fix the gauge on each one of them. In this



thesis, we study this procedure in more detail. We provide examples of configurations

belonging to these sectors and discuss the existence of nonabelian degrees of freedom.

Then, we discuss the importance of the mapping injectivity, and show that this prop-

erty holds infinitesimally for typical configurations of the vortex-free sector and for the

simplest example in the one-vortex sector. Finally, we show that these examples are free

from Gribov copies.
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Chapter 1

Introduction

Our knowledge about the elementary particles, as well as three of the four known funda-

mental interactions, is successfully described by the standard model of particle physics.

In particular, the quantitative behavior of the electromagnetic, weak, and strong inter-

actions is encoded in the common language of gauge theories. In the strong sector, an

important and intriguing phenomenon regarding the possible asymptotic particle states

takes place. When quarks and gluons are created in a collision, they cannot move apart.

Instead, they give rise to jets of colorless particles (hadrons) formed by confined quark and

gluon degrees of freedom. Although confinement is key for the existence of protons and

neutrons, a first-principles understanding of the mechanism underlying this phenomenon

is still lacking. At high energies, the detailed scattering properties between quarks and

gluons are successfully reproduced by QCD perturbative calculations in the continuum,

which are possible thanks to asymptotic freedom. This is in contrast with the status at

low-energies, where the validity of quantum chromodynamics (QCD) is well-established

from sucessfull computer simulations of the hadron spectrum. This thesis focuses on this

type of non-perturbative problem in pure SU(N) Yang–Mills (YM) theory, which is a

challenging open problem in contemporary physics. Here again, Monte Carlo simulations

provide a direct way to deal with the large quantum fluctuations and compute averages of

observables such as the Wilson loop, which is an order parameter for confinement in pure

YM theories. As usual, the lattice calculations, as well as the center-vortex ensembles

we shall discuss, consider an Euclidean (3d or 4d) spacetime. Unless explicitly stated,

this is the metric that will be used throughout this work. For heavy quark probes in an

irreducible representation D, the Wilson loop is given by:

WD(Ce) =
1

D
tr D

(
P
{
ei
∫
Ce dxµ Aµ(x)

})
, (1.1)

where D is the dimensionality of D. The closed path Ce can be thought of as associated

to the creation, propagation, and annihilation of a pair of quark/antiquark probes. From

a rectangular path, with sides T and R, information about the static interquark potential
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was obtained from the large T behavior 〈WD(Ce)〉 ∼ e−T VD(R). An area law, given by

the propagation time T multiplied by the interquark distance R, corresponds to a linear

confining potential [1] (for a review, see Ref. [2]).

There are many model-independent facts that point to the importance of Z(N), the

center of the group SU(N), to describe the confining properties of YM theory. This

subgroup elements are given by

Z(N) =
{
z IN | z ∈ C, zN = 1

}
. (1.2)

In this regard, the first ideas relating the possible phases to the Z(N) properties of the

vacuum were developed in [3]. There, disorder vortex field and string field operators were

introduced in (2 + 1)d and (3 + 1)d Minkowski spacetime, respectively. At equal time,

they satisfy

ŴF(Ce) V̂ (x) = ei2π L(x,Ce)/N V̂ (x) ŴF(Ce) , in (2 + 1)d, (1.3)

ŴF(Ce) V̂ (C) = ei2π L(C,Ce)/N V̂ (C) ŴF(Ce) , in (3 + 1)d, (1.4)

where the subindex F denotes the fundamental representation, x ∈ R2 (C ∈ R3) is a point

(curve) in real space where a thin pointlike (looplike) thin center vortex is created in

three (four) dimensional spacetime. L(x, Ce) and L(C, Ce) are the corresponding linking

numbers. An explicit realization of V̂ was given by the action V̂ |A〉 = |AS〉, where |A〉
are quantum states with well-defined shape A0 = 0, Ai (i = 1, 2, 3) at a given time. The

field ASµ has the form of a gauge transformation, but performed with a singular phase

S ∈ SU(N). To define the operator V̂ (x) (respectively V̂ (C)), S must change by a center

element when going around any spatial closed loop that links x (respectively C). Spurious

singularities may be eliminated by using the adjoint representation Ad(S), which leaves a

physical effect only at the point x, or closed path C, where Ad(S) is multivalued. Argu-

ments in favor of characterizing confinement as a magnetic Z(N) spontaneous symmetry

breaking phase (center-vortex condensate),

〈V̂ (x)〉 6= 0 , 〈V̂ (C)〉 ∼ e−µPerimeter(C) , (1.5)

were also given in that work. The lattice also provides direct information about the role

played by Z(N) in the confinement/deconfinement phase transition [4]. This is observed

in the fundamental Polyakov loops Px(A ), which are given by Eq. (1.1) computed on a

straight path located at a spatial coordinate x and extending along the Euclidean time-

direction. Due to the finite-temperature periodicity conditions, these segments can be

thought of as circles. When changing from higher to lower temperatures, the distribution
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of the phase factors of Px(A ), for typical Monte Carlo configurations, shows a phase

transition. At higher temperatures, for most x, the phase factors are close to one of

the center elements ei2πk/N , k = 0, . . . , N − 1. On the other hand, below the transition,

they are equally distributed on Z(N), as a function of the spatial site x. As a result, the

Monte Carlo calculation gives a transition from a non-vanishing to a vanishing gauge-field

average 〈Px〉, which is in fact x-independent, where the electric Z(N) symmetry is not

broken. This corresponds to a transition from a deconfined phase at higher T , where the

quark free energy is finite, to a confined phase below Tc, where the free energy diverges.

The chromoelectric flux tube between external quarks [5, 6, 7, 8, 9, 10, 11, 12] also

displays many interesting properties. At intermediate distances, the lattice string tension

σI(D), derived from the Wilson loop average 〈WC〉1, scales with the quadratic Casimir

C2(D) of the SU(N) quark representation D(·), see Ref. [13]. That is,

σI(D)

σI(F)
=
C2(D)

C2(F)
, (1.6)

where F stands for the fundamental representation. In this work, we will be mainly

interested in the behavior at asymptotic distances. In this regime, full Monte Carlo

simulations showed the relevance of Z(N) in general Wilson loop simulations. Namely,

the string tension only depends on the N -ality k of D, which determines how the center

Z(N) of SU(N) is realized in the given quark representation [14] (ID is a D×D identity)

D (ei
2π
N I) =

(
ei

2π
N

)k
ID . (1.7)

Regarding the confinement mechanism, lattice calculations aimed at determining the

relevant degrees of freedom have been performed for many years. In particular, procedures

have been constructed to analyze Monte Carlo Uµ(x) ∈ SU(N) link-configurations and

extract center projected configurations Zµ(x) ∈ Z(N) [15, 16, 17, 18] (for recent techniques

to improve the detection of center vortices, see [19]). A given plaquette is then said to

be pierced by a thin center vortex if the product of these center elements along the

corresponding links is nontrivial. Observables may then be evaluated by considering

vortex-removed and vortex-only configurations. The confining properties are only well

described in the latter case [15, 16, 20, 21, 22, 23, 24, 25, 26, 27], [28]-[34]. In the lattice,

the analysis and visualization of center-vortex configurations [35] led to important insights

regarding the origin of the topological charge density in the YM vacuum. In 3d (4d), thin

center vortices are localized on worldlines (worldsheets) ω. In this case, the Wilson loop

in Eq. (1.1) yields a center element

WD(Ce) = ZD(Ce) =
1

D
tr
[
D
(
ei

2π
N I
)]L(ω,Ce)

, (1.8)

1C is the closed worldline associated with the external quark/antiquark pair.
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where L(ω, Ce) is the total linking number between ω and Ce. This also applies to thick

center vortices, when their cores are completely linked by Ce. In this case, ω refers to the

thick center-vortex guiding centers. In the scaling limit, where the lattice calculations

make contact with the continuum, the density of thin center vortices detected at low

temperatures is finite [16, 36]. Furthermore, center vortices percolate and have positive

stiffness [37, 38], while the fundamental Wilson loop average over Zµ(x) displays an area

law. This is in accordance with center-vortex condensation and the Wilson loop confine-

ment criteria. For SU(2), a model based on the projected thin center-vortex ensemble

captures 97.7% of the fundamental string tension. On the other hand, the percentage

drops to ∼ 62% for SU(3) [39]. One of the most important features of the center-vortex

scenario is that it naturally explains asymptotic N -ality: the center element contribution

in Eq. (1.8) only depends on the N -ality of D. For these reasons, it is believed that the

confinement mechanism should involve these degrees of freedom. For a recent discussion

about this area of research, see [40].

When it comes to accommodating the model-independent full Monte Carlo calcula-

tions, some questions arise. In 3d, the full asymptotic string tension dependence on D is

very well fitted by the Casimir law [41]

σ
(3)
k =

k(N − k)

N − 1
=
C2(k-A)

C2(F)
, (1.9)

which is proportional to the lowest quadratic Casimir among those representations with

the same N -ality k of D, which corresponds to the antisymmetric representation k-A.

In addition, it is precisely at asymptotic interquark distances where a model based on

an ensemble of thin objects should be more reliable. This is different at intermediate

distances, where finite-size effects allowed for an explanation of the observed scaling with

the Casimir of D [42, 43]. Then, one question is: how to capture the asymptotic law in Eq.

(1.9) from an average over percolating thin center-vortices? In 4d, where the available

data cannot tell between a Casimir or a Sine law [6]

σ
(4)
k =

k(N − k)

N − 1
vs. σ

(4)
k =

sin kπ/N

sin π/N
, (1.10)

is there any ensemble based on center-vortices that could reproduce one of these behaviors?

More importantly, how can one explain this together with the formation of the confining

flux tube observed in the lattice? This means reproducing the Lüscher term [5, 7, 8] and

the observed transverse field distributions (see [9, 10, 11], and references therein). In this

thesis, we shall present some developments aimed at providing a possible answer to these

questions.
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Chapter 2

Context and Motivations

The idea that center vortices are the dominant degrees of freedom in the infrared regime

means, in practice, that the Wilson loop average at asymptotic distances may well be

captured by modeling the average of the center-elements in Eq. (1.8). This line of research

was mainly explored in the lattice [44] by considering an ensemble of fluctuating worldlines

(in 3d) or worldsurfaces (in 4d) with tension and stiffness (see also the discussion at the

beginning of 2.1.2). For example, in 4d, a theory of fluctuating center-vortex worldsurfaces

in four dimensions was introduced by considering the lattice action [44]

Slatt(ω) = µA(ω) + cNp , (2.1)

where A(ω) is the area of the vortex closed worldsurface ω, formed by a set of plaquettes,

and Np is the number of pairs of neighboring plaquettes of the surface lying on different

planes. The latter term, as well as the lattice regularization, contribute to the stiffness

of the vortices. This model, initially introduced for SU(2), and then generalized for

SU(3) [45], is able to describe important features, such as the confining string tension for

fundamental quarks and the order of the deconfinement transition. This type of model

can be also formulated in the continuum. The objective is the same, that is, looking for

natural ensemble measures to compute center-element averages and compare them with

the asymptotic information extracted from the full Monte Carlo average 〈WD(Ce)〉. A

successful comparison is expected to give important clues about the underlying mechanism

of confinement. When computing center-element averages in the continuum, the simplest

model has the form:

〈ZD(Ce)〉 = N
∑
ω

e−S(ω) 1

D
tr
[
D
(
ei

2π
N I
)]L(ω,Ce)

, (2.2)

where
∑

ω represents the sum over different configurations in a diluted gas of closed

worldlines (in 3d) or worldsurfaces (in 4d). The weight factor e−S(ω) implements the
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effect of center-vortex tension (µ) and stiffness (1/κ) observed in the lattice [37, 38].

More precisely, S(ω) contains a term proportional to the length or area of ω, and another

one proportional to a power of the absolute value of the curvature of ω. See Eq. (D.3)

for an explicit formula in 3 dimensions. S(ω) could also contain interactions with a scalar

field ψ that, when integrated with a corresponding weight W (ψ), generates interactions

among the variables ω.

Extended models can also be introduced where the defining elements are not only given

by ω but also by additional labels. At the level of the gauge field variables Aµ, the center-

vortex sectors can be characterized by different mappings S0 ∈ SU(N) containing defects

(see 2.2.2). A center vortex with guiding center ω and magnetic weight β is characterized

by S0 = e−iχβ·T , β · T ≡ β|qTq, where χ is a multivalued angle that changes by 2π when

going around ω, and Tq, q = 1, . . . , N−1 are the Cartan generators. Magnetic weights are

defined as 2Nλ, where λ are weights of the su(N) Lie algebra.1 The general properties of

the su(N) Lie algebra, associated roots, and weights are summarized in the Appendices A

and B. For elementary center vortices, the tuple β is one of the magnetic weights βi (i =

1, . . . , N) of the fundamental representation. In the region outside the vortex cores, Aµ

is locally a pure gauge configuration constructed with S0. Then, for fundamental quarks,

the contribution to a large loop contained in that region is i-independent and given by the

elementary center-element (1/N) tr
(
e−i2πβi·T

)
= ei2π/N to the power L(ω, Ce). Different

elementary fluxes may join to form more complex configurations, provided this is done in

a way that conserves the flux. For example, N center-vortex guiding centers associated

with different magnetic weights βi can be matched. For simplicity, let us consider the

SU(3) case in three dimensions and a configuration characterized by S0 = eiχ1β1·T eiχ2β2·T ,

where χ1 and χ2 are multivalued when going around the closed worldlines ω1 and ω2,

respectively. These worldlines could meet at a point, then follow a common open line γ,

and again bifurcate to close the corresponding loops. In this case, we would have a pair

of fluxes entering the initial point, carrying the fundamental weights β1, β2, and a flux

leaving along γ, carrying the weight β1 + β2. In SU(3), this sum is an antifundamental

weight −β3. In other words, there are three fluxes entering the initial point, which carry

the three different fundamental weights β1, β2, β3. This can be readily generalized to

SU(N), where N fluxes carrying the different fundamental weights can meet at a point,

as these weights satisfy
∑

i βi = 0. Vortices may also be nonoriented [46], in the sense

that they may be described by two or more weights. In this case, the center-vortex

components with different fundamental weights are interpolated by instantons in 3d and

monopole worldlines in 4d. These lower dimensional junctions, which carry a flux of

the form βi − βj, should be weighted with additional phenomenological terms in S(ω).

Furthermore, in the 4d case, three monopole worldlines carrying fluxes βi − βj, βj − βk,
βk − βi can be matched at a spacetime point. Similar higher-order matching rules are

1As they carry a single weight, these vortices are known as oriented in the Cartan subalgebra.
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also possible. In what follows, we shall discuss the different ensembles, starting with the

simplest possibilities in 3d and 4d (for a brief review, see Ref. [47]).

2.1 Abelian effective description of center vortices

In this section, we shall briefly discuss center-vortex ensembles formed by diluted closed

worldlines in 3d (see 2.1.1) or worldsurfaces in 4d (see 2.1.2), characterized by no other

properties than tension, stiffness, and vortex–vortex interactions. No additional degrees of

freedom, matching rules or correlations with lower dimensional objects will be considered

here.

2.1.1 Three dimensions

In a planar system, thin center vortices are localized on points, so they are created or

annihilated by a field operator V̂ (x). The emergence of this order parameter can be

clearly seen by applying polymer techniques to center-vortex worldlines [48]. In [49],

the center-element average for fundamental quarks, over all possible diluted loops, was

initially represented in the form

〈ZF(Ce)〉 = N
∫

[Dψ] e−W [ψ] e
∫∞
0

dL
L

∫
dx
∫
duQ(x,u,x,u,L) , (2.3)

where Q(x, u, x0, u0, L) is the integral over all paths with length L, starting (ending)

at x0 (x) with unit tangent vector u0 (u), in the presence of scalar and vector sources

ψ and 2π
N
sµ, and weighted by tension and stiffness. The factor W [ψ] = ζ

2

∫
d3xψ2(x)

generates, upon integration of the auxiliary scalar field ψ, repulsive contact interactions

between the loops with strength given by the parameter 1
ζ
. Indeed, as in the exponential

we have x = x0, u = u0, its expansion generates the diluted loop ensemble. As usual,

the factor 1/L is to avoid loop overcounting when choosing x0 on a given loop. The

external source sµ is localized on a surface S(Ce) whose border is the Wilson loop. As

a consequence, it generates the intersection numbers between the loop-variables in Q

and S(Ce), which coincide with the different linking-numbers. Using the large-distance

behavior of Q(x, u, x0, u0, L), which satisfies a Fokker–Planck diffusion equation (given

by Eqs. (D.1) and (D.7), with bµ Abelian, and D(Γγ[bµ]) being the complex number

Γγ[bµ]) it was shown that the ensemble average of center elements becomes represented

by a complex scalar field V (x),

〈ZF(Ce)〉 ≈ N
∫

[DV ][DV̄ ] e−
∫
d3x [ 1

3κ
DµV DµV+ 1

2ζ
(V V−v2)2] ,

v2 ∝ −µκ > 0 , Dµ = ∂µ − i
2π

N
sµ . (2.4)
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This was obtained for small (positive) stiffness 1/κ and repulsive contact interactions.

The scalar field V is originated due to the approximate behavior of Q(x, u, x0, u0, L) in

Eq. (D.12), which turns the exponential in Eq. (2.3) into a functional determinant. The

squared mass parameter of this field is proportional to κµ, where µ is the center-vortex

tension. For percolating objects (µ < 0), the U(1) symmetry of the effective field theory

is spontaneously broken (κµ < 0). Among the consequences, it was obtained that:

1. In the center-vortex condensate, the effective description is dominated by the soft

Goldstone modes, V (x) ∼ v eiφ(x). Then, the calculation of the center-element

average is neither Gaussian nor dominated by a saddle-point, as it involves a compact

scalar field φ and large fluctuations;

2. This is better formulated in the lattice, where the Goldstone mode sector is governed

by a 3d XY model with frustration

S
(3)
latt = β̃

∑
x,µ

Re
[
1− eiγ(x+µ̂)e−iγ(x)e−iαµ(x)

]
. (2.5)

The external source in Eq. (2.4) translates into the frustration eiαµ(x) = ei
2π
N if S(Ce)

is crossed by the link and is trivial otherwise;

3. In the expansion of the partition function, due to the measure
∏

x

∫ π
−π dγ(x), the

terms that contribute contain products of the composite eiγ(x+µ̂)e−iγ(x) (or its con-

jugate) over links organized forming loops. Otherwise, the integrals over the site

variables at the line edges vanish (see Figure 2.1);

4. Due to frustration, every time Ce is linked, a center element is generated. Then, in

the lattice, the closed center-vortex worldlines in the initial ensemble, which led to

Eq. (2.3) and gave origin to the effective description (2.4), are represented by the

loops of item 3.

This point of view was useful to propose other ensemble measures relying on lattice

models, as in the case where the derivation of the effective description is not known,

see for example 2.1.2 and 4.1. The initial ensemble properties encoded in Eq. (2.3) are

recovered close to the 3d XY model critical point, as expected. Indeed, using the same

techniques reviewed in [50] for the case without frustration, the partition function may be

formulated in terms of integer-valued divergenceless currents, originated after using the

Fourier decomposition

eβ cos γ =
∞∑

b=−∞

Ib(β)eibγ , (2.6)
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at every lattice link. The resulting expression turns out to be equivalent to a grand

canonical ensemble of non-backtracking closed loops formed by currents of strength |bµ| =
1. In the model without frustration, close to the critical point βc ≈ 0.454 (continuum

limit), the relevant configurations are known to be formed by large loops rather than by

multiple small loops, and multiple occupation of links is disfavored, thus making contact

with the initial properties parametrized in the ensemble (see Table 2.1 below).

Table 2.1: The correspondence between the effective field and the 3d XY model represen-
tations of the Abelian center−vortex ensemble.

3d XY Effective Fields
large loops are favored negative tension µ
multiple small loops are disfavored positive stiffness 1/κ
multiple occupation of links is disfa-
vored

repulsive interactions

(a) (b)

Figure 2.1: The Wilson loop and the frustration are represented in red and green, re-
spectively. Configurations of type (a), which involve sites joined by open lines, do not
contribute to the partition function. Only site configurations joined by loops, like the one
in (b), contribute (with a center-element).

2.1.2 Four dimensions

Regarding the effective description of 4d ensembles based on random surfaces, as in the

3 + 1 dimensional world center vortices are one-dimensional objects spanning closed

worldsurfaces, the emergent order parameter would be a string field. However, unlike the

3d case, a derivation starting from the ensemble of closed worldsurfaces with stiffness is

still lacking. Such generalization should initially describe a growth process where a surface

is generated, and then a Fokker–Planck equation for the lattice loop-to-loop probability

should be derived. Similarly to what happens with end-to-end probabilities for polymers,

where stiffness is essential to get a continuum limit when the monomer size goes to

zero [51, 52], curvature effects are expected to be essential for the continuum limit of

triangulated random surfaces. Indeed, ensembles of surfaces which consider only the

Polyakov (or Nambu-Goto) action leads to a phase of branched polymers [53, 54]. On the
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other hand, in [55], the phase fluctuations of an Abelian string field with frozen modulus

were approximated by a lattice field theory: the U(1) gauge-invariant Abelian Wilson

action. In other words, the Goldstone modes for a condensate of one-dimensional objects

are gauge fields. Motivated by this enormous simplification and by an analogy with the

3d case, in Ref. [56] a Wilson action with frustration was proposed as a starting point to

define a measure for percolating center vortices in four dimensions. This proposal will be

discussed in section 4.1. For the time being, we summarize the main initial steps, which

are analogous to items 1–4 in 2.1.1:

1. In the center-vortex condensate, the effective theory is dominated by the soft Gold-

stone modes, which are represented by an emergent compact Abelian gauge field

Vµ ∈ U(1). In the center-vortex context, another natural model based on Vµ ∈
SU(N) was also proposed (see Sec. 4.1);

2. The lattice version of the Goldstone mode sector is given by a Wilson action with

frustration;

3. In the expansion of the partition function, the relevant configurations to compute

the gauge model correspond to link-variables on the edges of plaquettes organized

on closed surfaces (see Figure 2.2);

4. The frustration is nontrivial on plaquettes x, µ, ν that intersect S(Ce). Every time

a closed surface links Ce, a center-element for quarks in the representation D is

generated.

Thus, the main simplification in 4d is that, in a condensate, the effective description

can be captured by a local field. Similarly to 3d, where the soft modes can be read in

the phase of the vortex field V (x) ∼ v eiγ(x), the natural soft modes in 4d are given by a

compact gauge field,

V (C) ∼ v eiγΛ(C) , γΛ(C) =

∮
C

dxµ Λµ . (2.7)
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(a) (b)

Figure 2.2: (a) Configurations formed by link variables distributed on plaquettes organized
on an open surface do not contribute, as the Vµ link−variables at the surface edges cannot
form singlets; (b) when they are organized on closed surfaces, singlets can be formed and
the group−integral is nontrivial.

2.2 Center-vortices, matching rules, and correlations

The simplest center-vortex ensembles discussed in Sec. 2.1 could provide an important

basis to understand the confinement mechanism at asymptotic distances. However, they

do not contain enough ingredients to reproduce more intricate properties. In this section,

we shall discuss the center-vortex gauge fields and typically non-Abelian elements that

could characterize the associated ensembles.

2.2.1 Thick center vortices and intermediate Casimir scaling

Before discussing generalized center-vortex ensembles with matching rules and nonori-

ented components, let us recall how the consideration of center-vortex thickness and the

natural non-Abelian orientations in the gauge group can account for the observed Casimir

scaling at intermediate distances. Some ideas along this line were initially pursued in [57].

In [42, 43] (see also [58]), a simple model was put forward in the lattice, where the con-

tribution to a planar Wilson loop along a curve Ce was modeled. The starting point is

to postulate an ensemble of thick center vortices whose total flux, as measured by a fun-

damental holonomy, have different possibilities zj = ei2πj/N , j = 1, . . . , N − 1. When a

thick center vortex is partially linked, the contribution to the Wilson loop is given by the

insertion of a group element Gj(x, S) that depends on the location (x) of the center-vortex

midpoint (or guiding center) with respect to Ce. It also depends on a group orientation

S,

Gj(x, S) = SGj(x)S† , (2.8)

where Gj = exp [i αj · T ] is in the Cartan subgroup and the tuples αj are formed by

model-dependent scalar profiles. These profiles implement the natural condition that

14



Gj(x, I) = zjIN , if the thick center vortex is fully enclosed by Ce, it is IN if it is not

enclosed at all, and it gives an interpolating value otherwise. After averaging over random

group orientations in [42, 43], they arrived at

σCe(D) ≡ −
∑
x

1

A
ln(1−

N−1∑
j=0

fj(1−
1

D
Tr D (Gj))) , (2.9)

where fj is the probability that a given plaquette of the planar surface enclosed by Ce

be pierced by the midpoint of a center-vortex of type j, σCe(D) is the string tension in

representation D, and A is the minimal area of Ce. At intermediate distances, after some

natural approximations, an appropriate choice of profiles, and using the key formula

Tr (D(Tq)D(Tp)) = D δqp
C2(D)

N2 − 1
, (2.10)

the Casimir Scaling (recall Eq. (1.6)) was obtained. In [42, 43], based on a specific

choice of probabilities and profiles, it was also possible to reproduce different asymptotic

behaviors, such as the Casimir and the Sine law. In Sec. 2.3, we shall review a different line

based on oriented and nonoriented center vortices, which naturally lead to an asymptotic

Casimir law. As these models are generated from weighted center-element averages, they

are expected to be applicable in the asymptotic region.

2.2.2 Center-vortex sectors in continuum YM theory

Center vortex correlations were considered for the first time in [3]. In (2 + 1)d Minkowski

spacetime, the order–disorder algebra in Eq. (1.3) says that the action of V̂ (x) on |A〉
gives

ŴF(Ce)
(
V̂ (x)|A〉

)
= ei

2π
N WF(Ce)

(
V̂ (x)|A〉

)
, (2.11)

if x is encircled by Ce, and it leaves the state |A〉 unaltered otherwise. Here, |A〉 is a state

with well-defined shape in the Weyl gauge A0 = 0, That is, V̂ (x)|A〉 is a state where a thin

center-vortex is created on top of Ai. In particular, the action of V̂ N(x) is trivial. Then,

the possible phases were effectively described by a model with magnetic Z(N) symmetry

L = ∂µV̄ ∂µV +m2 V̄ V +
λ

2
(V̄ V )2 + ξ (V N + V̄ N) . (2.12)

This includes quadratic and quartic correlations, as well as the N -th order terms that

capture the possibility that N vortices may annihilate. The case m2 > 0 would correspond

to a Higgs phase where center vortices are in the spectrum of asymptotic states. The case

m2 < 0 corresponds to a center-vortex condensate, with N degenerate classical vacua, so

that Z(N) is spontaneously broken. For a detailed analysis of this effective description,
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see [59, 60]. In [3], based on the center-vortex operator definition V̂ (x)|A〉 = |AS〉,
discussed in Chapter 1, 3d Euclidean vortex Green’s functions 〈V̄ (y)V (x)〉 were defined.

This was done by considering the YM path-integral over configurations Aµ with boundary

conditions around the pair of points x, y ∈ R3, such that a vortex is created at x, it is

then propagated, and finally annihilated at y. When |x− y| → ∞, an exponential decay

would correspond to a Higgs phase and 〈V 〉 = 0, because of the clustering property. This

agrees with the discussion above, where the Higgs phase m2 > 0 is characterized by a

Z(N) symmetric vacuum. On the other hand, a condensate would correspond to a Green’s

function that tends to a constant.

Now, from the definition of the operator V̂ (x), it is clear that it introduces singularities

in the gauge fields. If A is smooth, the configuration AS is singular, with a field strength

containing a delta-singularity at the center vortex location x. As pointed out by ’t Hooft,

the operator’s definition could be made more precise by smearing the singularities over

an infinitesimal region around x. Otherwise, we would be working with singular infinite

action gauge fields. Although this direction was not pursued in that work, the smeared

Green’s functions could depend on the choice of boundary conditions, for the mapping

S ∈ SU(N), around x and y. In other words, the vortex field V̂ could hide non-Abelian

degrees of freedom which are not evidenced by the algebra in Eq. (1.3), which only

depends on properties with respect to the Wilson loop.

In Chapter 6, we will analyze the procedure given in Ref. [61], proposed for quantizing

Yang-Mills theories in the continuum. In that work, the authors introduced a partition

of the full configuration space of smooth gauge fields {Aµ} into sectors V(S0) ⊂ {Aµ}
characterized by topological labels S0. These labels S0 are characterized by the location

of oriented and nonoriented center-vortex guiding centers, with all possible matching

rules. While a possible label for an oriented center-vortex would be S0 = eiχβ·T , a typical

nonoriented configuration is characterized by S0 = eiχβ·TW . In 3d, close to some points

(instantons) on the center-vortex worldline generated by eiχβ·T , the mapping W behaves as

a Weyl transformation that changes the fundamental weight β to β′. Similarly, in 4d, the

change occurs at some monopole worldlines on the center-vortex worldsurfaces generated

by eiχβ·T (see [56]). The full YM partition function and averages of observables were then

represented by a sum over partial contributions,

ZYM =
∑
S0

Z(S0) , 〈O〉YM =
1

ZYM

∑
S0

∫
V(S0)

[DAµ]O e−SYM . (2.13)

Here,
∑

S0
is a short-hand notation for the contribution originated from the continuum

of labels S0. In Ref. [62], this quantization procedure was shown to be renormalizable in

the vortex-free sector. Furthermore, the extension of the renormalization proof to sectors

labeled by center vortices was done in Ref. [63]. These ideas provided a glimpse of a

path connecting first principles Yang–Mills theory to an ensemble containing all possible
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center-vortex configurations. In addition to addressing this important conceptual issue,

the partition into sectors may circumvent the well-known Gribov problem when fixing

the gauge in non-Abelian gauge theories, as Singer’s no go theorem [64] only applies to

global gauges in configuration space (see [65] for a detailed discussion). An interesting

consequence of this construction is that a new label may be generated by the right mul-

tiplication, S0 → S0Ũ
−1, with regular Ũ , which is not necessarily connected to S0 by a

regular gauge transformation. That is, given a center-vortex sector, there is a continuum

of physically inequivalent sectors characterized by non-Abelian d.o.f. where the defects

are located at the same spacetime points. In the context of effective Yang–Mills–Higgs

models, which describe the confining string as a smooth topological classical vortex so-

lution, the presence of similar internal d.o.f. was previously noted in a large class of

color-flavor symmetric theories [66, 67, 68, 69, 70, 71, 72, 73, 74, 75].

2.3 Mixed ensembles of oriented and nonoriented cen-

ter vortices

The general properties of center vortices discussed so far motivate the search for a natural

ensemble that captures all the asymptotic properties of confinement. Among them, the

formation of a confining flux tube is the most elusive one in this scenario. The formation of

this object would also explain the Lüscher term, which has not been observed in projected

center-vortex ensembles. Furthermore, the asymptotic Casimir law (cf. Eq. (1.9)) should

be reproduced in 3d, while in 4d we would like to understand the coexistence of N -ality

with the Abelian-like flux tube profiles [9, 10, 11]. It is clear that a confining flux tube

requires an ensemble whose effective description contains topological solitons, namely,

a confining domain wall in (2 + 1)d and a vortex in (3 + 1)d. However, the simple

models of oriented and uncorrelated center vortices discussed in Sec. 2.1 do not have the

conditions to support these topological objects2. In Chapters 3 and 4, we will explain

how the inclusion of center-vortex matching rules and a nonoriented component, where

lower dimensional defects are attached to center vortices (see Sec. 2.2.2), could fill the

gap between center-vortex ensembles and the formation of a flux tube. In [76, 77], lattice

studies showed that the 4d Abelian-projected lattice is not represented by a monopole

Coulomb gas, but rather by monopoles attached to collimated fluxes (for a scenario only

relying on monopole ensembles, see [78, 79, 80]). In 3d, the attached lower dimensional

defects are instantons. The relevance of nonoriented center vortices to generate a non-

vanishing Pontryagin index was shown in [46]. We also note that although oriented

and nonoriented center vortices, located at the same place, would contribute to a large

2Namely, a SSB pattern with discrete classical vacua in (2 + 1)d and multiple connected vacua in
(3 + 1)d.
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Wilson loop with the same center-element, it is natural to weight them with different

effective actions. In the second case, the measure should also depend on the location of

the lower-dimensional defects.
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Chapter 3

3d Ensemble with Asymptotic

Casimir Law

Understanding the mechanism behind the nonperturbative asymptotic Casimir scaling in

Eq. (1.9) is a challenging problem. Until now, a picture for Casimir scaling as due to

percolating magnetic defects was only given at intermediate distances [42], however these

arguments rely on the finite thickness of center vortices, so they cannot be extended to the

asymptotic region. In order to incorporate this non-Abelian feature, it is natural to equip

the ensemble with non-Abelian d.o.f. Indeed, in the continuum, the presence of these

degrees in Yang-Mills theories was brought up in Ref. [56], noting that the definition of

a path-integral measure that detects magnetic defects contains, for every realization of

their locations, a continuum of physically inequivalent sectors. In this chapter, we shall

initially propose an ensemble measure where center-vortex worldlines equipped with non-

Abelian d.o.f. can be attached to pointlike defects (instantons). This will be an extension

of the center vortex measure in Ref. [49] (see also Refs. [48, 81]), where a 3D ensemble of

Abelian loops was considered. In that case, in the percolating phase, the effective theory

is equivalent to an XY model with topological frustration, which implies an area law for

the center-element average. For the extended measure, we will derive an effective field

description where the vortices, carrying fundamental weights, get naturally represented

by N flavors of effective Higgs fields transforming in the fundamental representation.

Up to this point, in the center-vortex condensate, the vacuum manifold has an SU(N)

degeneracy. However, the instanton sector is manifested as an additional interaction,

which replaces this continuum of possibilities by a discrete set of Z(N) vacua. This

gives rise to the formation of a stable domain wall whose border is given by the quark

loop. Thus, besides a linear term, the potential will contain a subleading Lüscher term

originated, as usual, from the fluctuation of collective coordinates around the saddle-point.

Finally, after a detailed analysis of the associated field equations, we will show that the

string tension turns out to scale with the sought-after asymptotic Casimir law.
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3.1 Center-vortices with non-Abelian d.o.f.

In Ref. [3], an Abelian model to describe center vortices in (2 + 1)D was proposed. For

this aim, center-vortex operators V̂ (x) were defined in SU(N) pure YM theory. In this

case, the nontrivial correlators are not only of the form

〈Ω|T{V̂ †V̂ }|Ω〉 , 〈Ω|T{V̂ †V̂ V̂ †V̂ }|Ω〉 , . . .

but also those involving N elementary operators of the same type,

〈Ω|T{V̂ . . . V̂ }|Ω〉 , 〈Ω|T{V̂ † . . . V̂ †}|Ω〉 .

This is due to the fact that N center-vortex operators have trivial total Z(N) charge,

so they can connect vacuum to vacuum amplitudes. Based on these physical inputs, the

effective model given by Eq. (2.12) was then introduced which captures the correlators

mentioned above. When a condensate is formed (m2 < 0), the Z(N) symmetry is spon-

taneously broken, thus leading to classical topological solutions (one-dimensional domain

walls) on the physical R2-plane, with finite energy per unit length. As discussed in Ref.

[3], these line defects can end at a pair of heavy quark-antiquark probes. That is, a

confining string is formed in this phase.

In Ref. [48], the application of polymer techniques to vortex loops with stiffness

1/κ and tension µ, coupled to an external vector field, made it possible to think of

the end-to-end probability of a vortex worldline as a solution to a diffusion equation

in 3D. In this manner, the N = 2 model in Eq. (2.12) was associated with the large

distance effective description of an ensemble where vortex pairs are created/annihilated

via pointlike correlated defects. In Ref. [49], an ensemble measure to compute center-

element averages was clearly related with the first three U(1)-symmetric terms in Eq.

(2.12), with a covariant derivative in the place of ∂µ. This derivative depends on the

external field used to represent linking numbers between center vortices and the Wilson

loop in the initial ensemble. The U(1)-symmetric sector is dominated by Goldstone modes

in a 3d XY model with topological frustration. For large N , an analysis based on the

associated critical properties led to a squared sine (area) law. Here, the inclusion of N -

line correlations is expected to reproduce the complete model in Eq. (2.12); however, this

cannot accommodate the asymptotic Casimir law either.

In order to describe this type of scaling, which involves a non-Abelian property, it is

natural to improve the ensemble with non-Abelian information. Indeed, as discussed in

Ref. [61], the inequivalent sectors of magnetic defects in Yang-Mills theories are naturally

labeled by these degrees. Therefore, we shall initially consider the center-vortex loop

ensemble of Ref. [49] embedded in a non-Abelian setting. The Wilson Loop associated to
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a quark worldline C carrying an irreducible D-dimensional representation D is given by

WC[Aµ] =
1

D
tr D

(
P
{
ei
∮
C dxµ Aµ(x)

})
. (3.1)

The contribution of an elementary center vortex configuration Aµ = β ·T ∂µχ, whose field

strength is localized on a loop l, is the center element

WC[Aµ] =
(
ei 2π β·we

)L(C,l)
=
(
ei2πk/N

)L(C,l)
, β = 2Nw , (3.2)

where L(C, l) is the linking number between C and l. The tuple β is a (magnetic) weight of

the defining representation, corresponding to unit-flux vortices (there are N possibilities

βi = 2Nwi), and χ is a multivalued angle that changes by 2π when we go around l. These

weights can be ordered as w1 > w2 > ... > wN . They satisfy

wq · wp =
Nδqp − 1

2N2
. (3.3)

In addition, we is an electric weight of the quark representation D.1 This contribution can

be rewritten in the form

WC[Aµ] = Wl[b
C
µ] =

1

N
trP

(
ei
∮
l dxµ b

C
µ(x)
)

, Aµ = β · T ∂µχ , (3.4)

where bCµ(x) ≡ 2πβe · T sµ, βe = 2Nwe, and sµ is concentrated on a surface S(C) whose

border is C

sµ =
1

2

∫
S(C)

dσ1dσ2 εµνρ
∂xν

∂σ1

∂xρ

∂σ2

δ(x̄(σ1, σ2)− x) . (3.5)

In this respect, note that the circulation of sµ along l gives the intersection number

between l and S(C), ∮
l

dxµsµ = I(S(C), l) , (3.6)

which coincides with the linking number L(C, l).
The contribution to the Wilson Loop originated from n center vortices is the product

of the corresponding center elements. Then, including the property of stiffness, observed

in the lattice [44, 45, 82], as well as tension µ, the ensemble average becomes Zloops[b
C
µ],

1For a general representation, a weight λ is an (N − 1)-tuple formed by the eigenvalues λ|q of simul-
taneous eigenvectors of the Cartan generators D(Tq), that is, D(Tq)|λ〉 = λ|q|λ〉, q = 1, . . . , N − 1. We
also defined β · T = β|qTq.
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where

Zloops[bµ] =
∞∑
n=0

1

n!

n∏
k=1

∫ ∞
0

dLk
Lk

∫
dvk

∫
[dx(k)]Lkvk,vk e

−
∫ Lk
0 dsk

[
1

2κ
u̇

(k)
µ u̇

(k)
µ +µ

]
Wlk [bµ] (3.7)

is the ensemble partition function in the presence of a general external source bµ ∈ su(N).

For each closed worldline x(k)(s), u
(k)
µ is its tangent vector

uµ(s) =
dxµ
ds
∈ S2 , u̇µ(s) =

duµ
ds

. (3.8)

The loops start and end at some point xk ∈ R3 where the tangent is uk ∈ S2. [dx]Lv,v path-

integrates over loops with length L starting and ending at v, v = (x, u). This partition

function may be rewritten as

Zloops[bµ] = e
∫∞
0

dL
L

∫
dv trQ(v,v,L) , (3.9)

Q(x, u, x0, u0, L) =

∫
[dx(s)]Lv,v0

e−
∫ L
0 ds [ 1

2κ
u̇µu̇µ+µ] Γγ[bµ] , (3.10)

Γγ[bµ] = P
{
ei
∫
γ dxµ bµ(x)

}
. (3.11)

We can use the methods of Refs. [52, 81] to obtain the non-Abelian difusion equation(
∂L −

κ

2
L̂2
u + µ+ uµ(∂µ − ibµ)

)
Q(x, u, x0, u0, L) = 0 , (3.12)

to be solved with the initial condition Q(x, u, x0, u0, 0) = δ(3)(x−x0)δ(2)(u−u0)IN . These

methods are briefly reviewed in Appendix D. In particular, Q(x, u, x0, u0, L) is given by

Eq. (D.1) computed with the fundamental representation of SU(N). In the small stiffness

limit (large κ), the solution can be approximated by

Q(x, u, x0, u0, L) ≈ 〈x|e−LO|x0〉 , O = − 1

3κ
(∂µ − ibµ)2 + µIN , (3.13)

thus leading to

Zloops[bµ] ≈ e−Tr lnO = (det O)−1 =

∫
[dφ] e−

∫
d3xφ†Oφ , (3.14)

where φ is a complex field in the fundamental representation.

3.2 N-worldline matching rules

The ensemble above can be further improved by including matching rules where N ele-

mentary center vortices carrying different weights βi,
∑N

i βi = 0, can be created at a point

out of the vacuum, then propagated along the lines γ1, . . . , γN , and finally annihilated.
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Figure 3.1: An N center-vortex creation-annihilation process can be thought of as N − 1
correlated loops. The loop li is formed by joining γi with −γN .

Since the weights sum to zero, we can think of this configuration as N − 1 correlated

loops li = γi − γN with a common line −γN (see Fig. 3.1), carrying magnetic weights βi,

i = 1, . . . , N − 1, respectively. For this configuration, the gauge field can be written as

Aµ =
∑N−1

i=1 βi ·T ∂µχi, where χi changes by 2π when we go around li. The corresponding

contribution to the Wilson Loop is

WC[Aµ] =
(
ei 2π β1·we

)L(S(C),l1)
. . .
(
ei 2π βN−1·we

)L(S(C),l(N−1)) . (3.15)

This is a product of center elements that can be rewritten as

WC[Aµ] =
1

N !
εi1...iN εi′1...i′NΓγ1 [bCµ]|i1i′1 . . .ΓγN [bCµ]|iN i′N , Aµ =

N−1∑
i=1

βi · T ∂µχi . (3.16)

In this regard, since 〈wi|βe.T |wj〉 = we·βi δij, we have e2πi
∫
γ dxµwe·T sµ |ij = e2πi

∫
γ dxµwe·βi sµδij,

so that the right-hand side in Eq. (3.16) becomes,

1

N !
εi1...iN εi′1...i′N e

2πi
∫
γ1
dxµwe·βi1 sµδi1i′1 . . . e

2πi
∫
γN

dxµwe·βiN sµδiN i′N

= e
2πi

∫
γ1
dxµwe·β1 sµ . . . e

2πi
∫
γN

dxµwe·βN sµ

= e
2πi

∮
l1
dxµwe·β1 sµ . . . e

2πi
∮
lN−1

dxµwe·βN−1 sµ , (3.17)
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which coincides with the right-hand side in Eq. (3.15). Including the phenomenological

properties of center vortices, the N -line configuration gives a contribution:

CN ∝
∫
d4x d4x0

N∏
j=1

∫
dLjdu

jduj0

∫
[Dx(j)]

Lj

vj0 v
j
e
−
∫ Lj
0 dsj

[
1

2κ
u̇

(j)
µ u̇

(j)
µ +µ

]
DN ,(3.18)

DN = εi1...iN εj1...jNΓγ1 [bµ]i1j1 . . .ΓγN [bµ]iN jN . (3.19)

To proceed, using Eqs. (3.10) and (3.13), for every line we can use∫
dL du du0

∫
[Dx]Lv0 v

e−
∫ L
0 ds [ 1

2κ
u̇µu̇µ+µ ] Γ[bµ] =

∫ ∞
0

dL du du0Q(x, u, x0, u0, L) ∼ G(x, x0) ,

(3.20)

where OG(x, x0) = δ(x− x0) IN (see Appendix D). In other words,

CN ∝
∫
d4x d4x0 εi1...iN εj1...jNG(x, x0)i1j1 . . . G(x, x0)iN jN . (3.21)

The field representation (3.14) and the discussion above clearly suggest the consideration

of N flavors of fundamental fields, one for each fundamental weight, and an appropri-

ate interaction to accomodate the possible N -line matchings by means of the generated

Feynman diagrams in an effective field theory. Indeed, all possibilities for this type of

corelation can be generated from the following field partition function

∫
[DΦ†][DΦ] e−

∫
d3x ( 1

3κ
Tr((DµΦ)†DµΦ)+µTr(Φ†Φ)−ξ0(det Φ+det Φ†)) , (3.22)

where DµΦ ≡ (∂µ − ibµ)Φ and we defined a matrix with components Φ j
i = φj|i, where

φj, j = 1, . . . , N are complex fields in the fundamental representation. A perturbative

expansion reads∫
[DΦ†][DΦ]

(
1 + ξ2

0

∫
d3x

∫
d3x0

εi1...iN εi′1...i′N φ
i′1|i1 . . . φi

′
N |iN εj1...jN εj′1...j′N φ̄

j′1|j1 . . . φ̄j
′
N |jN + . . .

)
e−

∫
d3x φ̄j |iOjj

′
ii′ φ

j′ |i′ . (3.23)

Clearly, the first term is ZN
loops, the contribution to the ensemble of the uncorrelated N

copies of loop types. In addition, multiplying and dividing the ξ2
0-term by

(detO)−N =

∫
[DΦ†][DΦ] e−

∫
d3x φ̄j |iOjj

′
ii′ φ

j′ |i′ , Ojj′

ii′ ≡ δjj
′
Oi′i ,
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and using Wick’s theorem, we get

ξ2
0

(N !)2

∫
[DΦ†][DΦ]

∫
d3x

∫
d3x0 εi1...iN εi′1...i′Nφ

i′1|i1(x) . . . φi
′
N |iN (x)

×εj1...jN εj′1...j′N φ̄
j′1|j1(x0) . . . φ̄j

′
N |jN (x0)e−

∫
d3x φ̄j |iOjj

′
ii′ φ

j′ |i′

= ZN
loopsξ

2
0

∫
d3x

∫
d3x0 εi1...iN εj1...jNGi1j1(x, x0) . . . GiN jN (x, x0) . (3.24)

Therefore, due to Eqs. (3.14) and (3.20), we can write this partial contribution as

ξ2
0

N∏
j=1

∫
d4x d4x0 εi1...iN εk1...kN

∫
dLjdu

jduj0

∫
[Dx(j)]

Lj

vj0 v
j
e
−
∫ Lj
0 dsj

[
1

2κ
u̇

(j)
µ u̇

(j)
µ +µ

]
Γ

(j)
ijkj

[bµ]

(∑
n

1

n!

n∏
k=1

∫ ∞
0

dLk
Lk

∫
dvk

∫
[dx(k)]Lkvk,vk e

−
∫ Lk
0 dsk

[
1

2κ
u̇

(k)
µ u̇

(k)
µ +µ

]
Wlk [bµ]

)N

.

(3.25)

This represents the mixing of the uncorrelated loop configurations and a single correlated

two-point component (cf. Fig. 3.1). Proceeding similarly with the other terms, the per-

turbative series can be identified with all possible configurations with N -line correlations.

At this point, the effective model in Eq. (3.22) is invariant under (magnetic) local color

and global flavor transformations

Φ→ Sc(x)Φ , bµ → ScbµS
−1
c + iSc∂µS

−1
c , Φ→ ΦSf . (3.26)

Other possible correlations among center vortices, with the same symmetry, can be in-

troduced by means of new terms in the exponent of Eq. (3.22). For example we may

consider the center-element average generated by Zv[bCµ] where

Zv[bµ] =

∫
[DΦ†][DΦ] e−

∫
d3xLv , (3.27)

Lv =
1

3κ
Tr((DµΦ)†DµΦ) + µTr(Φ†Φ) + λ0Tr(Φ†Φ)2 − ξ0(det Φ + det Φ†) (3.28)

also contains quartic correlations whose importance is weighted by λ (> 0). This effective

description has some similarities with the ’t Hooft model (cf. Eq. (2.12)). More specif-

ically, they coincide for configurations of the type Φ = V IN . Indeed, the det Φ and V N

terms have a similar physical origin. However, there is no reason for the path-integral

to favor this type of restricted configuration. Up to this point, in the percolating phase

(µ < 0), the quadratic and quartic terms tend to produce a manifold of classical vacua

labeled by U(N), while the addition of the det Φ-interaction reduces this manifold to

SU(N). Then, unlike the ’t Hooft model, in the SSB phase this effective description has a

continuum set of classical vacua which precludes the formation of the stable domain wall.

In Sec. 3.3, this situation will be modified after introducing the possibility of correlated

25



instantons on top of center vortices.

It is interesting to formulate the Goldstone modes V (x) ∈ SU(N) in the lattice, which

leads to

S
(3)
latt(b

Ce
µ ) = β̃

∑
x,µ

Re
[
I− ŪµV (x+ µ̂)V †(x))

]
, (3.29)

where Uµ(x) = ei2πβe·T ∈ Z(N), if the link x, µ crosses S(Ce), and it is the identity other-

wise. As expected, in the expansion of the partition function, besides the contribution of

sites distributed on links that form loops, there is also one originated from N lines that

start or end at a common site x. In the former case, the singlets are included in N ⊗ N̄ ,

while in the latter they are in the products of N V (x) or V †(x) (compare with the Abelian

case in 2.1.1). In this way, the rules originating Eq. (3.28) can be recovered in the lattice.

This type of cross-checking is useful to better understand proposals of lattice ensemble

measures in situations where it is harder to derive the effective field description, like in

4d spacetime.

3.3 Center vortices with attached instantons

In the lattice, most center vortices contain defects, thus forming chains or nonoriented

center vortices [46]. It is therefore reasonable to expect that they might play an important

role for describing all the properties of confinement in a satisfactory way. Similarly to

the center-vortex configuration Aµ in Eq. (3.4) (resp. (3.16)), which can be written

locally (but not globally) as a pure gauge using the singular phase S = eiχ β·T (resp.

ei
∑N−1
i=1 χi βi·T ), a chain can also be locally introduced as a transformation with phase

S = eiχ β·T W (x) . (3.30)

Because of the multivalued phase, the Cartan factor creates a thin center vortex, while

W (x) creates lower dimensional defects (see for example [46, 83, 84]). In 3D, these are

pointlike (instanton) defects on the center-vortex worldlines, where the Lie algebra ori-

entation changes. These orientations can be associated with two different fundamental

weights w, w′, while W (x) is a different Weyl transformation on each side of the instanton,

at the center-vortex branches.

The properties of each type of defect are reflected in the gauge-invariant dual field

strength fµ(A) = εµνρS
−1Fνρ(A)S. Considering a more general case where the mappings

S are multiplied on the right by a regular map, S → SŨ−1(x), the field strengths for a

thin center-vortex loop and N matched center-vortex lines in Fig. 3.1 are respectively
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given by

fµ(A) = fµ(l, g(s), β) , fµ(A) =
N∑
i=1

fµ(γi, gi(si), βi) . (3.31)

where

fµ(γ, g(s), β) =

∫
γ

ds
dxµ
ds

δ(x− x(s)) g(s)β · Tg(s)−1 , g(s) ≡ Ũ(x(s)) , (3.32)

In addition, for a chain with a pair of instantons, fµ(A) is given by

fµ(A) = fµ(γ, g(s), β) + fµ(γ′, g′(s′), β′) , (3.33)

and, for N ≥ 3, the three instanton contribution can be written as

fµ(A) = fµ(γ, g(s), β) + fµ(γ′, g′(s′), β′) + fµ(γ′′, g′′(s′′), β′′) . (3.34)

3.4 Introducing correlated pointlike defects

Now, we would like to incorporate in the ensemble the possibility of nonoriented center-

vortices. In Sec. 3.1, to derive the effective model, we used as starting point that the

center elements WC[Aµ], obtained for a thin center-vortex loop and N matched center-

vortex lines, can be respectively cast in the form (cf. Eqs. (3.4) and (3.16))

Wl[b
C
µ] and

1

N !
εi1...iN εi′1...i′NΓγ1 [bCµ]|i1i′1 . . .ΓγN [bCµ]|iN i′N . (3.35)

In order to identify correlators analogous to those in Eq. (3.35), while keeping in the

ensemble the information about the attached instantons, we shall need the concept of

Gilmore-Perelemov group coherent states (for a detailed discussion, see Refs. [87]-[91]).

Given a D-dimensional irreducible representation D of a compact Lie Group G over

a vector space V , and a reference state |λ〉 ∈ V , we may define the subgroup H whose

elements leave |λ〉 invariant up to a phase. The Gilmore-Perelemov group coherent states

are then given by |ξ, λ〉 = ξ|λ〉, where ξ ∈ G is a choice of representatives (labels) for the

equivalence classes in the coset space G/H. In particular, there is a unique decomposition

g = ξh, g ∈ G, h ∈ H. Then, as G is transitive over V , the coherent states span this

vector space, but they are not orthogonal, 〈ξ, λ|ξ′, λ〉 6= 0. In addition, by using the

invariance of the appropriately normalized measures in the group and the coset∫
dµ(g) = 1 ,

∫
dµ(ξ) = D , (3.36)
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as well as Schur’s lemma, it is possible to show that the following relation holds:∫
dµ(ξ)|ξ, λ〉〈ξ, λ| = ID . (3.37)

Therefore, the Gilmore-Perelemov states form an over-complete basis in V .

For elementary center vortices, we are interested in the coherent states |g, w〉 = g|w〉,
where |w〉 is any weight vector of the fundamental representation. In this case, Eq. (3.37)

allows us to write

Wl[bµ] =

∫
dµ(g) 〈g, w|Γl[bµ]|g, w〉 . (3.38)

Furthermore, the identity [92]∫
dµ(g) gi1j1 . . . giN jN =

1

N !
εi1...iN εj1...jN (3.39)

leads to∫
dµ(g) |g, w1〉|i1 . . . |g, wN〉|iN =

∫
dµ(g) gi1j1 . . . giN jN |w1〉|j1 . . . |wN〉|jN =

1

N !
εi1...iN .

(3.40)

That is, for every N -line factor appearing in the ensemble, like the one in Eq. (3.19), we

can use the representation

DN [bµ] = (N !)2

∫
dµ(g)dµ(g0)〈g, w1|Γγ1 [bµ]|g0, w1〉 . . . 〈g, wN |ΓγN [bµ]|g0, wN〉 . (3.41)

The Eqs. (3.38) and (3.41) can be interpreted as associating each loop with a weight and

each matched line as corresponding to a different weight.

Then, given that the center-vortex weight changes at the instantons, to include the

effect of chains with n pointlike defects into the ensemble, we may propose the contribution

〈g1, w
′|Γγn [bµ]|gn, w〉 . . . 〈g3, w

′|Γγ2 [bµ]|g2, w〉〈g2, w
′|Γγ1 [bµ]|g1, w〉

= Tr
(
|Γγn [bµ]|gn, w〉〈gn, w′| . . . |Γγ2 [bµ]|g2, w〉〈g2, w

′|Γγ1 [bµ]|g1, w〉〈g1, w
′| (3.42)

to be integrated over the group elements. However, the integrals of gi|w〉〈w′|g†i vanish.

This follows from the formula∫
dµ(g) D(i)(g)|ab D(j)(g−1)|βα = δijδaαδbβ , (3.43)

where D(i) and D(j) are unitary irreps [93], applied to the adjoint and trivial irreps.

Moreover, chains also contribute to the Wilson loop WC[Aµ] with a center element [20, 46,

83, 84]. This comes about as the W (x)-factor in Eq. (3.30) is single-valued when we go
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Figure 3.2: A chain configuration, with n correlated instantons, linking a Wilson Loop C.

around the chain, so that the Wilson loop is only affected by the first factor, which gives

the center element in Eq. (3.2). On the other hand, replacing bµ → bCµ in Eq. (3.42), we

get a center element times additional overlaps which contain a nontrivial phase. To make

sure that the only phases are associated with center elements, we shall include appropriate

overlaps, defining the chain variable (see Fig. 3.2)∫
dµ(g1) . . . dµ(gn) 〈g1, w|g2, w

′〉〈g2, w|g3, w
′〉 . . . 〈gn, w|g1, w

′〉

×〈g1, w
′|Γγn [bµ]|gn, w〉 . . . 〈g3, w

′|Γγ2 [bµ]|g2, w〉〈g2, w
′|Γγ1 [bµ]|g1, w〉 (3.44)

=

∫
dµ(g1) . . . dµ(gn) Tr

(
|gn, w′〉〈gn, w| . . . |g2, w

′〉〈g2, w| |g1, w
′〉〈g1, w|

)
×Tr

(
|Γγn [bµ]|gn, w〉〈gn, w′| . . . |Γγ2 [bµ]|g2, w〉〈g2, w

′|Γγ1 [bµ]|g1, w〉〈g1, w
′| . (3.45)

In this manner, for bµ → bCµ, when the chain links C, one of the center-vortex lines will

intersect the surface S(C) giving a nontrivial contribution. The final result coincides with

the Wilson loop computed for the chain configuration Aµ, times a real and positive weight

factor:

(
ei2πk/N

)L(C,l)
∫
dµ(g1) . . . dµ(gn)

∣∣Tr
(
|gn, w′〉〈gn, w| . . . |g2, w

′〉〈g2, w| |g1, w
′〉〈g1, w|

)∣∣2 .
(3.46)

To obtain an alternative interpretation of the chain and the other defects, we initially

note that for, say, the n = 2 case, we may change g2 → g2W , where W is an odd Weyl
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reflection that takes w into w′ and w′ and w, to get the variable∫
dµ(g1)dµ(g2) 〈g1, w|g2, w〉〈g2, w

′|g1, w
′〉 × 〈g1, w

′|Γγ2 [bµ]|g2, w
′〉〈g2, w|Γγ1 [bµ]|g1, w〉 .

(3.47)

Similarly, for n = 3, N > 2 we can make an even Weyl transformation that changes

g2 → g2PA, where PA permutes w, w′, w′′ to w′′, w, w′, and then g3 → g3PB, where PB

permutes w, w′, w′′ to w′, w′′, w, thus obtaining the variable∫
dµ(g1)dµ(g2)dµ(g3) 〈g1, w|g2, w〉〈g2, w

′′|g3, w
′′〉〈g3, w

′|g1, w
′〉

×〈g1, w
′|Γγ3 [bµ]|g3, w

′〉〈g3, w
′′|Γγ2 [bµ]|g2, w

′′〉〈g2, w|Γγ1 [bµ]|g1, w〉 . (3.48)

Next, we can use the Gilmore-Perelemov representation,

〈g, w|Γγ[bµ]|g0, w〉 =

∫
[dg(s)] ei

∫
dsTr((g(s)†b(s)g(s)+ig†(s)ġ(s))w·T) , b(s) = bµ(x(s))

dxµ
ds

,

(3.49)

where the paths g(s) : [0, L] → SU(N) satisfy the boundary conditions g(0) = g0,

g(L) = g. In principle, this applies when the reference state |w〉 is a highest weight

vector. However, the center-vortex holonomy is in the fundamental representation, so the

associated weights can be connected by Weyl transformations. Thus, this formula holds

for any weight vector |wi〉, i = 1, . . . , N , which has components |wi〉|j = δij. As usual,

the trace in the exponent of Eq. (3.49) can be rewritten in terms of non-Abelian d.o.f.

|z(s)〉 = |g(s), w〉 [95] (see also [91]),

Tr (. . . ) = bAµ (x(s))TA|ij zj z̄i
dxµ
ds

+
i

2
(z̄iżi − ˙̄zizi) , (3.50)

where the last term can be interpreted as a kinetic term for these degrees (see Ref. [96]).

Moreover, using Eq. (3.49) for each line defect, the bµ-coupling in the variables containing

a loop, N matched center vortex lines, and chains with two or three instantons (cf. Eqs.

(3.38), (3.41), (3.47), and (3.48)), becomes

ei
∫
d3x 1

2N
Tr
(
bµfµ(A)

)
, (3.51)

where fµ(A) is the gauge-invariant field strength for the corresponding Aµ-configurations

equipped with non-Abelian d.o.f. (see Eqs. (3.31)-(3.34)), as described in Ref. [56] when

dealing with nonoriented center vortices in (3 + 1)d. That is, the various dual variables,

which are designed to reproduce W [Aµ], precisely couple the corresponding fields fµ(A)

to bµ(x).
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As already discussed, when immersed into the ensemble, the path-integral of the

holonomies over paths with tension and stiffness will give rise to a Green’s function (cf.

Eq. (3.20)). In this manner, the chain contributions in Eq. (3.44) become generated by

the new vertex

Vinst ∝
∫
dµ(g)〈g, w′|Φ†|g, w′〉〈g, w|Φ|g, w〉, (3.52)

or, equivalently,

Vinst ∝
∫
dµ(g)Tr

(
|g, w〉〈g, w′|Φ†|g, w′〉〈g, w|Φ

)
=

∫
dµ(g)Tr

(
g|w〉〈w′|g†Φ†g|w′〉〈w|g†Φ

)
. (3.53)

Notice that |w′〉〈w| = Eα is a root vector characterized by the root α = w′ −w. We may

write it in terms of the hermitian generators Tα, Tᾱ, defined by

Eα =
Tα + iTᾱ√

2
, (3.54)

and use that gTAg
† is just the adjoint action of g on TA, gTAg

† = RAB(g)TB. Then,

Vinst ∝
1

2

∫
dµ(g) Tr

(
(RαB(g) + iRᾱB(g))TBΦ†(RαC(g)− iRᾱC(g))TCΦ

)
. (3.55)

To perform the integrals, we can use Eq. (3.43) for the case where i and j stand for the

adjoint representation, ∫
dµ(g)RAB(g)RA′B′(g) = δAA′δBB′ . (3.56)

The result is that the instanton-vertex turns out to be

Vinst ∝ Tr(Φ†TAΦTA) . (3.57)

Summarizing, after the discussions in Sec. 3.1 and 3.3, we have shown that the center

element average in the proposed 3D ensemble, which involves the linking-numbers between

the Wilson loop and the mixture of center-vortex loops, correlated N -line center vortices

and chains, can be effectively represented as

〈W (C)〉 =
Z[bCµ]

Z[0]
, Z[bµ] ≡

∫
[DΦ] e−Seff(Φ,bµ) , (3.58)
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where the partition function is governed by the large-distance effective action

Seff(Φ, bµ) =

∫
d3x

(
Tr (DµΦ)†DµΦ + V (Φ,Φ†)

)
, Dµ = ∂µ − ibµ ,

V (Φ,Φ†) =
λ

2
Tr (Φ†Φ− a2IN)2 − ξ

(
det Φ + det Φ†

)
− ϑTr (Φ†TAΦTA) + c . (3.59)

Here, we considered a negative tension µ in Eq. (3.28), which represents a phase where

center vortices proliferate. This, together with a positive stiffness 1/κ, implies a2 > 0.

This precisely corresponds to a center-vortex condensate. At this point, we notice that

the initial color and flavour symmetries of the pure vortex model (c.f. Eq. (3.26)) are

broken by the instanton term. However, a global color-flavor symmetry (Sc = S†f ) is

preserved, as well as a (local) discrete Z(N) symmetry Φ→ eiθV (x)β·TΦ, where θV (x) is a

Heaviside function, which is equal to 2π (resp. 0) inside (resp. outside) a volume V . The

latter can be used to change the surface S(C) when computing center-element averages.

The constant c is chosen such that the action at the vacua is zero. In addition, for later

convenience, we shall consider a region in parameter space given by positive ξ and ϑ.

It is interesting to check in the lattice how the different configuration types are recov-

ered. For example, in the parameter region λ , ξ >> ϑ, the most relevant fluctuations

will be parametrized by Φ ∝ S, S ∈ SU(N). The additional nonoriented component in

the discretized theory is generated from the product of an adjoint variable arising from

the new term

Tr
(
Φ†TAΦTA

)
∼ const.Tr (Ad(S)) , (3.60)

at a lattice site x, with the adjoint contribution in N⊗N̄ associated with V (x) and V †(x).

3.5 Domain walls with asymptotic Casimir scaling

In this section, we shall explore the physical consequences of the effective representation

for the ensemble of magnetic defects (cf. Eqs. (3.58) and (3.59)). For this aim, we shall

initially analyze the properties of the spontaneous symmetry breaking phase that the

system undergoes. If N > 4, the potential does not have a lower bound and terms of

order higher than N should be included to stabilize it. When seeking a global minimum,

we suppose these terms are present, although we do not include them explicitly. We shall

consider a region in parameter space so that the potential is dominated by the λ and

ξ-terms. The polar decomposition Φ = PU , where P is a positive semidefinite hermitian

matrix and U ∈ U(N), can be used to write the potential as

V (P,U) =
λ

2
Tr
(
(P 2 − a2IN)2

)
−ξ detP (detU+detU †)−ϑTr

(
PTAPUTAU

†) . (3.61)
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If the only terms were those associated with center-vortex correlations, namely the λ

and ξ-terms, then the global minima would certainly be achieved at P proportional to

the identity IN . Due to the minus sign, the determinant term also forces detU = 1, so

that U ∈ SU(N). Then, up to this point, the possible vacua would form a (continuum)

connected manifold, thus precluding the formation of a stable domain wall sitting on the

Wilson loop. In this case, the calculation of the partition function would involve large

quantum fluctuations associated with the various Goldstone field modes. This type of

problem was analyzed in an Abelian context in Ref. [49]. On the other hand, when the

scenario above is corrected by the inclusion of pointlike defects on center vortices, which is

represented by the ϑ-term, the set of possible vacua becomes discrete. Indeed, because of

our choice of sign for ϑ, the minimum values of the potential require a maximum overlap

between the basis TA and the rotated basis nA = UTAU
−1, which is attained when U is

in the center Z(N) of SU(N). More precisely, the global minima turn out to be

P = vIN , U ∈ ZN =
{
ei

2πn
N IN

∣∣∣n = 0, 1, 2, ..., N − 1
}
, (3.62a)

2λN(v2 − a2)− 2ξNvN−2 − ϑ
(
N2 − 1

)
= 0 . (3.62b)

Then, it is the presence of correlated instantons that grants the formation of stable domain

walls. In a 3D spacetime, a disconnected set of vacua (with nontrivial homotopy group

Π0) enables a field configuration with different vacua on both sides of a surface, with a

transition that necessarily implies an action cost localized on the surface. As we will see, in

the presence of a Wilson loop, the surface will sit on the loop. Moreover, as the vacua are

discrete, there are no Goldstone field modes, and the partition function will be evaluated

by means of a saddle point corrected by low-action fluctuations around this point. The

former will give rise to a confining area law, while the latter will correct the associated

linear potential with the well-known universal Lüscher term. A similar situation was

recently obtained in Ref. [56], when describing a mixed ensemble of center vortices and

chains in 4D spacetime. In that reference, the inclusion of correlated monopole worldlines

on center-vortex worldsurfaces led to a manifold of vacua with nontrivial first homotopy

group Π1 = Z(N). This led to the formation of a confining center string between a

quark-antiquark pair, which spans a surface whose border is the Wilson loop.

Our main objective is to determine the scaling law obeyed by the asymptotic string

tension. The saddle-point Φ for the partition function Z[bCµ] in Eq. (3.58) satisfies

D2Φ = λΦ(Φ†Φ− a2)− ξ C[Φ∗]− ϑTAΦTA , Dµ = ∂µ − ibCµ . (3.63)

In this respect, we recall that for small variations of the determinant, we have

det(Φ + δΦ) ≈ det Φ + Tr
(
C[ΦT ]δΦ

)
(3.64)
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Figure 3.3: A ring R winding around the Wilson loop and passing through the origin.
The surface where sµ is concentrated is depicted in red.

where C[ ] stands for the cofactor matrix. Let us analyze how the field Φ must behave

along an arbitrary circle R that links the loop C. Take for example the loop shown in Fig.

3.3. From Q to P, points immediately below and above the intersection between R and

the surface where sµ is concentrated, the field Φ must ’jump’ by a phase factor ei2πβe·T in

order to cancel (the regularized form of) bCµ in the covariant derivative, and yield a finite

action. This factor is an element of Z(N) and, consequently, the action will be minimized

if Φ is at a vacuum value at Q, say vIN , and continuously changes to the vacuum vei2πβe·T

at P, as one goes around R. With a discrete set of vacua, this is only possible if Φ leaves

the vacuum somewhere. In general, the transition will be localized around the minimal

surface (the disk D) whose border is C. A finite action also requires that above and below

the x1 = 0 plane, and far from the Wilson loop C, the field Φ must tend to two different

vacua, given by the values at P and Q, respectively. In particular, if we follow the x1-axis,

or any other parallel line that intersects the disk D at coordinates (0, x2, x3), the external

source leaves a trace of its existence only in the boundary condition

lim
x1→−∞

Φ(x1, x2, x3) = vIN , lim
x1→+∞

Φ(x1, x2, x3) = v ei2πβe·T , (0, x2, x3) ∈ D .

(3.65)

For an asymptotic Wilson loop, which is much larger than the localization scales in the

effective model, the solution will be almost independent of (x2, x3), as long as they remain

away from C. In other words, the saddle-point action can be approximated by

Seff ≈ εA , (3.66)

where A is the area of the disk (plus a border effect that scales as the perimeter), and the
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string tension is then obtained from the soliton solution Φ(x), (x1 ≡ x) that minimizes

ε =

∫
dx
(
Tr (∂xΦ)†∂xΦ + V (Φ,Φ†)

)
, (3.67)

with Φ(−∞) = vIN , Φ(+∞) = v ei2πβe·T . This solution satisfies Eq. (3.63) with the

replacement D2Φ→ ∂2
xΦ. To close this equation with a simple ansatz, we need to discuss

some properties of the weights of su(N). For each N−ality k, we shall consider two

types of irreps., called k−Symmetric and k−Antisymmetric. Their highest weights are

wSk = kw1 and wAk = w1 + w2 + ... + wk, respectively. Note that, being the sum of k

weights of the defining representation, they yield the correct center element in Eq. (3.2).

In the asymptotic regime, gluon screening is expected to take place, bringing down the

string tension of any irreducible representation to that of the lowest-dimensional one with

the same N−ality k. The latter corresponds to the k−Antisymmetric irrep., βe = 2NwAk ,

which we shall focus in what follows. In this case, a simple ansatz is motivated by the

block-diagonal structure of βe · T . If we define P1 = Diag(1, 1, ..., 0, 0, ....0) with the first

k entries being nonzero and P2 = IN − P1, we can use Eq. (3.3) to write

βe · T = Diag(βe · w1, ..., βe · wN) =

(
N−k
N
Ik 0

0 − k
N
IN−k

)
=
N − k
N

P1 −
k

N
P2 . (3.68)

Because the product between any number of P1 and P2 is either P1, P2 or 0, an ansatz

built upon P1 and P2 will close the equations of motion. Thus, we propose

Φ = (h1P1 + h2P2)S , S = eiθ1
N−k
N

P1−iθ2 kN P2 . (3.69)

The phase can be factored in U(1) and SU(N) sectors

S = eiαeiθβ·T , θ =
N − k
N

θ1 +
k

N
θ2 , α =

k(N − k)(θ1 − θ2)

N2
. (3.70)

In principle, as ei2πβe·T = e−i
2kπ
N , there are two ways to impose the boundary conditions

(3.65): one where α (resp. θ) undergoes a nontrivial transition and leaves the possibility

of θ (resp. α) to remain constant. The first possibility gives rise to a model closely related

with the ‘t Hooft’s model [3], for which a Casimir law is not observed, while the second,

h1(−∞) = h2(−∞) = h0 , h1(∞) = h2(∞) = h0 , (3.71a)

θ1(−∞) = θ2(−∞) = 0 , θ1(∞) = θ2(∞) = 2π , (3.71b)

θ(−∞) = 0 , θ(∞) = 2π , α(−∞) = 0 , α(∞) = 0 , (3.71c)

which is consistent with our choice of external source bCµ, is the option we shall further

explore. Moreover, we shall assume ξvN−2 >> ϑ, thus disfavoring α to leave its constant
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value α = 0. Plugging the ansatz in eq. (3.63) and equating to zero the coefficients of

P1S, P2S iP1S and iP2S, we obtain

∂2
x h1 =

(
N − k
N

)2

(∂xθ1)2h1 + λh1(h2
1 − a2)− ξhk−1

1 hN−k2 cos

(
k(N − k)(θ1 − θ2)

N

)
− ϑNk − 1

2N2
h1 − ϑ

N − k
2N

h2 cos

(
k

N
θ2 +

N − k
N

θ1

)
, (3.72a)

∂2
x h2 =

(
k

N

)2

(∂xθ2)2h2 + λh2(h2
2 − a2)− ξhk1hN−k−1

2 cos

(
k(N − k)(θ1 − θ2)

N

)
− ϑN(N − k)− 1

2N2
h2 − ϑ

k

2N
h1 cos

(
k

N
θ2 +

N − k
N

θ1

)
, (3.72b)

∂2
x θ1 =− 2∂x lnh1 ∂xθ1 + ξ

N

N − k
hk−2

1 hN−k2 sin

(
k(N − k)(θ1 − θ2)

N

)
+
ϑ

2

h2

h1

sin

(
k

N
θ2 +

N − k
N

θ1

)
, (3.72c)

∂2
x θ2 =− 2∂x lnh2 ∂xθ2 − ξ

N

k
hk1h

N−k−2
2 sin

(
k(N − k)(θ1 − θ2)

N

)
+
ϑ

2

h1

h2

sin

(
k

N
θ2 +

N − k
N

θ1

)
. (3.72d)

The ansatz in Eq. (3.69) can be rewritten as

Φ = (ηIN + η0β · T ) eiθβ·T eiα , η =
k

N
h1 +

N − k
N

h2 , η0 = h1 − h2 . (3.73)

The equations for these profiles are a little bit more intricate to write down, but they are

more meaningful. In particular, if we look at small perturbations around their vacuum

value and keep up to linear terms, we get

∂2
x δη = M2

η δη , M2
η = λ(3v2 − a2)− ξ(N − 1)vN−2 − ϑN

2 − 1

2N2
, (3.74a)

∂2
x δη0 = M2

η0
δη0 , M2

η0
= λ(3v2 − a2) + ξvN−2 +

ϑ

2N2
, (3.74b)

∂2
x δα = M2

α δα , M2
α = NξvN−2 , (3.74c)

∂2
x δθ = M2

θ δθ , M2
θ =

ϑ

2
. (3.74d)

These squared masses are non negative (cf. Eq. (3.62b)), with Mη, Mη0 and Mα larger

than Mθ due to our previous requirements λa2, ξvN−2 >> ϑ. In this region of parameter

space, the functions η, η0 and α are practically constant and θ is the only one that

varies appreciably as it is compelled by the boundary conditions. If the instantons were

absent (ϑ = 0), the field θ would be a massless mode associated with the residual SU(N)

symmetry of the vacuum. On the other hand, their presence on top of center vortices to

form nonoriented center vortices makes the profile θ to be governed by the Sine-Gordon
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equation

∂2
x θ =

ϑ

2
sin θ . (3.75)

For the soliton solution, we can use Derrick’s theorem in Eq. (3.67) to equate its kinetic

and potential contribution so that the string tension in the k-Antisymmetric representa-

tion is

εk = 2

∫
dx

((
N − k
N

)2

h2
1(∂xθ1)2 TrP1

+(∂xh1)2 TrP1 +

(
k

N

)2

h2
2(∂xθ2)2 TrP2 + (∂xh2)2 TrP2

)
, (3.76)

which can be approximated by

εk =
k(N − k)

N − 1

(
2v2N − 1

N

∫
(∂xθ)

2dx

)
=
k(N − k)

N − 1
ε1 . (3.77)

where ε1 is proportional to the Sine-Gordon parameter ϑ. Therefore, the string tension

follows a Casimir law. This result can be understood if one considers that, for α, η and η0

frozen at their vacuum value, the only relevant mode is θ with Φ = veiθβe·T . Consequently,

since the total energy is twice the kinetic energy, we get2

εk = 2v2

∫
Tr
(
∂xS

†∂xS
)
dx = v2βe · βe

N

∫
(∂xθ)

2dx , (3.78)

which, for the k−Antisymmetric representation, is proportional to the quadratic Casimir

operator: βe · βe = 2k(N − k). For an arbitrary irrep., besides the mode along βe · T ,

additional soft modes in the Cartan sector are needed to close the equations of motion.

In this case, a similar procedure can be followed, although it is difficult to analytically

obtain the scaling. However, for the k-Symmetric representation, it is easy to see that the

same ansatz works, and that the energy can be approximated by Eq. (3.78) with βe ·βe =

2k2(N − 1). This is greater than 2k(N − k), the value obtained for the k−Antisymmetric

case. Therefore, for a given N -ality k, it becomes clear that the latter possibility will be

preferred, together with its ensuing Casimir law.

2Here, we use the normalization Tr (TqTp) =
δqp
2N , which is consistent with Eq. (3.3).
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Chapter 4

4d Ensemble with Asymptotic

Casimir Law

Although dual superconductor models have long been proposed as an effective description

of color confinement [3, 85, 86], so far, no such model has been completely successful. The

many candidates [66, 67, 68, 69, 70, 83, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107,

108, 109, 110] grasp some, but not all, of the rich confinement phenomenology obtained

from the lattice. N -ality suggests that confining strings could be represented as stable

topological vortices in a Yang-Mills-Higgs (YMH) field description. Models with fields

transforming in the fundamental representation [66], the adjoint [83, 97, 108, 109, 110],

or both [67, 68, 69, 70, 104, 105, 106], are among the possibilities. In spite of the fact

that these models possess vacua leading to confining strings with N -ality, the different

field contents and Higgs potentials make it necessary to work on a case by case basis to

determine the precise vortex profiles and the behavior of the string tension. For example,

a model motivated by supersymmetry and based on three complex adjoint fields was an-

alyzed in Ref. [97]. Although the group action on the vacua manifold is not transitive in

this case, the physical properties in the different sectors can be related by means of ap-

propriate mappings between them. Moreover, a numerical analysis of the vortex solutions

showed a string tension closely approximated by a Casimir law. An important question

is how to build a bridge between this type of approach and center-vortex scenarios. Re-

cently, in Ref. [56], the effective description of an ensemble of two-dimensional percolating

worldsurfaces with attached monopole worldlines in 4d was related to a YMH effective

model. In the effective description, the dual gauge field represents the Goldstone modes

in a condensate of one-dimensional defects, which generate the worldsurfaces, while a set

of adjoint Higgs fields reproduce the monopole degrees of freedom. The field content in

Ref. [56] was chosen so as to implement the monopole fusion rules; in particular, models

with an adjoint flavor index naturally encompass all possibilities. In this case, the phe-

nomenological parameters can be chosen so as to obtain a transitive group action and

drive SU(N)→ Z(N) SSB. Transitivity of the vacua manifold automatically renders the
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different choices (labeled by points in SU(N)/Z(N)) physically equivalent. Then, among

the alternatives, a detailed analysis of this type of model is of special interest. In this the-

sis, despite the large number of fields, we will show that the system acquires a collective

behavior where the classical vortex solutions are well accommodated by a small (N and

k-independent) number of profiles. Moreover, we shall obtain a region in parameter space

where the exact asymptotic Casimir law holds. In this regime, most of the field profiles

become frozen at their vacuum value while the nontrivial ones obey the Nielsen-Olesen

equations, thus reproducing the chromoelectric field measured in the lattice (see Secs. 4.2

and 4.3). In Sec. 4.4, we will show the result of numerical simulations in other regions.

In this respect, it is interesting to note that, at asymptotic distances, the linear k-scaling,

expected to occur in the large N limit, was reproduced by including monopole variables

[111].

4.1 Effective description of 4d percolating center

vortices

Here, we review the ensembles of oriented and nonoriented center vortices in four dimen-

sions as proposed in [56]. In that study, instead of deriving the effective description of

center-vortex ensembles with negative tension and positive stiffness, the discussion was

initiated from the natural Goldstone modes defined on the lattice (see also Sec. 2.1.2).

The missing steps are expected to be implemented by deriving diffusion loop equations

including the effect of stiffness. The lattice description of an Abelian ensemble of world-

surfaces coupled to an external Kalb–Ramond field in the form∫
dσ1dσ2Bµν(X(σ1, σ2))Σµν(X(σ1, σ2)) , Σµν =

∂Xµ

∂σ1

∂Xν

∂σ2

− ∂Xν

∂σ1

∂Xµ

∂σ2

, (4.1)

where Xµ(σ1, σ2) is a parametrization of the worldsurface, was obtained in [55]. This

was done in terms of a complex-valued string field V (C), where C is a closed loop formed

by a set of lattice links. The associated action is

SV = −
∑
C

∑
p∈η(C)

[
V̄ (C + p)UpV (C) + V̄ (C − p)ŪpV (C)

]
+
∑
C

m2V̄ (C)V (C) . (4.2)

η(C) is the set of plaquettes that share at least one common link with C, while C + p

is the path that follows C until the initial site of the common link, then detours through

the other three links of p, and continues along the remaining part of C. In addition, the

coupling (4.1) originates the plaquette field Up = eia
2Bµν(p). Then, the following polar
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decomposition was considered

V (C) = w(C)
∏
l∈C

Vl , Vl ∈ U(1) , (4.3)

with a phase factor that has a “local” character, as it was written in terms of the holonomy

along C of gauge field link-variables Vl. Finally, when a condensate is formed (m2 < 0), it

was argued that the modulus is practically frozen1, so that w(C) ≈ w > 0. By using this

fact in equation (4.2), the only links whose contribution do not cancel are those belonging

to p:

V̄ (C + p)UpV (C) = w2
∏
l∈C+p

∏
l′∈C

V̄lUpVl′ = w2Up
∏
l∈p

V̄l . (4.4)

Thus,

S
(4)
latt(αp) = β̃

∑
p

Re

[
I− Ūp

∏
l∈p

Vl

]
. (4.5)

where the sum is over all plaquettes p and a constant was added such that the action

vanishes for a trivial plaquette. Then, the description of a loop condensate, where loops

are expected to percolate, is much simpler than that associated with a general phase. The

string field parameter gives place to simpler gauge field Goldstone variables Vµ = eiΛµ(l),

governed by a Wilson action with frustration Up. This was the starting input used in [56].

An external Kalb–Ramond field that generates the center elements when the simplest

center-vortex worldsurface link Ce is obtained by replacing Bµν → 2πk
N
sµν , where k is the

N -ality of the quark representation D and

sµν =

∫
S(Ce)

d2σ̃µνδ
(4)(x−X(σ1, σ2)) , (4.6)

d2σ̃µν =
1

2
εµναβ

(
∂Xα

∂σ1

∂Xβ

∂σ2

− ∂Xβ

∂σ1

∂Xα

∂σ2

)
dσ1dσ2 (4.7)

is localized on S(Ce). In the lattice, this localized source corresponds to a frustration

Up = eiαp , where αp = −2πk/N if p intersects S(Ce) and it is trivial otherwise. Similarly

to the 3d case, it is possible to check a posteriori that the lattice expansion involves an

average of center elements over closed worldsurfaces (see 2.1.2). This is a consequence

of the properties of U(1) group integrals. This also applies to the non-Abelian extension

Vµ ∈ SU(N), governed by

Slatt
V (αµν) = β̃

∑
x,µ<ν

Re tr
[
I − ŪµνVµ(x)Vν(x+ µ̂)V †µ (x+ ν̂)V †ν (x)

]
,

1Similarly to the 3d case, this phase should be stabilized by a quartic interaction.
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where plaquettes are denoted as usual. The closed surfaces are generated because N ⊗ N̄
contain a singlet. Interestingly, the SU(N) version has additional configurations where

N open worldsurfaces meet at a loop formed by a set of links. This is due to the presence

of a singlet in the product of N link variables. Therefore, the associated normalized

partition function

Z latt
v [αµν ]

Z latt
v [0]

, Z latt
v [αµν ] =

∫
[DVµ] e−S

latt
V (αµν) (4.8)

is an average of the center elements generated when a Wilson loop in representation D is

linked by an ensemble of oriented center-vortex worldsurfaces with matching rules.

4.1.1 Including nonoriented center vortices in 4d

Although thin oriented or nonoriented center vortices contribute with the same center-

element to the Wilson loop, they are distinct gauge field configurations, with different

Yang–Mills action densities. It is then important to underline that the ensemble mea-

sure could depend on the monopole component. In order to attach center vortices to

monopoles, dual adjoint holonomies defined on a “gas” of monopole loops and fused

worldlines were included. In this case, because of the integration properties in the group

there are additional relevant configurations like those of Figure 4.1a,b. The use of adjoint

holonomies is in line with the fact that monopoles carry weights of the adjoint represen-

tation (the difference of fundamental weights), see [56, 61].

(a) (b) (c)

Figure 4.1: Non−oriented center vortices containing monopole worldlines. We show a
configuration that contributes to the lowest order in β̃ (a), and one that becomes more
important as β̃ is increased (b). A nonoriented center vortex with three matched monopole
worldlines is shown in (c).
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Then, partial contributions with n-loops were generated by

Z latt
mix[αµν ]

∣∣
p
∝
∫

[DVµ] e−S
latt
V (αµν)W(1)

Ad . . .W
(n)
Ad

W(k)
Ad =

1

N2 − 1
tr
( ∏

(x,µ)∈Clatt
k

Ad
(
Vµ(x)

))
, (4.9)

where Ad(·) stands for the adjoint representation.

In addition to the matching rules of N worldsurfaces, which in the continuum occur as

N different fundamental magnetic weights add up to zero, monopole worldlines carrying

different adjoint weights (roots) can also be fused. For example, when N ≥ 3, three

worldlines carrying different roots that add up to zero can be created at a point. For this

reason, we also considered partial contributions to the ensemble like

Z latt
mix[αµν ]

∣∣
p
∝
∫

[DVµ] e−S
latt
V (αµν) Dlatt

3 , (4.10)

where Dlatt
3 is formed by combining three adjoint holonomies Ad(Γlatt

j ) (see Figure 4.1c).

Other natural rules involve the matching of four worldlines. Then, weighting the monopole

holonomies with the simplest geometrical properties (tension and stiffness), the lattice

mixed ensemble of oriented and nonoriented center vortices with matching rules can be

pictorially represented as

Z latt
mix[αµν ] =

∫
[DVµ] e−S

latt
V (αµν) × . . . (4.11)

where the dots represent possible combinations of holonomies as illustrated in Figure 4.2.

Then, noting that ei2πk/N = e−i 2π β·we , where β is a fundamental magnetic weight and

we is a weight of the quark representation D, the naive continuum limit, Vµ(x) = eiaΛµ(x),

Λµ ∈ su(N), led to

Zmix[sµν ] =

∫
[DΛµ] e

−
∫
d4x 1

4g̃2
(Fµν(Λ)−2πsµνβe·T )2

× . . . (4.12)

The dots represent all possible monopole configurations to be attached to center-vortex

worldsurfaces (see Figure 4.3).
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Figure 4.2: Natural combinations of holonomies that can be used to model the mixed ensemble
of oriented and nonoriented center vortices. Each contribution is weighted with tension and
stiffness.

Figure 4.3: Continuum limit of the monopole sector. The worldline contributions are obtained
from the solution to a Fokker–Planck diffusion equation.

Next, in Ref. [56], the effective description of the monopole sector was obtained. For

example, a diluted ensemble of a given species of monopoles (first line in Figure 4.3), with

tension µ and stiffness 1
κ
, was generated by

e
∫∞
0

dL
L

∫
d4x du trQ(x,u,x,u,L) , (4.13)

where Q is given by Eq. (D.1) and D corresponds to the adjoint representation. In the

small-stiffness approximation, the non-Abelian diffusion equation for Q is solved by Eq.

(D.12), with

O = − π

12κ

(
∂µ − iAd

(
Λµ

))2
+ µIDAd

, (4.14)
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Therefore, the factor in Eq. (4.13) was approximated by

e−Tr lnO =

∫
[Dζ][Dζ†] e−

∫
d4x ((Dµζ †,Dµζ)+m̃2(ζ†,ζ))

m2 = (12/π)µκ , Dµ(Λ) ζ = ∂µζ − i [Λµ, ζ] , (4.15)

where ζ is an emergent complex adjoint field. The Killing form 〈 , 〉 is defined in the Lie

algebra as

〈X, Y 〉 = Tr(Ad(X) Ad(Y )) . (4.16)

In the continuum, the path-integral of Ad(Γ[Λ]) over shapes and lengths led to the Green’s

function for the operator O, so that fusion rules like the one in Eq. (4.10) (see the

second line in Figure 4.3) became effective Feynman diagrams. Indeed, to differentiate

the monopole lines that can be fused, the monopole loop ensemble was extended to include

different species. At the end, a set of real adjoint fields ψI ∈ su(N) emerged (I is a flavor

index). This, together with the non-Abelian Goldstone modes (gauge fields), led to a

class of effective Yang–Mills–Higgs (YMH) models,

Zmix[sµν ] =

∫
[DΛµ][Dψ] e

−
∫
d4x

[
1

4g2
(Fµν(Λ)−Jµν)2+ 1

2
(DµψI ,DµψI)+VH(ψ)

]
. (4.17)

Jµν = 2πβe · Tsµν , sµν =

∫
S(C)

d2σ̃µνδ
(4)(x− w(s, τ)) . (4.18)

βe is a magnetic weight associated with the quark representation, and sµν is concentrated

on any surface S(C), parametrized by w(s, τ), whose border is C. The vertex couplings

weight the abundance of each fusion type. Percolating monopole worldlines (positive

stiffness and negative tension) favor a spontaneous symmetry breaking phase that can

easily correspond to SU(N) → Z(N) SSB. This pattern has been extensively studied in

the literature (see [66, 67, 68, 69, 70, 71, 83, 97, 112] and references therein).

4.2 The effective YMH model

A wide class of SU(N) Yang-Mills-Higgs models can be given by the general action (ψI ∈
su(N))

S =

∫
d4x

(
1

4
〈Fµν , Fµν〉+

1

2
〈DµψI , DµψI〉+ VH(ψ)

)
, (4.19a)

Fµν =
i

g
[Dµ, Dν ] , Dµ = ∂µ − ig[Λµ, ] = ∂µ + gΛµ ∧ . (4.19b)

Here, we defined

X ∧ Y = −i[X, Y ] , (4.20)
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and disregarded the external source, as we will be interested in infinitely long vortices.

Under a gauge transformation U ∈ SU(N), we have

Λµ → UΛµU
−1 +

i

g
U∂µU

−1 , ψI → UψIU
−1 . (4.21a)

In the flavor-symmetric effective model [83], the flavor index takes values in the su(N) Lie

algebra, that is, the number of flavors I = 1, . . . , N2− 1 matches the dimension of su(N).

In this case, we shall denote the adjoint flavors as ψA ∈ su(N). With this matching, if

the manifold of vacuum configurations were given by

Λµ =
i

g
S∂µS

−1 , ψA = vSTAS
−1 , (4.22a)

then N -ality would be naturally implemented via the spontaneous symmetry breaking

pattern SU(N)→ Z(N). Here, TA is an su(N) Lie algebra basis. Indeed, in this case, the

only transformation that leaves a Higgs field vacuum configuration invariant is U ∈ Z(N).

The quartic potential

〈ψA ∧ ψB − vfABCψC〉2 , (4.23)

were fABC are the antisymmetric structure constants, would lead to these vacua. However,

this potential would also lead to a degenerate trivial vacuum ψA = 0. Then, by expanding

this expression and introducing independent coefficients for each term, a natural potential,

VH(ψ) = c+
µ2

2
〈ψA, ψA〉+

κ

3
fABC〈ψA ∧ ψB, ψC〉+

λ

4
〈ψA ∧ ψB, ψA ∧ ψB〉 , (4.24)

was proposed in Ref. [83] (c is adjusted such that VHiggs = 0 on M). In this manner, a

region in parameter space that only leads to nontrivial vacua, characterized by

v = − κ

2λ
+

√( κ
2λ

)2

− µ2

λ
, (4.25)

was obtained. Throughout this thesis, we shall separate the adjoint indices A into Cartan

q = 1, . . . , N−1 and off-diagonal α, ᾱ labels. The elements Tq form a maximal commuting

set, while the remaining elements are defined in terms of root vectors E±α

Tα =
Eα + E−α√

2
, Tᾱ =

Eα − E−α√
2i

, (4.26)

where α is a positive root of su(N). For the notation and conventions, see Appendix A.
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4.3 The vortex ansatz

In order to represent a straight infinite vortex along the z-axis (for a general presentation

about topological objects, see Ref. [113]) we consider the ansatz

Λ0 = 0 , Λi = SAiS−1 +
i

g
S∂iS

−1 , ψA = hABSTAS
−1 , S = eiϕβ·T .

(4.27)

Since there is cylindrical symmetry, the profiles hAB can be taken as functions of ρ alone,

with (ρ, ϕ, z) being cylindrical coordinates. Clearly, they must obey

hAB(ρ→∞) = vδAB (4.28)

so that their contribution to the energy per unit length is also finite. The vortex charge

is represented by β = 2Nω, where ω is a weight of su(N) and is closely connected

with the N -ality k. For example, when ω is a weight of the fundamental representation,

ω = ω1, ω2, ...ωN , then the vortex has k = 1, while if it is a root α, then the N -ality is

that of the adjoint representation (k = 0). A general N -ality can be reproduced by taking

ω as the highest weight of the k-antisymmetric representation

ω = Λk =
k∑
i=1

ωi . (4.29)

Regarding the Higgs fields ψA in Eq. (4.27), the number of profile functions hAB scales

with N4. However, in the next section, we shall see that the vortex solutions display a

collective behavior with a fixed reduced number of field profiles. A closer look at the local

basis nA = STAS
−1,

nq = Tq , (4.30a)

nα = cos(α · β ϕ)Tα − sin(α · β ϕ)Tα , (4.30b)

nα = cos(α · β ϕ)Tα + sin(α · β ϕ)Tα , (4.30c)

reveals that, whenever α · β 6= 0, the elements nα are ill-defined along the vortex line. On

the other hand, the elements nq and nα with α · β = 0 have no defects. This leads to a

natural splitting between ψq and ψα, ψᾱ. In terms of the Cartan-Weyl sectors, the anstaz

has the simpler structure:

ψα = hαSTαS
−1 , ψᾱ = hαSTᾱS

−1 , ψq = hqpSTpS
−1 , (4.31)
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and the regularity condition

hα(ρ→ 0) = 0 if α · β 6= 0 . (4.32)

Regarding the gauge sector, notice that S is ill-defined along the z-axis, while Λi must

be smooth. Furthermore, Λi should be a pure gauge when ρ→∞, so that the magnetic

energy per unit length stored in the vortex is finite. Both issues can be resolved if we

consider

Ai = (a− 1)∂iϕβ · T , (4.33)

with the boundary and regularity conditions

a(ρ→∞) = 1 , a(ρ→ 0) = 0 . (4.34)

Indeed, for antisymmetric weights, this choice closes the equations of motion.

So far, the equations of motion read

1

ρ

∂a

∂ρ
− ∂2a

∂ρ2
= g2h2

α(1− a) (β · γ) (γ · T ) , (4.35a)

∇2hqp = µ2hqp + h2
γκγqγp + λh2

γhqlγlγp , (4.35b)

∇2hα = (1− a)2 (α · β/ρ)2 hα + µ2hα

+ 2κhααqhqpαp + κN2
α,γhγhα+γ + λh3

αα
2 (4.35c)

+ λh2
γhαN

2
α,γ + λhααqhqphplαl .

In Eq. (4.35), γ is summed over all the roots except in Eq. (4.35c) where γ 6= −α and

there is no summation over the repeated positive root α. When γ < 0, hγ = h−γ is

understood. Although smaller, the number of profiles in Eq. (4.35) still scales with N2.

In what follows, we shall further reduce their number by carefully studying the equations

of motion. We shall initially address the simpler k = 1 case and then we will extend the

analysis to k > 1.

4.3.1 Case k=1

In Ref. [83], a reduced ansatz was constructed for SU(2) and SU(3), and it was numeri-

cally explored in Ref. [114]. Note that for N ≤ 3 there is no variety in the possible string

tensions as vortices with k and −k have the same tension, and for N = 3 the N -ality

k = 2 is equivalent to k = −1. In this subsection we shall extend the k = 1 case for an

arbitrary N , while the k > 1 case will be worked out in the next subsection. In view of

Eqs. (4.30) and (4.35c), it is natural to propose a collective behavior that only depends
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on the product α · β,

hα = hα =

h0, if α · β = 0 ,

h, if α · β = 1 .
(4.36)

As a consequence, Eq. (4.35a) turns out to be

1

ρ

∂a

∂ρ
− ∂2a

∂ρ2
= g2h2(1− a) . (4.37)

With regard to the Cartan sector, Eq. (4.35b) involves only three matrices: The ρ-

dependent H|qp = hqp and the constant ones

A|qp =
∑

α>0 ; α·β=1

α|qα|p ; A0|qp =
∑

α>0 ; α·β=0

α0|qα0|p , (4.38)

which satisfy

A + A0 =
1

2
I , (4.39a)

A2
0 =

N − 1

2N
A0 . (4.39b)

Thus, we can use Eq. (4.39a) to eliminate A and cast Eq. (4.35b) into the form

[(
∇2 − µ2 − λ

2
h2
)
I− λ(h2

0 − h2)A0

]
H =

κ

2
hI + κ(h0 − h)A0 . (4.40)

As the Laplacian is a scalar operator, the inversion of the matrix operator in the first

member will be a power series in A0. Then, because of Eq. (4.39b), the solution for H in

Eq. (4.40) must be a linear combination of I and A0. We can define a pair of projectors,

M1 + M2 = I, MiMj = δijI, by taking

M2 =
2N

N − 1
A0 , (4.41)

and write

H = h1M1 + h2M2 . (4.42)

In this manner, if these profiles satisfy

∇2h1 = µ2h1 + (κ+ λh1)h2 , (4.43a)

∇2h2 = µ2h2 +
h2 + (N − 1)h2

0

N
(κ+ λh2) , (4.43b)

then the equations in the Cartan sector close. Now, to simplify those for h and h0, we

note that according to our conventions the coefficients Nα,γ are given by (see Sec. 5.5 in
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Table 4.1

Profile types Number of terms
(hα, hγ, hα+γ) = (h, h, h0) N − 2
(hα, hγ, hα+γ) = (h, h0, h) N − 2

(hα, hγ, hα+γ) = (h0, h0, h0) 2(N − 3)
(hα, hγ, hα+γ) = (h0, h, h) 2

Ref. [94])

N2
α,γ =

1

2
α · α =

1

2N
, (4.44)

when α+γ is a root, and they are zero otherwise. Thus, in order to perform the summation

over γ in Eq. (4.35c), we have to count the number of terms for each profile combination.

For a fixed α, the multiplicities are summarized in Table 4.1. Combining these ingredients,

the remaining Higgs equations can be simplified to

∇2h0 = µ2h0 +
h0

N
(2κh2 + λh2

2 + λh2
0) (4.45a)

+
(κ+ λh0)

N
(h2 + (N − 3)h2

0) ,

∇2h = µ2h+
(1− a)2

ρ2
h+

λ

2
h3

+
(N − 2)

2N
hh0(2κ+ λh0) +

(2κ+ λh1)

2(N − 1)
hh1 (4.45b)

+
(N − 2)

2N(N − 1)
(2κ+ λh2)hh2 .

They must be solved with the Higgs profiles approaching the vacuum value v when ρ→∞,

so as to comply with Eq. (4.28), while h(ρ) must also obey the regularity condition (4.32).

4.3.2 Case k > 1

To solve the case k > 1, we consider a general β = 2NΛk in Eq. (4.27). The reasoning

to be followed is very similar to the previous one. The main difference is that we have to

split the positive roots with α · β = 0 into two categories:

α̃0 = ωi≤k − ωj≤k , (4.46a)

α0 = ωi>k − ωj>k . (4.46b)

The point is that α0 and α̃0 have a slightly different behavior. For example, there are

k(k − 1) roots of type α̃0 and (N − k)(N − k − 1) roots of type α0, which generates a

difference when counting the terms in (4.35c). Note that for k = 1 there are no roots of
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type α̃0. The roots associated with a rotating nα are given by

α = ωi≤k − ωj>k . (4.47)

Thus, we are led to introduce three profiles in the α-sector,

hα =


h̃0, if α = α̃0

h0, if α = α0

h, if α · β = 1 .

(4.48)

In any case, the equation for a remains that in (4.37). This time, in order to solve the

matrix part of Eq. (4.35b) we use three matrices I, Ã0 and A0 instead of two. Following

a similar reasoning, we can introduce three projectors, M1 +M2 +M3 = I, determined by

M2 =
2N

N − k
A0 , M3 =

2N

k
Ã0 . (4.49)

In terms of them, the solution for H is

H = h1M1 + h2M2 + h3M3 (4.50)

where h1 satisfies Eq. (4.43a), while h2 and h3 are determined by

∇2h2 = µ2h2 +

(
kh2 + (N − k)h2

0

N

)
(κ+ λh2) , (4.51a)

∇2h3 = µ2h3 +

(
(N − k)h2 + kh̃2

0

N

)
(κ+ λh3) . (4.51b)

Here, we begin to see how the center symmetry is made explicit by the ansatz. When the

Z(N) charge is changed from k to N − k, the equations for h2 and h3 get interchanged,

provided that h0 and h̃0 are also interchanged, which will be justified in the following

discussion.

For a fixed α, the mutliplicity of terms in Eq. (4.35c) with a given profile combination

(hα, hγ, hα+γ) are displayed in table 4.2. In addition, in expressions such as the energy,

where a sum over α is required, the above numbers should be multiplied by k(N − k) if

nα rotates, by k(k−1)
2

if the root is of type α̃0, and by (N−k)(N−k−1)
2

if it is of type α0. With
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Table 4.2

Profile types # terms Profile types # terms

(h, h, h̃0) (k − 1) (h̃0, h, h) 2(N − k)

(h, h, h0) (N − k − 1) (h̃0, h̃0, h̃0) 2(k − 2)

(h, h̃0, h) (k − 1) (h0, h, h) 2k
(h, h0, h) (N − k − 1) (h0, h0, h0) 2(N − k − 2)

this information at hand, the equations for h, h0 and h̃0 become

∇2h0 = µ2h0 +
h0

N
(2κh2 + λh2

2 + λh2
0) (4.52a)

+
(κ+ λh0)

N
(kh2 + (N − k − 2)h2

0) ,

∇2h̃0 = µ2h̃0 +
h̃0

N
(2κh3 + λh2

3 + λh̃2
0) (4.52b)

+
(κ+ λh̃0)

N
((N − k)h2 + (k − 2)h̃2

0) ,

∇2h = µ2h+
(1− a)2

ρ2
h+

λ

2
h3 +

hh1

2k(N − k)
(2κ+ λh1)

+
N − k − 1

2N(N − k)
(2κ+ λh2)hh2 +

k − 1

2Nk
(κ+ λh3)hh3

+
N − k − 1

2N
(2κ+ λh0)hh0 +

k − 1

2N
(2κ+ λh̃0)hh̃0 . (4.52c)

with boundary conditions similar to those for k = 1, where h is the only profile with a

regularity condition along the vortex line. As anticipated, under k → N − k we have

h2 ↔ h3 , h0 ↔ h̃0 . (4.53)

Indeed, due to these properties, the center symmetry is made explicit: the energy of a

vortex with charge k and an antivortex with charge N − k are the same. Incidentally, it

is easy to see that the differences ∆h = h0 − h2 and ∆h̃ = h̃0 − h3 are governed by

(∇2 − µ2)∆h =
λh2 + λ(N − k − 1)h2

0 − κh0

N
∆h , (4.54a)

(∇2 − µ2)∆h̃ =
λh2 + λ(k − 1)h̃2

0 − κh̃0

N
∆h̃ . (4.54b)

for which h0 = h2 and h̃0 = h3 are solutions. This obviously holds for k = 1 and leads to

a welcomed additional reduction in the number of profiles.
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Replacing the ansatz in the energy functional for the action (4.19), we find

E =

∫
d3x

k(N − k)

ρ2

(
|∇a|2

g2
+ h2(1− a)2

)
+

1

2
|∇h1|2 +

1

2
µ2h2

1 +
(N − k)2 − 1

2
(|∇h2|2 + µ2h2

2)

+
k2 − 1

2
(|∇h3|2 + µ2h2

3) + k(N − k)(|∇h|2 + µ2h2)

+λ
k(N − k)

4
h4 + C1h

2 + C2 , (4.55)

where C1 and C2 are given by

C1 =
h1

2
(2κ+ λh1) +

k(N − k)2 − k
2N

(2κ+ λh2)h2

+
(N − k)(k2 − 1)

2N
(2κ+ λh3)h3 ,

C2 =
(N − k)3 + k −N

N

(
κ
h3

2

3
+ λ

h4
2

4

)
+ κ

k3 − k
3N

h3
3

λ
k3 − k

4N
h4

3 − (d2 − 1)

(
µ2v2

2
+
κv3

3
+
λv4

4

)
.

A particularly interesting region in parameter space is µ2 = 0. In this case, except

for a and h, the profiles are frozen at the vacuum value v. This is possible because

only a and h satisfy regularity conditions at ρ = 0. Moreover, on the vortex ansatz,

the nontrivial Higgs profiles a and h get Abelianized in the sense that they satisfy the

usual Nielsen-Olesen (NO) equations. This is interesting because the YM chromoelectric

field distribution obtained from the lattice is precisely that of the NO vortex-string [9].

The crucial difference is that in our case N -ality is automatically implemented due to

the underlying non-Abelian structure. Furthermore, at µ2 = 0, a direct calculation shows

that the collective behavior gives rise to an exact Casimir scaling of the energy per unit

vortex length (string tension)

σk = k(N − k)σNO . (4.56)

Indeed, apart from a factor (N + 1)−1, the factor k(N − k) is precisely the quadratic

Casimir of the k-antisymmetric representation. In other words, an exact Casimir law

σk =
C2(Ak)

C2(F )
σ1 (4.57)

is analytically verified at µ2 = 0.
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4.4 Numerical solutions

In principle, the numerical exploration of the model parameter space (g, µ2, κ, λ) is a hard

task since it is four-dimensional. Fortunately, we can reduce it to two dimensions by a

simple rescaling, defining the dimensionless quantities

x̄i = −κ
g
xi , ḡ = 1 , µ̄ = −g

κ
µ , κ̄ = −1 , λ̄ =

λ

g2
,

which implies the energy per unit lengh rescaled as

σ(g, µ2, κ, λ) = − κ

g3
σ(1, µ̄2,−1, λ̄) . (4.58)

Then, for a given N -ality k, the ratio σk
σ1

can only depend on µ̄2, λ̄. Furthermore, when

computing the string tension ratios, we observed that they essentially depend on the

combination µ̄2λ̄, so we will also fix λ̄ = 1 when evaluating this ratio. It is important

to underline that the reduction from four parameters to one applies only to σk
σ1

while

other observables may display a more complex behavior. For example, another important

quantity we can always fit is the fundamental string tension σ1. For every µ̄2 and λ̄,

including λ̄ 6= 1, we can evaluate the rescaled string tension and then set the proper κ

and g in Eq. (4.58) to obtain the well-established value σ1 = (440 Mev)2. With regard

to the numerical procedure, we initially discretized the coupled equations for a, h, h1, h2

and h3. For this aim, we used finite differences with a range ρ̄ ∈ [0.001, 10] partitioned

into 150 points. Then, we randomly swept over the domain updating each site using the

relaxation method until the desired degree of convergence was met. All the simulations

were implemented in Mathematica. We defined an error function as the modulus of

the deviations summed over the various equations and integrated over the domain, using

it to establish a numerical convergence criterion.

In Fig. 4.4, we plot a(ρ) and h(ρ) for various values of µ2, all of them with g = λ =

−κ = 1. Note that there are only small changes in the whole range considered. Since

this seems to be true for other values of g, κ and λ, we expect these profiles to be well

approximated by those of the Nielsen-Olesen vortex. On the other hand, Fig. 4.5 shows

that the profile h1 is more influenced by changes in µ2. A similar behavior was also

observed for h2 and h3. In Fig. 4.6, we plot the quantity

∆C(k) = 1− N − 1

k(N − k)

σk
σ1

, (4.59)

for N = 8 and various values of k. It measures deviations between the Casimir law. At

µ̄2 = 0, this function passes by zero, a point where we showed an exact Casimir scaling.

The simulations did not converge well for µ̄2 < − 12
9λ̄

. It is interesting to note that the

Casimir law is only slightly deviated from in the whole region we were able to explore. In
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Figure 4.4: Profiles a(ρ) and h(ρ) for various µ̄2. The profile a is that with a linear
behavior around ρ = 0.
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Figure 4.5: Profile h1(ρ) for various µ̄2.

addition, as ∆C(k) is positive, the scaling law of the model is slightly below the Casimir

law. Recalling that the Sine law lies above the Casimir, it is not a surprise that in the

whole range the model shows larger deviations when compared with the Sine law (cf. Fig.

4.7), via the relative difference

∆S(k) = 1−
sin
(
π
N

)
sin
(
kπ
N

) σk
σ1

. (4.60)
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Comparison with Casimir law

Figure 4.6: Plot of ∆C(k) with N = 8. Notice the region depicted is that where the SSB
takes place, including positive µ̄2.
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Figure 4.7: Plot of ∆S(k) with N = 8. The deviations are much larger in the whole region
explored.
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Chapter 5

Stability of the Casimir law in 4d

In the previous chapter, we studied the adjoint flavor-symmetric model defined by Eqs.

(4.19) and (4.24). Due to the nontrivial first homotopy group of the associated vacua

manifold M = SU(N)
Z(N)

, Π1 (M) = Z(N), the vortex solutions to the static field equations

are topologically stable. Among the possible configurations are those containing just one

infinite straight string, characterized by the general ansatz in Eq. (4.27). Considering

Ai = (a/g)∂iϕβ · T , we obtained vortex solutions for the k-A and k-Symmetric (k-S)

representations. When µ2 = 0, the solution for the fields with no regularity conditions at

ρ = 0 is frozen everywhere at the vacuum value:

ψq = vTq , ψα = vTα when α · β = 0 . (5.1)

This led to the following asymptotic exact behavior of the string tension for the k-A

representation
σ(k-A)

σ(F)
=
k(N − k)

N − 1
=
C2(k-A)

C2(F)
, (5.2)

This agrees with the large distance behavior of the Wilson loop [6]. It is trivial to extend

the discussion to the k-S irrep [117]. In this case, the model is equivalent to a Ginzburg-

Landau theory with winding number k. Then, at the BPS point λ = g2 of the Abelianized

µ2 = 0 model, we have

σ(k-S)

σ(F)
= k >

k(N − k)

N − 1
=
σ(k-A)

σ(F)
, (5.3)

for k > 1. Then, when a k-S string is long enough, it is energetically favorable to create

valence gluon excitations around the quark sources to produce a k-A string. However,

in order to establish the asymptotic Casimir scaling law one must show that σ(k-A) is

the lowest tension among all the irreps with N -ality k. In that case, k-A strings would

be settled as the stable confining states. This is one of the properties we will be able to

address exactly in this chapter. For this aim, we need an analysis of the field equations
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for any representation D(·) of SU(N). We will show that there is a point in parameter

space where the complicated set of second order equations,

DjFij = gDiψA ∧ ψA , (5.4a)

DiDiψA =
δVH
δψA

, (5.4b)

can be reduced to a set of first order BPS equations. In flavor-symmetric models, this

reduction was shown in Refs. [104, 115, 116] when the Higgs fields are in the fundamental

representation, and in Ref. [114], only for SU(2), when the Higgs fields are in the adjoint.

Here, using Ai along a general Cartan direction, we shall be able to accomodate a vortex

for a general D(·). These objects are characterized by the magnetic weight β = 2NλD,

with λD being the highest weight of the representation D(·). For the various definitions

and properties, see Appendix B.

5.1 BPS equations

In the Nielsen-Olesen model governed by the action (Dµ = ∂µ − igΛµ, φ ∈ C)

SAbe =

∫
d4x
(
− 1

4
FµνFµν +

1

2
DµφDµφ−

λ

8
(φφ∗ − v2)2

)
, (5.5)

when λ < g2, a single vortex with higher winding number n is energetically more favorable

than n separated vortices with winding number 1. When λ > g2, the situation is reversed.

For a recent discussion about the fitting of lattice data with the Nielsen-Olesen model,

see Refs. [9, 10, 11, 12] and references therein.

At λ = g2, also known as the BPS point, the vortices do not interact, as the energy

of any configuration with winding number n is given by

E = gv2

∫
d3xB3 = 2πv2n . (5.6)

In this Abelian setting, the equations of motion at the BPS point can be reduced to be

first order

D+φ = 0 , B3 =
g

2
(v2 − φφ∗) , B1 = B2 = 0 , (5.7)

where D± = D1 ± iD2. For a detailed discussion on this topic, see Ref. [113]. In the non

Abelian context, this type of BPS point is known to occur in flavor-symmetric SU(N)→
Z(N) models constructed in terms of N Higgs fields in the fundamental representation

[104, 115, 118]. In this section, we will show that there is a set of BPS equations that

provide solutions to the flavor-symmetric SU(N)→ Z(N) model formed by N2−1 adjoint

Higgs fields, at µ2 = 0 and λ = g2 (cf. Eqs. (4.19), (4.24), (5.4)). Moreover, we will show
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that these equations can be closed with an ansatz that accommodates center vortices

carrying the weights of any SU(N) group representation.

Initially, for every pair ψα, ψᾱ, with α > 0, we define

ζα =
ψα + iψᾱ√

2
, (5.8)

which is in the complexified su(N) Lie algebra (α is a positive root). We shall consider

configurations for an infinite static vortex. Because of translation symmetry along the

x3-direction, we require

B1 = B2 = 0 , D3ψA = 0 . (5.9)

Next, motivated by the BPS equations in Refs. [104, 115, 119] involving Higgs fields

transforming in the fundamental and adjoint representations, for the field-dependence

transverse to the string we propose the first-order equations

D+ζα = 0 ⇔ D−ζ
†
α = 0 , D1ψq = D2ψq = 0 , (5.10a)

B3 = g
∑
α>0

(
vα|qψq − [ζα, ζ

†
α]
)
. (5.10b)

In terms of the original fields, we can also write

D±ψα = ∓iD±ψᾱ , (5.11)

B3 = g
∑
α>0

(vα|qψq − ψα ∧ ψᾱ) . (5.12)

5.1.1 The ansatz

Regarding the ansatz, we shall use Eqs. (4.27) and (4.31), with Ai being a general field

in the Cartan subalgebra C, not necessarily proportional to β · T ,

Ai =
N−1∑
l=1

al − dl
g

∂iϕβ
l−A · T , (5.13)

where β(l) = 2Nλl−A and λl−A, l = 1, . . . , N − 1 are the antisymmetric (fundamental)

weights, which provide a basis β(l) · T for C. The Dynkin numbers dl are the positive

integer coefficients obtained when expressing β as a linear combination of βl−A. The

profiles al must obey the boundary conditions

al(0) = 0 , al(∞) = dl . (5.14)
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The first guarantees the a finite action density and a well-defined strength field along the

vortex core while the second ensures that the gauge field is a pure gauge, cf. (4.27),

Λi →
∂iϕ

g
β · T , when ρ→∞ . (5.15)

From this ansatz, it also follows that Diψq = ∂iψq and, from Eqs. (5.9), (5.10a), that the

fields ψq must be homogeneous. We shall take ψq ≡ vTq. Also notice that Eq. (5.10a)

leads to

D+ [ζα, ζα′ ] = [D+ζα, ζα′ ] + [ζα, D+ζα′ ] = 0 , (5.16)

if both α and α′ are positive roots. This suggests that [ζα, ζα′ ] is proportional to another

ζα′′ . In addition, the boundary conditions imply

[ζα, ζα′ ]→ v2Nα,α′ [Eα, Eα′ ] = v2Nα,α′Eα+α′ ; , when ρ→∞ . (5.17)

Then, it is natural to assume

[ζα, ζα′ ] = vNα,α′ζα+α′ . (5.18)

Regarding this proposal, it is important to check if it is consistent with the regularity

conditions at ρ = 0. Fortunately, when both α, α′ are positive roots, these equations are

always consistent.

If α·β 6= 0, because of the ansatz (4.31) and Eq. (4.30), we must impose ζα(ρ→ 0) = 0.

These conditions are compatible as the highest weight is always a positive integer linear

combination of fundamental weights (see App. B). In addition, the inner product between

a fundamental weight and a positive root is positive. Therefore, if β · α 6= 0 or β · α′ 6= 0,

then β · (α + α′) 6= 0. In this case, to avoid the defect in Eq. (4.30), ζα+α′ will be zero

at ρ = 0, in accordance with the regularity condition on at least one of the factors in the

left-hand side of Eq. (5.18). On the other hand, when both β · α = 0 and β · α′ = 0, the

associated basis elements do not rotate so ψα, ψᾱ, ψα′ , ψᾱ′ are not fixed at the origin. In

this case, just like ψq, it holds that Diψα = ∂iψα. For this reason, when β · α = 0 we

will assume ψα = vTα, ψᾱ = vTᾱ. Consequently, Eq. (5.18) also holds in this case, as it

simply follows from the commutation relations between Eα and Eα′ . Moreover, it is not

difficult to check that this solves the equations for ψα when Tα and Tᾱ do not rotate.
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5.1.2 Reduced scalar BPS equations

Notice that

D+(Λ)ζα = SD+(A)(hαEα)S−1 =
(
∂+hα − i∂+ϕhα

N−1∑
l=1

(al − dl)α · βl−A
)
SEαS

−1 ,

B3 =
N−1∑
l=1

1

gρ

∂al
∂ρ

βl−A · T = g
∑
α>0

v2α · T − ψα ∧ ψᾱ = g
∑
α>0

(v2 − h2
α)Sα · TS−1 .

(5.19)

These two relations imply the BPS equations for the the gauge and Higgs profiles

∂+ lnhα = i∂+ϕ
N−1∑
l=1

(al − dl)α · βl−A , (5.20a)

1

ρ

∂al
∂ρ

= g2
∑
α>0

(v2 − h2
α)α · α(l) . (5.20b)

Here, we used the well-known property involving the fundamental weights and the simple

roots α(p) = ωp − ωp+1:

α(p) · βl−A = δpq . (5.21)

We have already discussed the property ζα∧ζα′ = vζα+α′ . Naturally, this leads to hαhα′ =

vhα+α′ , which is consistent with Eq. (5.20a). Furthermore, as a general root can be written

as a positive sum of simple roots with unit coefficients, the profiles hα(p) associated with

simple roots, which satisfy

∂+ lnhα(p) = i∂+ϕ(ap − dp) , (5.22)

can be used to generate all the others.

5.2 Making contact with the SU(N)→ Z(N) model

5.2.1 The gauge-field equations

From Eqs. (5.9), (5.10b), recalling that

Bi =
1

2
εijkFjk , Fij = εijkBk , (5.23)

we can imply

DjFij = εijkDjBk = −gεij3Dj(ψα ∧ ψᾱ) . (5.24)
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If we take i = 1 and use the BPS equation for ψα, ψᾱ, we get

DjF1j = −gD2(ψα ∧ ψᾱ) = −gD2ψα ∧ ψᾱ − gψα ∧D2ψᾱ

=
ig

2
(D+ψα ∧ ψᾱ −D−ψα ∧ ψᾱ + ψα ∧D+ψᾱ − ψα ∧D−ψᾱ)

=
ig

2
(−iD+ψᾱ ∧ ψᾱ − iD−ψᾱ ∧ ψᾱ + iψα ∧D+ψα + iψα ∧D−ψα)

= −g
(
ψα ∧

D+ +D−
2

ψα + ψᾱ ∧
D+ +D−

2
ψᾱ

)
= gD1ψA ∧ ψA . (5.25)

This is nothing but the component i = 1 of Eq. (5.4a). A similar calculation can be done

for i = 2, while i = 3 is trivially satisfied.

5.2.2 Cartan Higgs-sector

Now, to make contact with the solutions to the Higgs-field equations (5.4b), we have to

look for a Higgs potential VH that is compatible with the BPS equations. In particular,

Eqs. (5.9), (5.10a) imply DiD
iψq = 0, so that VH must imply

δVH
δψq

= 0 (5.26)

on the ansatz given in Eqs. (4.27), (4.31) and (5.13), which closes the BPS equations. In

what follows, we will see that this happens when it is given by Eq. (4.24) with µ2 = 0

and λ = g2. In this case,

δVH
δψA

= λψB ∧ (ψA ∧ ψB − vfABCψC) , (5.27)

where v = −κ
λ
. Indeed, applying the same ansatz, we get

δVH
δψq

= λ
∑
α>0

ψα ∧ (ψq ∧ ψα − vfqαᾱψᾱ) + ψᾱ ∧ (ψq ∧ ψᾱ − vfqᾱαψα)

= λv
∑
α>0

(
hαSTαS

−1
)
∧
(
α|qhαSTᾱS−1 − α|qhαSTᾱS−1

)
= 0 . (5.28)

5.2.3 Off-diagonal Higgs-sector

Let us now analyze the equations for fields labelled by roots. The BPS equations lead to

D2ζα = D−D+ζα − g[B3, ζα] = g2
∑
α′>0

[
[ζα′ , ζ

†
α′ ]− v

2α′ · T, ζα
]
. (5.29)
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The sum over α′ involves all positive roots, including α. On the other hand, according to

the equations of the model, we have

D2ζα = Fα , Fα =
1√
2

(
δV

δψα
+ i

δV

δψᾱ

)
. (5.30)

In view of Eq. (5.27), Fα receives contributions from the index types B = q, α, ᾱ, γ, γ̄

where γ > 0 is a root different from α. The partial contribution originated from the

Cartan labels B = q is given by

F (B=q)
α =

λ√
2
ψq ∧ (ψα ∧ ψq − vfαqᾱψᾱ + iψᾱ ∧ ψq − ivfᾱqαψα) . (5.31)

Using the ansatz equations (4.27), (4.31), and also ψq = vTq, we have

ψα ∧ ψq = vfαqᾱψᾱ , (5.32a)

ψᾱ ∧ ψq = vfᾱqαψα , (5.32b)

which imply F
(B=q)
α = 0. Next, there is a contribution originated from B = α, ᾱ

F (B=α,ᾱ)
α =

λ√
2

(ψᾱ ∧ (ψα ∧ ψᾱ − vfαᾱqψq) + iψα ∧ (ψᾱ ∧ ψα − vfᾱαqψq))

= λ
ψᾱ − iψα√

2
∧ (ψα ∧ ψᾱ − vfαᾱqψq)

= λ
[
[ζα, ζ

†
α]− vα · ψ, ζα

]
, (5.33)

where we used the property

ψα ∧ ψᾱ =
[
ζα, ζ

†
α

]
. (5.34)

Finally, we evaluate F
(B=γ,γ̄)
α = Pα+Qα, where Pα (Qα) is the part without (with) explicit

dependence on the structure constants. They are given by a sum over positive roots γ 6= α

Pα = λ
∑
γ 6=α

(ψγ ∧ (ζα ∧ ψγ) + ψγ̄ ∧ (ζα ∧ ψγ̄)) (5.35a)

Qα =
λv√

2

∑
γ 6=α

(
fαγδ̄ψγ ∧ ψδ̄ − fαγ̄δψγ̄ ∧ ψδ − ifᾱγδψγ ∧ ψδ − ifᾱγ̄δ̄ψγ̄ ∧ ψδ̄

)
. (5.35b)

Using Eq. (5.18), we arrive at

Pα = λ
∑
γ 6=α

(
ζγ ∧ (ζα ∧ ζ†γ) + ζ†γ ∧ (ζα ∧ ζγ)

)
= λ

∑
γ 6=α

([
[ζγ, ζ

†
γ], ζα

]
− 2vNα,γ[ζ†γ, ζα+γ]

)
.

(5.36)
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On the other hand, by using Eqs. (A.10) and (5.8) it is possible to cast Qα in the form

Qα = λv
∑
γ 6=α

(
Nα,γ[ζ†γ, ζα+γ] +Nα,−γ[ζγ, ζα−γ]

)
(5.37)

Let us analyze the term with label α − γ. Because γ is a positive root, α − γ is not

necessarily positive, so we cannot use Eq. (5.18) right away. Instead, we shall split this

term into two contributions: γ = γ+ (γ = γ−) such that α − γ+ (α − γ−) is a positive

(negative) root. In the second case

λvNα,−γ− [ζγ− , ζα−γ− ] = λvNα,−σ−α[ζσ+α, ζ−σ] = λvNα,σ
[
ζ†σ, ζσ+α

]
, (5.38)

where σ is a positive root that, when summed with α, yields another positive root. This

is precisely the condition on γ in the first term of Eq. (5.37). Therefore,

Qα = λv
∑
γ 6=α

2Nα,γ[ζ†γ, ζα+γ] + λv
∑
γ+

Nα,−γ+ [ζγ+ , ζα−γ+ ] , (5.39)

which together with the result for Pα yields

F (B=γ,γ̄)
α = λ

∑
γ 6=α

[
[ζγ, ζ

†
γ], ζα

]
+ λv

∑
γ+

Nα,−γ+ [ζγ+ , ζα−γ+ ] . (5.40)

By the definition of γ+, α− γ+ is positive so we can use Eq. (5.18) once again to write

F (B=γ,γ̄)
α = λ

∑
γ 6=α

[
[ζγ, ζ

†
γ], ζα

]
+ λv2

∑
γ+

Nα,−γ+Nγ+,α−γ+ζα

= λ
∑
γ 6=α

[
[ζγ, ζ

†
γ], ζα

]
− λv2

∑
γ+

N 2
α,−γ+ζα . (5.41)

To evaluate the sum over γ+, we need to count how many roots are consistent with the

α − γ+ > 0 condition. For this objective, we can use that α = ωI − ωJ for some I < J .

Then, there are two cases

γ+ = ωI − ωl , I < l < J ⇒ J − I − 1 possibilities,

γ+ = ωl − ωJ , I < l < J ⇒ J − I − 1 possibilities.

Moreover, since N 2
α,−γ+ = 1

2N
in both of these cases, we have

∑
γ+

N 2
α,−γ+ =

J − I − 1

N
. (5.42)
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The sum of the N 2-factors in Eq. (5.41) can be rewritten as a sum of (α · γ)-factors:

∑
γ 6=α

α · γ =
N + J − I − 3

2N
− N − J + I − 1

2N
=
∑
γ+

N 2
α,−γ+ , (5.43)

where we used a similar counting to determine how many positive roots γ different from

α have α · γ = ± 1
2N

. In addition, using the ansatz,

α · γζα = [γ · T, ζα] , (5.44)

so that

F (B=γ,γ̄)
α = λ

∑
γ 6=α

[
[ζγ, ζ

†
γ]− v2γ · T, ζα

]
. (5.45)

Finally, joining this result with the previous ones, namely F
(B=q)
α = 0 and Eq. (5.33), we

get

D2ζα = λ
[
[ζα, ζ

†
α]−v2α·T, ζα

]
+λ
∑
γ 6=α

[
[ζ†γ, ζγ]−v2γ ·T, ζα

]
= λ

∑
α′>0

[
v2α′ ·T−[ζα′ , ζ

†
α′ ], ζα

]
,

(5.46)

which equals Eq. (5.29) for λ = g2.

5.3 String tension for quarks in representation D

In the previous sections, for each quark representation, we showed that at µ2 = 0, λ = g2

the proposed vortex ansatz that closes the BPS equations provide a static vortex solution

for the SU(N) → Z(N) YMH model defined in Eq. (4.19). From Eqs. (5.8)-(5.10), the

associated energy per unit-length is

ε =

∫
d2x

(1

2
〈B3, B3〉+

∑
α>0

〈Diζ
†
α, Diζα〉+ VH(ψ)

)
, (5.47)

where d2x integrates over the transverse directions to the infinite string. Using Derrick’s

theorem in two dimensions, we can equate the potential energy of the Higgs field to that

of the gauge field, thus obtaining

ε =

∫
d2x 〈B3, B3〉 − 〈ζ†α, D2ζα〉

=

∫
d2x 〈B3, B3〉 − 〈ζ†α, D−D+ζα〉+ g〈ζ†α, [B3, ζα]〉 =

∫
d2x 〈B3, B3 + g[ζα, ζ

†
α]〉

=

∫
d2x gv2〈B3, 2δ · T 〉 = gv2

∮
〈Λi, 2δ · T 〉 dxi , (5.48)
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where δ is the sum of all positive roots and the last integral must be taken along a cicle

with infinite radius. Recalling Eq. (5.15), this implies that

ε = 2πgv2β · 2δ . (5.49)

at the BPS point. In particular, note that the k-A string tension scales with the quadratic

Casimir, as β · 2δ = N
N+1

C2(k-A) in this case. This is the result we obtained in Ref. [117].

The new important physical consequence that we will derive from Eq. (5.49) is that for

a general representation D(·) with N -ality k, the asymptotic string tension satisfies

σ(D)

σ(F)
=
C2(k-A)

C2(F)
, (5.50)

which is one of the possible behaviors observed in lattice simulations.

In what follows, we shall see that the smallest β · 2δ factor is given by the k-A weight.

To prove this result, some Young Tableaux technology, useful to study the properties of

the irreducible representations, is required. In this discussion, we shall closely follow the

ideas in Ref. [41]. A Young Tableau consists of a number of boxes organized according

to the following rules:

1. The maximum allowed number of boxes on a given column is N − 1.

2. The number of boxes in a given column (ni) should be lower or equal than the

number in any column to the left. That is, i > j → ni ≤ nj.

3. The number of boxes in a given row (mi) should be lower or equal than the number

in any row above. That is, i > j → mi ≤ mj.

Every diagram drawn according to these rules corresponds to an irreducible representation

of SU(N). Many related properties can be easily identified in this language [41]. The

N−ality of a representation is simply given by the number of boxes of the Young Tableau,

modulo N . The Dynkin indices dk of the highest weight λD satisfy [41]1

λD =
N−1∑
l=1

dlλ
l-A , di = mi −mi+1 . (5.51)

In general, when a box is moved from an upper to a lower row, an irrep. with more

antisymmetries is obtained. For example, the Young tableau for the k-A (k-S) irrep. has

one column (row) with k boxes, as shown in Fig. 5.1. For an irrep. with N -ality k, that

is, a Young tableau with a total number of boxes of the form k + nN , the scaling factor

1When i = N − 1, we take mN = 0.
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Figure 5.1: Young tableaux for the k-A (left) and k-S (right) representations.

Figure 5.2: An example of transformation on a tableau that decreases the scaling factor
β · 2δ.

can be written as

β · 2δ =
N

N + 1

N−1∑
l=1

dl l(N − l) = N(k + nN)− 2N

N + 1

N−1∑
l=1

ml l . (5.52)

Then, if a pair of irreps. D and D′ with magnetic weights β and β′, respectively, have the

same N -ality k, we obtain

∆β · 2δ = β′ · 2δ − β · 2δ = N2∆n− 2N

N + 1

N−1∑
l=1

∆ml l , (5.53)

∆ml = m′l − ml, ∆n = n′ − n, where the primed variables refer to D′. Let us initially

consider a pair of Young tableaux with the same number of boxes. If a box is moved

from an upper row I to a lower row J (see, for example, Fig. 5.2), we have I < J and

∆mJ = −∆mI = 1; consequently, ∆β ·2δ = 2N
N+1

(I−J) < 0. This means that, for a given

number of boxes k+nN , the tableau with smallest β ·2δ is that in which the boxes are as

lowered as possible. Among these tableaux, we need to compare those having different n

but the same N -ality. As an initial example, let us begin by comparing the pair shown in

Fig. 5.3 and assume that the column of the first one is not completely full, i.e. k ≤ N−2.

Figure 5.3: Fully antisymmetric Young tableau with k (left) and N + k (right) boxes.
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Figure 5.4: Fully antisymmetric Young tableau with k+nN (left) and k+(n+1)N (right)
boxes. There are y boxes (in red) in the partly full column in the first tableau and N
boxes (in blue) were added in the second one (colors online).

In this case, we see that

∆mi =

2, if i = k,

1, otherwhise.
(5.54)

Also, ∆n = 1 because we are comparing k with k +N boxes, in which case

∆β · 2δ = N2∆n− 2N

N + 1

N−1∑
l=1

∆ml l =
2N

N + 1
(N − k) > 0 . (5.55)

This means the scaling factor increases when we go from k to N + k boxes. This can be

readily extended to the general case depicted in Fig. 5.4. Because β · 2δ depends only

on the difference of the number of boxes, the x full columns in both diagrams can be

disregarded for our purposes. The values of x and y are such that y+x(N −1) = k+nN .

In fact, the analysis of the relevant part of these two tableaux is completely analogous

to that of Fig. 5.3, which leads to the same result of Eq. (5.55) but with y instead of

k. Since 1 ≤ y ≤ N − 1, the net difference continues to be positive. In summary, the

smallest scaling factor within a given N -ality k corresponds to the single column tableau

on the left side of Fig. 5.3, namely, the one corresponding to the k-A representation.

Now, to complete the analysis of the asymptotic scaling, we need to recall how the

Wilson loop is assessed in the effective model, as this is the observable used in the lattice

to compute string tensions. Indeed, as discussed in Chapters 1 and 4, where we reviewed

the ideas of Ref. [56], this model emerges as an effective description of center-element

averages, which depend on the linking number between center vortices and the Wilson

loop C. The Wilson loop average is given by Eq. (4.17), which contains the frustration

source Jµν . As usual, the confining state in the presence of a static quark-antiquark

pair is obtained from a rectangular Wilson loop with one side along the Euclidean time

with length T → ∞. In the energy functional, Jµν gives place to unobservable Dirac

strings with endpoints at the (physical) quark and antiquark locations. Solutions of the

form (4.27), with modified regularity conditions so as to cancel the Dirac strings, can be
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obtained. They correspond to smooth finite strings, which in the limit of large quark-

antiquark separations make contact with the BPS solutions we studied here. However,

at asymptotic distances, most of these solutions are in fact local minima or metastable

states. Other finite energy solutions where the Dirac strings are also canceled may involve

dynamical adjoint monopoles (valence gluons) created around the sources [120]. As the

adjoint representation has trivial N -ality, the favored asymptotic confining string will be

the one with the lowest energy among those with the same N -ality (k) of D(·). From

the previous discussion, this corresponds to the k-A string, which settles the asymptotic

Casimir scaling in Eq. (5.50).

5.4 Tetraquark configurations

In Monte Carlo simulations, when studying an observable that creates static sources dur-

ing a large time interval T , the leading behavior is dominated by the lowest energy state

that can be created. Then, in the effective model, this state must be compared with

the lowest energy configuration compatible with the conditions imposed by the sources.

For example, it is clear that the lattice simulation of the Wilson loop in the k-A irrep.

must be compared with a straight string (with cylindrical symmetry), running from the

quark to the antiquark. This will be the global minimum, as the introduction of dy-

namical monopoles or wiggles will certainly increase the energy. Indeed, at asymptotic

distances, where the effective model is expected to be valid, this will make contact with

the translationally symmetric BPS k-A string solution.

Now, at µ2 = 0, the nontrivial profiles for translationally symmetric configurations

with any number of k-A strings, given by the ansatz in Eq. (4.27), were shown to obey

Nielsen-Olesen equations [117]. At the critical coupling, this implies that they do not

interact. However, this is not necessarily related with the behavior of fluxes in Yang-Mills

observables. For example, to analyze a situation with a pair of sources and sinks (see Fig.

5.5a), an observable that creates a tetraquark must be considered. Again, the lattice result

has to be compared with the global minimization of the effective energy functional in the

presence of the static probes, without any further restrictions on the fields. On the other

hand, the multivortex critical solutions do not contemplate the minimization with respect

to translationally nonsymmetric configurations. That is, when the sources and sinks are

far apart from each other, the noninteracting translationally invariant configuration could

be a metastable state associated with a local minimum. Then, let us take a closer look

to the case of SU(3) with fundamental quarks. As pointed out in Refs. [121, 122, 123],

the flux distribution strongly depends on the distance between the quark-antiquark pairs.

For R1 >
√

3R2 (with asymptotic values for both R1 and R2), the energy distribution is

given by a double Y-shaped configuration, as depicted in Fig. 5.5b. This behavior was
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(a) A pair of sources and sinks

(b) Double Y-shaped configuration in SU(3)

Figure 5.5: qqq̄q̄ probes: a) The stable flux configuration includes the energy minimization
over all possible guiding-centers g1, g2. b) For R1 >

√
3R2, the coalescence of g1, g2 is

favored, as the sum of fundamental su(3) weights β1, β2 is an antifundamental weight −β3

(N -ality).

computed in the lattice, by considering the tetraquark observable [121]

W4q[Aµ] =
1

12
εabcεdefεa

′b′c′εd
′e′f ′Γ1|aa

′
Γ2|bb

′
ΓG|cfΓ3|d

′dΓ4|e
′eΓG′|f

′c′ , (5.56)

where Aµ is the fundamental field of pure Yang-Mills theory and the different holonomies

Γ are evaluated along the paths γ1, . . . , γ4, γG, γG′ (see Fig. 5.6).

In the center-vortex ensemble picture, the tetraquark observable is related with the

average of

W4q =
4∏
i=1

z
∑
w L(γci ,w)z

∑
w 2L(γc5,w) (5.57)

over closed worldsurfaces w, as this is the contribution to the tetraquark variable W4q

when evaluated on thin center-vortices. Here, z = ei2π/3 is a center element, and the closed

paths γc1, γ
c
2 (resp. γc3, γ

c
4) are the composition of γ1, γ2 (resp. γ3, γ4) with the adjacent

dotted line γL (resp. γR). In addition, the closed path γc5 is given by the composition of

γG, γL, γG′ and γR. L(γck, w) is the linking number between w and the closed paths γck,

while the factor 2 is because γc5 has opposite orientation compared with γc1, . . . , γ
c
4, and

z−1 = z2. Then, the only difference here is the choice of external source to be considered
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Figure 5.6: Representation of the tetraquark observable W4q. The dashed lines represent
optional holonomies that can be included without changing this variable.

in Eq. (4.17). Due to Eq. (5.57), a possibility is given by

Jµν = 2π
5∑

k=1

β(γck) · Tskµν (5.58)

where skµν is localized on a surface S(γck) whose border is γck and

β(γc1) = β(γc3) = β1 , β(γc2) = β(γc4) = β2 , β(γc5) = β3 = −β1 − β2 , (5.59)

where βk = 2Nωk, and ω1, ω2, ω3 are the three (ordered) weights of the fundamental

representation of SU(3). Indeed, in the lattice, this introduces a frustration factor in the

Wilson action

e−iαµν , αµν = α1
µν+· · ·+α1

µν−α5
µν , αkµν =

{
2πβ(γck) · T if 〈µν〉 intersects S(γck)

0 otherwise,

defined on the lattice plaquettes 〈µν〉. In the expansion of the Wilson action, the nontrivial

contribution is originated from plaquettes distributed on closed worldsurfaces w. When

γck links w, then S(γck) is intersected. This gives a factor ei2πβ1·T = ei2πβ2·T = zI or

e−i2πβ3·T = ei2π(β1+β2)·T = z2I, thus reproducing Eq. (5.57). It is also interesting to note

that the weight choice in Eq. (5.59) is related with the Petrov-Diakonov representation

of W4q (see App. C). Similarly to the case of a single Wilson loop, at fixed t the external

source in Eq. (5.58) will give rise to unobservable Dirac lines, which can be chosen

as entering the lower (upper) antiquark and leaving the lower (upper) quark with β1
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(β2). In this case, in order for the energy to be finite, a configuration based on a phase

S = ei(β1χ1+iβ2χ2)·T is required, where χ1 (χ2) is multivalued when going around a closed

path designed to cancel the Dirac string of type β1 (β2). This leaves the effect of a pair of

guiding centers g1, g2 (Fig. 5.5a) where the fields must be in a false vacuum, so that the

energy will be mainly concentrated around them. It is clear that for R1 >
√

3R2 (with

asymptotic R1, R2), the energy minimization, which includes the variation of g1 and g2,

will favor a Y-shaped global minimum as shown in Fig. 5.5b. This is due to the fact that,

in the common part, the sum of fundamental magnetic weights β1 and β2 will combine to

−β3, which implies the same energy cost of a single fundamental string. In other words,

the observed Y-shaped configuration is nothing but the reflection of N -ality stated in the

language of weights.
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Chapter 6

Center-Vortex Sectors in Continuum

YM Theory

After Singer’s theorem [64], it became clear that the usual Faddeev-Popov procedure

to quantize non-Abelian Yang-Mills theories must be somehow modified in the non-

perturbative regime. Because of a topological obstruction, there is no condition g(A) = 0

that can globally fix the gauge on the whole configuration space {Aµ}. Hence, when such

condition is imposed, the path integral still contains redundant degrees of freedom (d.o.f)

associated with gauge fields obeying g(A) = 0 and related by nontrivial gauge transfor-

mations. Such spurious configurations are typically called Gribov copies. The usual way

to deal with this obstruction was implemented in the Landau gauge by V. N. Gribov in

his seminal work [124], see also Ref. [125]. In his proposal, a path-integral restricted

to a subset of {Aµ} was implemented so as to eliminate infinitesimal copies. As a con-

sequence, the perturbative gauge propagator is destabilized, giving place to one with

complex poles, while the ghost propagator is enhanced. Later on, many other develop-

ments were achieved. In the Landau gauge, D. Zwanziger was able to construct a local and

renormalizable action [126] which was afterwards refined by the inclusion of dimension two

condensates [127, 128]. Beyond this gauge, it is worth mentioning important progress in

the maximal Abelian gauge [129, 130, 131] and the linear covariant gauges [132, 133, 134],

see also Ref. [135]. Finally, we refer to a Becchi-Rouet-Stora-Tyutin (BRST) invariant

formulation of the path integral restriction, with a local and renormalizable action, that

was implemented as a gauge independent recipe [136, 137, 138].

In Ref. [61], a different procedure to deal with Singer’s obstruction was introduced, by

splitting the configuration space into domains ϑα ⊂ {Aµ} where local sections are well-

defined. Of course, Singer’s theorem does not pose any problem to define regions with

a local section having no Gribov copies. The important point is that, in order for these
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regions to serve as a basis to implement the new proposal, they must form a partition

{Aµ} = ∪αϑα , ϑα ∩ ϑβ = ∅ if α 6= β . (6.1)

In that case, we would have (SYM = 1
4g2

∫
d4xF 2

µν)

ZYM =
∑
α

Z(α) , 〈O〉YM =
∑
α

Z(α)

ZYM

〈O〉(α) (6.2)

Z(α) =

∫
ϑα

[DAµ] e−SYM[A] , 〈O〉(α) =
1

Z(α)

∫
ϑα

[DAµ] e−SYM[A]O[A] , (6.3)

and the usual Fadeev-Popov procedure could be separately implemented on each domain

ϑα. In Ref. [61], motivated by lattice procedures used to detect center vortices by looking

at the lowest eigenfuntions of the adjoint covariant Laplacian [17, 18], a partition of {Aµ}
was generated in the continuum. For this purpose, a gauge invariant auxiliary action

Saux[A,ψ] for a tuple ψ = (ψ1, . . . , ψNf
) of auxiliary adjoint scalar fields ψI , I = 1, . . . , Nf ,

was considered. Then, the gauge field Aµ was correlated with the solution ψ = ψ(A) to

the set of classical equations of motion

δSaux

δψI
= 0 , ψI ∈ su(N) , I = 1, . . . , Nf , (6.4)

with appropriate boundary and regularity conditions. Since the auxiliary action is gauge

invariant, when an orbit of Aµ is followed, an orbit in the auxiliary space {ψ} is described,

with components

ψI(A
U) = UψI(A)U−1 , AUµ = UAµU

−1 + iU∂µU
−1 . (6.5)

Next, a polar decomposition of the tuple ψ was introduced. 1

ψ1 = Sq1S
−1, . . . , ψNf

= SqNf
S−1 , (6.6)

based on a concept of “pure modulus” condition for a tuple q = (q1, . . . , qNf
):

f(q) = 0 , f ∈ su(N) . (6.7)

After this initial stage, we would have auxiliary variables q(A) and S(A) such that, when

moving along the orbit of Aµ, q(A) stays invariant while the phase describes an orbit

S(AU) = US(A). The point is that even for smooth finite-action configurations Aµ,

S(A) will generally contain defects, which cannot be removed by means of the regular

1In general, a relation between tuples of the form given in Eq. (6.6) shall be simply denoted by ψ = qS .
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U -mappings associated with gauge transformations. That is, it is not possible to define a

“unitary” gauge S(A) = I on {A}. What can be done is to define regions V (S0) ⊂ {Aµ}
formed by gauge fields that can be gauge-transformed to S(AU) = S0, where U is regular

and S0 is a reference (class representative), characterized by a given distribution of defects.

In other words, the gauge can be fixed with the V (S0)-dependent condition:

fS0(A) = 0 , Aµ ∈ V (S0) , fS0(A) = f(S−1
0 ψ1(A)S0, . . . , S

−1
0 ψNf

(A)S0) .

(6.8)

As this is a local condition in the configuration space {A}, it is possibile to have no copies

in this setting, while staying in line with Singer’s theorem. Note also that any pair of

different class representatives S0, S ′0 are such that S ′0 6= US0 (for regular U) so that a

gauge field Aµ cannot be in different regions. Then, as all the gauge fields belong to some

region, the above procedure gives a partition of {Aµ}: ϑα → V (S0). The labels correspond

to oriented and nonoriented center vortices with nonabelian degrees of freedom (d.o.f.),

where the nonoriented component is generated by monopoles (in 4d) or instantons (in

3d). Therefore, the YM field averages in Eq. (6.2) involve an ensemble integration over

topological defects (sector labels) with a weight Z(S0)/ZYM that is in principle calculable.

Indeed, the all-orders perturbative renormalizability of the vortex-free sector was shown

in Ref. [62]. The calculation of each sector, followed by the ensemble integration, is

expected to give rise to the confining behavior in the nonperturbative regime. Of course,

this program tends to be prohibitively hard in the continuum. Nonetheless, understanding

some of their facets could shed light on how to organize an approximation scheme on each

sector. For example, in the calculation of quadratic fluctuations around a straight thin

center-vortex, different self-adjoint extensions are possible [139]. Which one to use should

be determined from first principles and on physical grounds. This could also provide a

guide to compute the different sectors in the lattice. The gauge-fixing method is based

on many underlying assumptions. In this part of the thesis, we aim at discussing them

at the classical level, paying special attention to sectors that include center vortices. The

purpose is to improve the understanding of the consistency of this procedure.

6.1 Yang-Mills (global) gauge-fixings

In this section, we provide a brief discussion of some of the gauge-fixings commonly used

along the history of continuum and lattice nonabelian gauge theories. These gauges are

global, in the sense that a unique condition is imposed on the whole configuration space.

This discussion will be useful to compare them with our local procedure and show, in the

next section, how their problems and limitations could be avoided.
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In the continuum, globally defined gauge-fixing conditions,

f(A) = 0 , Aµ ∈ {Aµ} , (6.9)

were extensively studied. For example, the Landau gauge corresponds to f(A) = ∂µAµ.

Of course, due to Singer’s (no-go) theorem [64], it is impossible to find a continuous

condition on the whole configuration space {Aµ} such that f(AU) = 0 ⇒ U = I. Then,

in this framework, to continue working with the traditional methods, which are based

on a single global f(A), the path-integral was restricted to a subset of {Aµ}. This is

known as the first Gribov region, where infinitesimal copies are eliminated, although it

generally contains finite copies. This region can also be defined as the smallest connected

set, containing the trivial configuration Aµ = 0, such that the (gauge-dependent) Fadeev-

Popov (FP) operator is positive definite [124]. In the infrared regime, it is believed that the

YM path-integral in Landau gauge is dominated by the Gribov horizon [140, 141], which

is formed by configurations such that the corresponding FP operator has zero modes.

These operators were studied in the continuum and in the lattice for the Coulomb and

Landau gauges [142, 143, 144]. For example, in the Landau gauge, where the FP operator

is given by

Mab
Landau = −∂µDab

µ δ
(4)(x− y) , (6.10)

it was shown that smooth center vortices and instantons belong to the Gribov horizon

[22, 145, 146].

In the lattice, center vortices and their properties have been extensively studied in

the confining regime. In this case, although a gauge-fixing is not necessary to compute

observables, it is relevant for the purpose of identifying the dominant configurations in

the infrared regime. This was initially done within the Maximal Center Gauge (MCG)

[15, 16, 20], which brings each link element as close as possible to a center element. Given

an initial field configuration Uµ(x) ∈ SU(N) (link-variables), the gauge is defined by the

following maximization over gauge transformations g(x)

maxg
∑
x,µ

(
tr Ad

(
U g
µ(x)

))
, Ad

(
U g
µ(x)

)
= RT(x) Ad

(
Uµ(x)

)
R(x+ µ) , (6.11)

where R = Ad
(
g
)

(Ad(·) denotes the adjoint representation of SU(N))). In Ref. [20],

this gauge was extended to the continuum by means of the requirement

minΣ ming

∫
dDx

(
tr (Ag − aΣ)2

)
, (6.12)

where aΣ is the gauge field for a thin vortex localized on ∂Σ, a closed surface. For local

extrema, a condition can be obtained by first considering the minimization with respect
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to G = eiθ, with infinitesimal θ, and fixed Σ:

[∂µ + aΣ
µ , Aµ]− ∂µaΣ

µ = 0 . (6.13)

If this step were free from Gribov copies, we would have a unique gauge field AΣ that

satisfies Eq. (6.13), and the continuum Maximal Center Gauge would be completed by

determining the best Σ:

minΣ

∫
dDx tr(A[aΣ]− aΣ)2 . (6.14)

On a conceptual level, this is an interesting procedure aimed at bringing Aµ as close as

possible to a thin center vortex field aΣ|µ. However, as pointed out in Ref. [20], this

route would require further improvements. This is due to the large mismatch between a

smooth Aµ and a thin center-vortex field aΣ|µ at points that are close to any ∂Σ, where

the difference A − aΣ is divergent. Thus, the condition (6.12) is always achieved for

aΣ = 0, for vortex-like smooth configurations Aµ. Among the possibilities to avoid this

problem, a smoothed aΣ or the replacement tr(·) → s(tr(·)) in Eq. (6.12), with s(t) a

monotonically increasing function, was considered in Ref. [20]. An issue pointed in that

work is that, to avoid the divergence at ∂Σ, s(t) cannot diverge as t → ∞. However,

this property would not penalize large deviations between Aµ and aΣ|µ in other regions.

In addition, for certain functions like s(t) = − tanh(R4t2), it was noted that the optimal

∂Σ does not coincide with the guiding-center of a smooth center-vortex Aµ, even for the

simplest example.

Another important class of gauges in the lattice consider a set of eigenvectors φ(j)

corresponding to the lowest eigenvalues of the discretized covariant adjoint Laplacian,

∆ab
xy(U)φ

(j)
b (y) = µjφ

(j)
a (x) . (6.15)

The gauge can then be fixed by imposing different conditions on the “lowest” eigenfunc-

tions, i.e., the ones associated with the lowest eigenvalues. For instance, in the Lapla-

cian Center Gauge (LCG) [17], the gauge is achieved by the composition of a pair of

SU(N) gauge transformations on the link variables. The first one is such that the lowest

eigenfunction φ(1) is oriented along the Cartan subalgebra. Then, a transformation is

performed to make the color components of the second lowest eigenfunction φ(2) satisfy

some conventional conditions, while keeping φ(1) fixed. The possibility of replacing the

pair of Laplacian eigenfunctions by other adjoint fields in the continuum was first pointed

out in Ref. [147], although a specific realization for these fields was not presented. In

addition, the use of the above mentioned global gauge-fixing condition on these fields

would lead to singular gauge-fixed fields, due to the large topological phases associated

with center vortices. In the lattice, we would also like to mention the Direct Laplacian

Center Gauge (DLCG), introduced in Ref. [18] to address the above mentioned mismatch
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between smooth and thin configurations in the MCG. For SU(2), instead of using the

function s(t), the smoothing of the MCG was done by promoting R(x) ∈ SO(3) to a new

degree of freedom M(x), given by a 3×3 real matrix, and then performing the constrained

maximization

maxM
∑
x,µ

tr
(
MT(x) Ad

(
Uµ(x)

)
M(x+ µ)

)
,

1

V
∑
x

MT(x)M(x) = I3×3 , (6.16)

with V the lattice volume. Then, it was shown that the solution can be written in terms

of the three lowest eigenfunctions of Eq. (6.15), Mab(x) = φ
(a)
b (x). In the next step, an

SO(3)-field was extracted from M(x) through a polar decomposition. This field was then

mapped to SU(2) and the link-variables were gauge transformed to satisfy the adjoint

version of the lattice Laplacian Landau Gauge (LLG) introduced in Ref. [148]. Finally,

the DLCG was achieved by relaxing these link-variables to the closest configuration that

satisfies the MCG. In Ref. [18], it was argued that the DLCG is preferable to the LLG

since it avoids the presence of small scale fluctuations in the P-vortex surfaces of projected

configurations.

6.2 The local gauge-fixing in continuum YM theory

In the lattice, the use of global gauge-fixing conditions, in the various center gauges

discussed in Sec. 6.1, is always possible because there is no concept of singular ill-defined

phase field S(x), when x represents the discrete lattice sites. On the other hand, in

the continuum, any attempt of defining a global condition, in a procedure that detects

nonabelian large topological phases S(x), x ∈ R4, would lead to singular gauge-fixed

fields. For example, this occurs in the global gauge of Ref. [149]. In that case, among the

natural large phases there are those corresponding to monopoles. Then, a gauge-fixing

based on a global orientation of the auxiliary fields, where S(x) is removed, leads to

gauge fields Aµ containing singularities (Dirac strings). A similar situation would occur

in gauge fixings in the continuum based on a set of adjoint auxiliary fields ψI ∈ su(N),

I = 1, . . . , Nf . This time, the topological phases S(x) ∈ SU(N) will certainly include

center-vortex defects. In addition, monopole-like phases will generally be attached to a

pair of (physical) center-vortex defects.2 Again, there will be an obstruction to implement

a global ψI orientation, for every Aµ ∈ {Aµ}. By enforcing such a condition, ill-defined

gauge fixed fields Agf
µ would be produced. On the other hand, in the continuum, it is

precisely the clear distinction between regular and singular SU(N)-mappings that enables

2These configurations are known as nonoriented center vortices (see Ref. [20]).
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the introduction of the equivalence relation

S(x) ∼ S ′(x) if ∃ regular U(x) / S ′(x) = U(x)S(x) , (6.17)

Such distinction and equivalence relation have no meaning for fields defined on the lattice.

In the continuum, it enables us to think of generating, a priori, a catalog of different

equivalence classes [S0], where S0(x) is a class representative. For example, in gauges

based on adjoint auxiliary fields, a possible reference would be S0 = eiχβ·T , where χ is

a multivalued harmonic function and β is a fundamental magnetic weight, such that S0

changes by a center element when going around a closed surface ∂Σ. Of course, there is

also a center-vortex free sector that can be labeled by S0 ≡ I. Other phases represent

center-vortices that are nonoriented in the Lie algebra (see Refs. [20, 56]). Here, we will

not discuss the general classification of sectors. Instead, we shall analyze some examples.

However, it is important to underline that, as noted in Ref. [56], multiplying a label

S0 by a regular mapping on the right generally leads to a physically inequivalent label.

The identification of these nonabelian degrees of freedom is an important property in

the continuum which has no clear counterpart in the lattice. Using a mechanism that

maps Aµ to S in a gauge covariant way, we can look for the previously defined reference

label S0 that is equivalent to S. Then, instead of a global condition on {Aµ}, we can

require the gauge-fixed Agf
µ to be mapped into S0, which is attained by a regular gauge

transformation.

The simplest known example where local gauge-fixings are used is in the context of the

Abelian Higgs Model [150]. In the unitary gauge, the phase of the Higgs field is required

to be trivial. However, this condition cannot be applied to the Nielsen-Olesen vortex. For

a straight infinite vortex, the best we can do is to fix the gauge field as φ = h eiϕ, where

ϕ is the polar angle (∂2ϕ = 0). This is one of the motivations that led to the gauge-fixing

proposal for pure YM theories in Ref. [61]. There, the construction of S was done by

introducing a set of adjoint auxiliary fields that minimize an auxiliary action

Saux =

∫
d4x (〈DµψI , DµψI〉+ Vaux) , Dµψ = ∂µψI − i [Aµ, ψI ] . (6.18)

The consideration of ψ(A) = (ψ1, . . . , ψNf
), solution to this minimization problem (cf.

Eq. (6.4)), has the advantage that, unlike the lowest eigenfunctions of the covariant

Laplacian, it is a a well-posed problem in the continuum. Of course, at the quantum

level, these fields were introduced by means of an identity, keeping the pure Yang-Mills

dynamics unchanged. Regarding the field content and auxiliary potential, they were

chosen such that the components ψI of the classical solution ψ(A) enable a simple concept

of “modulus” tuple and the extraction of a phase. For this aim, Saux was proposed to

display SU(N) → Z(N) SSB, which requires Nf ≥ N (see also Sec. 6.3). Among the
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many possible flavors of auxiliary fields, the choice Nf = N2−1 was preferred, as a simple

auxiliary action and procedure to extract the phase S can be given for general SU(N).

Then, Vaux can be chosen such that it is minimized by the nontrivial solutions to

−i[ψI , ψJ ] = v fIJK ψK , (6.19)

namely, ψI = vSTIS
−1, where TI , I = 1, . . . , N2 − 1 is the usual Lie basis. In regions

where Aµ is close to a pure gauge, the solution will be close to a rotated frame. This

“dynamical tendency” can be thought of as playing a similar role to the normalization and

orthogonality property of the Laplacian eigenvector fields in the DLCG (cf. Eq. (6.16)).

The polar decomposition of a tuple ψ (cf. Eqs. (6.6) and (6.7)) was done by defining a

modulus tuple q as the rotated ψ that minimizes the average square distance∑
I

〈qI − vTI〉2 . (6.20)

This implies that qI is “aligned” with the Lie basis TI on average,∑
I

[qI , TI ] = 0 . (6.21)

Then, this procedure allows for the construction of S(A) (the phase of ψ(A)) and the

identification of the sector V (S0) where Aµ is. Finally, the gauge can be fixed by the

sector-dependent condition

fS0(ψ) = [S−1
0 ψI(A)S0, TI ] = 0 , (6.22)

see Eq. (6.8). This procedure, proposed in Ref. [61], has many points of contact with

Laplacian center gauges used in the lattice. As discussed in Sec. 6.1, the possibility of

using adjoint fields other than the Laplacian eigenfunctions in the continuum was first

pointed out in Ref. [147]. In our procedure we gave a realization of the auxiliary fields

through a set of classical equations of motion while, instead of a pair, we considered

various adjoint flavors. This field content simplified the extraction of a covariant phase

out of ψ. Indeed, our concept of polar decomposition generalizes to SU(N) the usual

decomposition of the 3×3 real matrix, formed with the three lowest eigenvectors, used in

the lattice adjoint LLG in SU(2). In addition, as already explained, by considering local

gauge-fixing conditions on V (S0) ⊂ {Aµ} , we were able to avoid singular gauge-fixed

fields.

On the other hand, for oriented center vortices, our procedure differes from the con-

tinuum global MCG, as it is not based on comparing Aµ with the singular configurations

aΣ. The closed manifold ∂Σ is not obtained after a best fit to a|Σ, but by reading the
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defects in S(A). It is also very different from the traditional global gauge-fixings. For

instance, in the Landau gauge, the Gribov copies associated with smooth center vortex

or instanton configurations (cf. Eq. (6.10)) are related with zero mode solutions to a

Schrödinger-like equation. It should be emphasized that the FP operator for this type of

global gauges is completely different from the FP operator JS0 in any local sector V (S0),

which is related with the algebraic condition in Eq. (6.22). Therefore, there is no a

priori reason to expect JS0 to contain zero modes. In order to address the possibility of

copies, the analysis must be completely reformulated. Instead of considering a general

Aµ ∈ {Aµ}, it should be separately done for Aµ ∈ V (S0), for every possible label S0. As

an initial step, to see if we are on a good direction, we will address some examples based

on the simplest smooth center vortices. In particular, in Sec. 6.4, we will show that the

associated guiding-centers are correctly detected in the nonabelian mapping S(A), that

the gauge-fixed field is regular, and that no copies will arise in this case.

6.3 Investigating the new procedure

In the local procedure, if the solution to Eq. (6.4) is unique (after imposing regularity and

boundary conditions), in a first step we may associate each field in {Aµ} with the auxiliary

tuple ψ(A) that minimizes the auxiliary action Saux[A,ψ]. For this mapping to be useful

to fix the gauge, a necessary condition is that different gauge fields of the same orbit

are associated with different ψ(A). If ψ(A) is left invariant by nontrivial transformations

ψI(A) → UψI(A)U−1, U ∈ SU(N), then no matter what the second step is, the final

prcedure will have gauge copies. If this is successful, in a second step, given a tuple ψ(A),

we would like to fix the gauge by imposing a condition that is satisfied by only one ψ(A)

as we move on the orbit of Aµ. Again, because of Singer’s theorem, it is impossible to

find a global and continuous gauge-fixing condition. However, the idea is to implement

a different gauge-fixing condition on each sector of a partition of {Aµ}. In summary, for

the gauge fixing to be well-defined, we need:

1. Appropriate regularity and boundary conditions on the auxiliary fields so as to have

a unique solution ψ(A) to Eq. (6.4).

2. The auxilary-field content and the auxiliary action must be such that ψ(A) is injec-

tive on any gauge orbit. This means,

ψ(AU) = ψ(A)⇒ U ∈ Z(N) , (6.23)

where Z(N) is the center group of SU(N). This is just the requirement that the

fields transform homogeneously under the gauge group in a LCG formulated in the

continuum [147].
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3. A univocally defined polar decomposition of ψ(A). In this case, besides inducing

the partition V (S0), a local condition on V (S0) with no copies,

fS0(ψ(A)) = 0 and fS0(ψ(AU)) = 0⇒ U = I , (6.24)

would be implemented in terms of the “pure modulus” concept discussed in Eqs.

(6.7), (6.8) whose solution3 is given by ψ = qS0 .

If these requirements are fulfilled, we would have an S0-dependent gauge-fixing con-

dition, without copies on each local sector V (S0) of the partition of {Aµ}. As in other

gauge-fixing procedures, the main idea is not to arrive at a closed expression for the

gauge-fixed field Ag.f.
µ . This could only be done for some specific cases. In fact, the objec-

tive is to properly quantize YM theory. Here, we shall briefly comment about the above

requirements, relating them with the quantization procedure introduced in Ref. [61]. A

detailed analysis will be developed in the next sections.

Regarding item 1, the natural regularity condition is to consider continuous single-

valued auxiliary fields. In addition, as the gauge fields Aµ with finite YM action are

asymptotically pure gauge, the natural boundary condition is that ψ is covariantly con-

stant at infinity,

Dµψ → 0 when |x| → ∞ . (6.25)

This is consistent with the equations of motion if ψ(x)→ ψ̄(x) ∈ M in this limit, where

M is the vacua manifold of Saux. In Ref. [61], starting from the pure YM partition

function,

ZYM =

∫
[DAµ] e−SYM[A] , (6.26)

or the YM correlations, we introduced auxiliary fields satisfying Eq. (6.4) by means of an

identity

1 =

∫
[Dψ] det

(
δ2Saux

δψIδψJ

)
δ

(
δSaux

δψI

)
, (6.27)

in the integrand of the Aµ path-integration. Given Aµ, to correctly implement this iden-

tity, the argument of the δ-functional must have a unique zero, and the quadratic op-

erator in the determinant must be positive definite. This is nothing but the uniqueness

requirement, which is met by the regularity and boundary conditions discussed above. In

addition, the positivity of the quadratic form is related to solutions ψ(A) with minimum

auxiliary action.

3In general, a relation between tuples of the form given in Eq. (6.6) shall be simply denoted by ψ = qS .
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Now, the manifold M must be nontrivial, that is, Saux must be constructed with an

appropriate spontaneous symmetry breaking (SSB) pattern. If not, ψ(A) could easily

take values close to zero in a spacetime region, and the condition (6.23) in item 2 would

be violated. In other words, we need ψ(A) to be nontrivial almost everywhere to be

able to extract information from it. Indeed, injectivity will be favored if points ψ̄ in M
satisfy (6.23), which corresponds to require an auxiliary action with an SU(N)→ Z(N)

Spontaneous Symmetry Breaking (SSB) pattern. For this to happen, a minimum value of

Nf = N flavors is needed (see Sec. 6.3). In this case, M = SU(N)/Z(N) = Ad(SU(N)),

where Ad(·) stands for the adjoint representation, and SU(N) acts transitively on this

manifold. Then, for a univocally defined polar decomposition (item 3), the asymptotic

boundary condition would be

ψ(x)→ ψ̄(x) = uS̄ when |x| → ∞ , (6.28)

where u is the pure modulus tuple in M and S̄ = S̄(x) is only defined at infinity by

Aµ → S̄∂µS̄
−1 when |x| → ∞ . (6.29)

Next, to represent the YM quantities in terms of a partition in the local sectors V (S0),

we introduced a second identity in the integrand of Eq. (6.27)

1 =
∑
S0

1S0 , 1S0 =

∫
[DU ] δ(fS(ψ)) det(J(ψ)) , S = US0 , (6.30)

where J(q) is the Fadeev-Popov operator associated to the condition (6.24). According to

item 3, the characteristic function 1S0 is nontrivial on fields of the form ψ = qS, f(q) = 0.

As ψ is single-valued, when we get close to the defects of S0, the fields accompanying Lie

algebra components rotated by S0 must tend to zero. When restricted to V (S0), in order

for the left-hand side of 1S0 in Eq. (6.30) to be one, there should be a unique U that solves

fS(ψ) = 0. This is expected to be addressed by the consideration of the SU(N)→ Z(N)

SSB pattern and a good definition of polar decomposition with a univocally defined phase

(and modulus).

Let us analyze some possibilities for the auxiliary action Saux in Eq. (6.18), initially

focusing on the SU(2) case. As Ad(SU(2)) = SO(3), the group action on an adjoint

scalar field can be pictured as an orthogonal rotation of a three-component vector. Then,

noting that any vector is left invariant by an SO(2) subgroup of rotations, we clearly

see that it is not possible to produce SU(2) → Z(2) SSB with a single scalar field. The

situation is different if we consider two adjoint scalar fields

Saux =

∫
d4x (〈Dµψ1, Dµψ1〉+ 〈Dµψ2, Dµψ2〉+ V (ψ1, ψ2)) . (6.31)
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In this case, if the two vectors are linearly independent, it is clear that there will be no

set of continuous transformations that leave them invariant. However, the potential must

be chosen carefully. Asymptotically, the scalar fields should tend to M. It is therefore

important that we choose V so as the field components of the tuples in M are linearly

independent vectors. If we choose

V (ψ1, ψ2) = λ1(〈ψ1, ψ1〉 − v2)2 + λ2(〈ψ2, ψ2〉 − v2)2 , (6.32)

pathological configurations satisfying ψ1 = ψ2, with 〈ψ1, ψ1〉 = v, will belong toM. They

are left invariant by rotations with axis ψ1. This can be fixed by adding the term 〈ψ1, ψ2〉2

(see Ref. [151]). Then,M will consist of two orthogonal vectors which are only invariant

by Z(2) ⊂ SU(2) discrete transformations. Had we added 〈[ψ1, ψ2], [ψ1, ψ2]〉 instead, the

pathology would persist. For general SU(N), among the interesting possibilities is the

color-flavor symmetric action containing N2− 1 SU(N) adjoint scalar fields ψA ∈ su(N),

A = 1, . . . , N2 − 1, and auxiliary potential Vaux given by VH in Eq. (4.24). This was

adopted in Ref. [61]. Then, the tuple ψ(A) would be obtained by solving the equations

D2ψA = µ2ψA + κfABCψB ∧ ψC + λψB ∧ (ψA ∧ ψB) . (6.33)

As argued in Ref. [83], this potential admits SU(N) → Z(N) SSB, and is thus a good

auxiliary action candidate. Indeed, Vaux is minimized by tuples which are rotated Lie

basis, satisfying Eq. (6.19), with v given by Eq. (4.25). It is important to underline

that although Saux and SH, given in Eq. (4.19), are similar from a mathematical point

of view, the physical contexts are completely different. In Section 4.2, the action governs

the infrared physics in an effective manner. There, the gauge field Λµ and the Higgs

fields are emergent quantities, representing percolating center-vortices and monopoles,

respectively. In the present chapter, Aµ is the fundamental gauge field that describes the

strong interactions, while the auxiliary adjoint fields have no physical meaning. They just

provide a means to fix the gauge.

6.4 Properties of the Yang-Mills sectors

In this section, we provide explicit examples of gauge field configurations belonging to

nontrivial sectors labeled by center vortices. Then, we show that the procedure allows

us to identify more general sectors labeled by nonabelian d.o.f.. These are not related

to ambiguities, but are in fact physically inequivalent possibilities located at the same

center-vortex guiding centers.

83



6.4.1 Some sectors labeled by a guiding center

Let us start with some general remarks about thick center-vortex configurations of the

form

Aµ = ga(x)∂µχβ · T , β · T ≡ β|qTq , (6.34)

where χ is a multivalued angle when we go around some closed surface Ω (guiding center),

the elements Tq (q = 1, . . . , N − 1) are Cartan generators of su(N), and a(x) is a scalar

profile that goes to 1 at infinity. In principle, this profile could be any smooth function.

However, regularity conditions must be imposed on a(x) to prevent singularities in Aµ

and the associated Fµν . First of all, a(x) = 0 at Ω, otherwise Aµ would not be well-defined

there. Next, we evaluate

Fµν = (∂µa∂νχ− ∂νa∂µχ)β · T + a(x) [∂µ, ∂ν ]χβ · T . (6.35)

We have [∂µ, ∂ν ]χ = 0 everywhere except at Ω, where a(x) = 0, so that we can disregard

this term. When probing the behavior of a(x) at points very close to Ω, we can take

χ = ϕ, the angle of polar coordinates, with the z − t plane taken as the tangent plane

passing throught the nearest point x0 ∈ Ω. Consequently

1

4
〈Fµν , F µν〉 =

1

2
β · β

(
∂µa∂

µa∂νχ∂
νχ− (∂µa∂

µχ)2
)

=
1

2ρ2
β · β

(
∂µa∂

µa− (ϕ̂ · ∇a)2
)
.

(6.36)

If we expand a(x) = a(1)(ϕ, z, t)ρ + a(2)(ϕ, z, t)ρ2 + ..., we must impose a(1)(ϕ, z, t) = 0

or, otherwhise, the action would be infinite due to the divergence of 〈Fµν , F µν〉 near

x0. In other words, on very general grounds, both a(x) as well as its derivative in the

local ρ direction should vanish at every point of Ω. In particular, this excludes thin-

vortex configurations, as they are associated to an infinite Yang-Mills action density.

Thus, within our framework, typical calculations of the partial contribution Z(S0) to the

Yang-Mills ensemble will consist of path-integrals with regularity conditions at the center-

vortex guiding-centers. This problem is similar to the computation of a Casimir energy,

but with conditions imposed on surfaces with higher codimension d = 2. In ref. [152],

the dynamical Casimir effect associated to a moving Dirichlet point was discussed for

d = 1, 2, 3. The case d ≥ 2 was found more subtle to deal with, as it is necessary to

renormalize the coupling to obtain a finite effective action for the particle. Codimension

d = 2 is particularly interesting as the coupling acquires dependence on an arbitrary mass

scale µ. In this case, it was found that the effective action contains a term proportional

to u̇2, u being an unitary tangent vector to the particle’s trajectory. If we interpret the

nontrivial trajectory of the particle as a curved vortex-like object, this term would be

associated to stiffness. It would be interesting to generalize this calculation to gauge

theories, This could allow to make contact with the observed properties of center vortices
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in the lattice, which display stiffness and tension terms [49, 56, 153]. It is also worth noting

that investigations regarding quantum corrections to the effective action of a thin center-

vortex were carried out in Ref. [139]. In particular, the one-loop correction to the thin

vortex energy was shown to vanish for integer fluxes, for a particular choice of self-adjoint

extension of the operator accompanying the fluctuations. The physical determination we

are proposing here is different, so that the partial contribution of a center-vortex sector

should be reexamined.

6.4.2 Antisymmetric center vortices with charge k

If there is a regular transformation U ∈ SU(N) such that

[S−1
0 U−1ψA US0, uA] = 0 ,∀x , (6.37)

where uA = vTA, then Aµ ∈ V(S0). To proceed, we can consider sectors labeled by

S0 = eiχβ·T , where β is a magnetic weight of the k-antisymmetric representation. By

defnition, a pair of phases associated with different guiding centers Ω and Ω′ belong to

different sectors. Accordingly, the respective solutions ψA and ψ′A will be different, as the

regularity conditions to solve the equations of motion will occur at different locations.

Now, let us analyze configurations with cylindrical symmetry

Aµ = a(ρ)∂µϕβ · T . (6.38)

The profile a(ρ) satisfies the regularity and boundary conditions a(ρ = 0) = 0 and a(ρ→
∞) = 1, respectively. The second condition implies that these are in fact thick center-

vortices with Z(N) charge k, as they contribute an elementary center element to the k−th

power, for large enough Wilson Loops that link them. In particular, if we consider as a(ρ)

the profile computed in Section 4.3, we already know the auxiliary tuple ψ(A), which is

given by Eq. (4.31) and the profiles computed in that section. Although they have the

same guiding-centers (ρ = 0), center vortices corresponding to different antisymmetric

weights belong to different sectors. This is because the set of roots {αr} that satisfy

α · β 6= 0 changes with the N -ality k. To see this, consider, without loss of generality,

that k > k′. Then, denoting β = βk, β′ = βk
′
, we have

β · αk′p = −1 , β′ · αk′p = 0 , for p ≤ k , (6.39)

β · αk′q = 0 , β′ · αk′q = 1 , for q > k′ . (6.40)
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On the one hand, this implies that the auxiliary field-profiles are different, as they satisfy

different regularity conditions. Moreover, taking U = I, we have

[S ′0
−1
ψAS

′
0, uA] = 2iv

∑
α

hα sin(α · (β − β′)ϕ)α|qTq . (6.41)

When approaching ρ = 0, the regularity conditions yield

[S ′0
−1
ψAS

′
0, uA] ≈ −2iv

∑
α·β=0

hα(0) sin(α · β′ ϕ)α|qTq . (6.42)

As we know that hα(0) 6= 0 for α·β = 0, and that there are roots satisfying (6.40), this can

only be nullified for every ϕ when β = β′. This implies that the gauge field characterized

by β belongs to V(S0), with S0 = eiϕβ·T , and already satisfies the gauge condition. This

also applies to more general profiles a(ρ), not necessarily those obtained in Section 4.3, as

the general auxiliary ansatz, with symmetric profiles hAB closes the equations of motion,

and leads to

[S0
−1ψAS0, uA] = v hAB[TB, TA] = 0 . (6.43)

Sectors characterized by different antisymmetric weights, represent physically inequivalent

center-vortex configurations that have the same guiding-centers.

6.4.3 Nonabelian degrees of freedom

In nonabelian models with spontaneous symmetry breaking, vortices can have an internal

orientational moduli [66, 67, 68]. In our case, although we are dealing with a pure gauge

theory, a similar situation occurs when defining the different sectors. As discussed in Ref.

[56], the multiplication of a general defect S0 by a regular phase Ũ(x) ∈ SU(N) on the

right could yield a physically inequivalent label. For S0 = eiϕβ·T , the new configuration is

given by

Aµ = a iS∂µS
−1 = SAµS−1 + iS∂µS

−1 , Aµ = (1− a)iS−1∂µS (6.44)

S = Ũeiϕβ·T Ũ−1 , (6.45)

while the associated solution can be written in the form ψA = Sψ̄AS
−1, where Ũ and ψ̄A

are single-valued and regular. Using

S−1∂µS = Ũe−iϕβ·T Ũ−1∂µŨe
iϕβ·T Ũ−1 + i∂µϕŨβ · T Ũ−1 + Ũ∂µŨ

−1, (6.46)
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S−1(Dµ(A)Dµ(A)ψA)S = �ψ̄A + 2Aµ ∧ ∂µψ̄A + ∂µAµ ∧ ψ̄A +Aµ ∧ (Aµ ∧ ψ̄A) ,

(6.47)

and the regularity conditions of ψ̄A and a(x) to expand ψ̄A = ψ̄
(0)
A + ψ̄

(1)
A ρ + ..., a(x) =

a(1)ρ+ a(2)ρ2 + ..., we see that the term of order ρ−2 in Eq. (6.47) is

∂2ψ̄
(0)
A

∂ϕ2
− 2X̃ ∧ ∂ψ̄

(0)
A

∂ϕ
+ X̃ ∧ (X̃ ∧ ψ̄(0)

A ) , X̃ = Ũβ · TŨ−1 . (6.48)

Since ψ̄A is single-valued and regular, the zeroth order term ψ̄
(0)
A in the ρ-expansion cannot

depend on ϕ. In addition, since the force δSaux

δψA
has no term of order ρ−2, at the guiding

center it must be verified

X̃ ∧ (X̃ ∧ ψ̄(0)
A ) = 0 . (6.49)

Taking the scalar product with ψ̄
(0)
A and using the positivity of the metric, we get,

X̃ ∧ ψ̄(0)
A = 0 , (6.50)

which implies Ũ -dependent regularity conditions on the components of ψ̄A that do not

commute with X̃. In this way, even when considering a k = 1 fundamental center-vortex

with a given guiding-center, we showed that there are gauge field configurations that

belong to a continuum of physically inequivalent sectors of the Yang-Mills theory. These

are genuine nonabelian degrees of freedom that must be integrated in the YM ensemble.

6.5 Infinitesimal injectivity of ψ(A)

In this section we shall see that injectivity is related to the positivity of the operator

introduced in the identity of Eq. (6.27), and to the absence of nontrivial gauge transfor-

mations that leave invariant the auxiliary fields. Then, we show that the functional is

injective for typical configurations of the vortex-free sector. A particular example in the

one-vortex sector is also provided.

6.5.1 Conditions for injectivity

The equations of motion originated from the auxiliary action Σ = δS/δψ is a functional of

ψ and Aµ, S = S(ψ,Aµ), and it is invariant under an infinitesimal gauge transformation,

i.e. δΣ = δAΣ + δψΣ = 0, with

δA ≡
∫
δAaµ

δ

δAaµ
, δψ ≡

∫
δψaI

δ

δψaI
. (6.51)
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Thus, by acting with a variation δψ on S, we should get the corresponding solution to

another gauge field on the same orbit, AUµ . Then, we should study if

δA
δS

δψaI (x)
= −δψ

δS

δψaI (x)
= −

∫
dy

δ2S

δψaI (x)ψbJ(y)
f bmnξm(y)ψnJ (y) = 0 (6.52)

has nontrivial solutions. We may multiply this equation by fam
′n′ξm

′
(x)ψn

′
I (x) and inte-

grate over x to arrive at∫
dx dy

δ2S

δψaI (x)ψbJ(y)
vaI (x)vbJ(y) = 0 , , vaI (x) = famnξm(x)ψnI (x) = (ξ(x) ∧ ψI(x))|a .

(6.53)

Since ψaI is a minimum of S, all the eigenvalues of δ2S
δψaI (x)ψbJ (y)

must be positive, as was

already required for the identity in Eq. (6.27) to be well-defined. Therefore, nontrivial

solutions for (6.53) are given by

vaI = δψaI = 0 . (6.54)

We see that the lack of injectivity is associated to the existence of nontrivial gauge trans-

formations that leave ψI invariant. By using the definitions Ψ ≡ ψBA , X ≡ ξAMA,

MA|BC ≡ ifABC , we can rewrite condition (6.54) for our choice of auxiliary action (Eq.

(4.24)) as

ΨX = 0 . (6.55)

For nontrivial gauge transformations, the solutions to Eq. (6.55) are related to the exis-

tence of zero-modes for Ψ. Therefore, we conclude that a lack of infinitesimal injectivity

would be associated to configurations that satisfy det Ψ = 0.

6.5.2 Vortex-free sector

For the vortex-free sector, in the limit of large v, we expect that Ψ = vI + ε, where ε is

a small matrix. Defining b(ε) = det (vI + ε), we must show that b(ε) 6= 0 for small ε. By

expanding it, we may write

b(ε) ≈ b(0) +
∂g

∂εa
εa . (6.56)

Since b(0) = det vI = vN
2−1 is a finite (and large) value, we may conclude that the only

solution to Eq. (6.55) in this regime is X = 0. Hence, on the vortex-free sector, injectivity

is ensured.
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6.5.3 Sectors with center-vortices

The argument of the vortex-free sector cannot be extended to sectors labeled by vortices,

as Ψ will necessarily be far from the identity near their guiding-centers. We may, however,

consider a particular example for SU(2). The simplest case is the sector labeled by an

antisymmetric vortex with charge k=1.Then, as β =
√

2, we have S0 = eiϕ
√

2T1 , where ϕ is

the angle of cylindrical coordinates. For SU(2), the solution ψ(A), when A is a minimum

of the action as well, is known to be [114]

ψ1 = h1(ρ)T1 ,

ψα1 = h(ρ)S0Tα1S
−1
0 ,

ψᾱ1 = h(ρ)S0Tᾱ1S
−1
0 . (6.57)

In this case, there is only one root α1 = 1√
2
, satisfying α1 · β = 1, and the following

relations hold

S0Tα1S
−1
0 = cos(ϕ)Tα1 − sin(ϕ)Tᾱ1 ,

S0Tᾱ1S
−1
0 = cos(ϕ)Tα1 + sin(ϕ)Tᾱ1 . (6.58)

This implies the following Ψ matrix:h1(ρ) 0 0

0 h(ρ) cos(ϕ) −h(ρ) sin(ϕ)

0 h(ρ) cos(ϕ) h(ρ) sin(ϕ)

 . (6.59)

Now, the condition (6.55) implies 0 h1(ρ)ξ3 h1(ρ)ξ2

−ξ3h(ρ) cos(ϕ)− ξ2h(ρ) sin(ϕ) ξ1h(ρ) sin(ϕ) ξ1h(ρ) cos(ϕ)

−ξ3h(ρ) cos(ϕ) + ξ2h(ρ) sin(ϕ) −ξ1h(ρ) sin(ϕ) ξ1h(ρ) cos(ϕ)

 = 0 . (6.60)

For ρ 6= 0, this gives ξ1 = ξ2 = ξ3 = 0. The only problematic region is the plane ρ = 0,

which is a region of null measure in R4. The gauge transformations that would leave

Ψ invariant, thus leading to the lack of injectivity, should be different from the identity

only in this plane. Such transformations are not continuous, so they can be disregarded.

The functional ψ(A) is therefore infinitesimally injective in the one-vortex sector for this

particular example.
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6.6 A polar decomposition without infinitesimal copies

As discussed in Sec. 6.3, the injectivity of ψ(A) does not guarantee that the gauge-fixing

is free from copies. We still need to show that, for all sectors S0,

fS0(ψ(A)) = fS0(ψ(AU)) = 0→ U = I . (6.61)

We shall see that this condition is related to the absence of zero modes of the operator

introduced in the identity of Eq. (6.30). For instance, to analyze Eq. (6.61) in the

vortex-free sector, we must show that if

(qI ∧ TI)|γ = faIγqaI = 0 , (6.62)

then there is no gauge transformation with nontrivial parameters ξa, such that

faIγfanmqnI ξ
m = 0 . (6.63)

Of course these are just necessary conditions that a problematic tuple should satisfy, as qI

should also minimize the auxiliary action ((4.24)). These algebraic conditions (6.62),(6.63)

can also be written by using the generators in the adjoint representation:

Ad(TA)|BC ≡MA|BC = ifABC , (6.64)

and of the matrix

Q|Ia = qaI . (6.65)

Then, equations (6.62) and (6.63) become, respectively,

Tr(MbQ) = 0 , (6.66)

Tr(MγMbQ) ξγ = 0 . (6.67)

We may write these conditions as

JABξB = 0 , JAB ≡ Tr(MAMBQ) ,

and conclude that copies are associated with configurations having det J = 0. In fact,

in Ref. [61], the operator J is introduced in the Yang-Mills partition function by means

of the Fadeev-Popov procedure (see eq. (6.30)). It is therefore expected that copies are

related to zeros of this determinant. Let us start by analyzing the above equations for
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SU(2). In this case, fABC = εABC√
2

, and the matrices M and X thus read

M1 =

0 0 0

0 0 i√
2

0 − i√
2

0

 , M2 =

 0 0 − i√
2

0 0 0
i√
2

0 0

 , M3 =

 0 i√
2

0

− i√
2

0 0

0 0 0

 ,

(6.68)

X = ξAMA =


0 i√

2
ξ3 − i√

2
ξ2

− i√
2
ξ3 0 i√

2
ξ1

i√
2
ξ2 − i√

2
ξ1 0

 . (6.69)

The pure modulus condition (6.66) implies that Q is a symmetric matrix, and thus can

be parametrized as

Q =

Q11 Q12 Q13

Q12 Q22 Q23

Q13 Q23 Q33

 . (6.70)

The equation for copies (6.67) then reads

Jabξb = 0 , J =

Q22 +Q33 −Q12 −Q13

−Q12 Q11 +Q33 −Q23

−Q13 −Q23 Q11 +Q22

 , ξ =

ξ
1

ξ2

ξ3

 . (6.71)

In order for the system (6.71) to have a nontrivial solution, the determinant of C should

be 0 (this is a necessary condition). This yields

det J =(Q22 +Q33)(Q11 +Q33)(Q11 +Q22)− 2Q12Q23Q13 −Q2
12(Q11 +Q22)−Q2

23(Q22 +Q33)

−Q2
13(Q11 +Q33) = 0 . (6.72)

6.6.1 Study of copies in the vortex-free sector

In the vortex-free sector, for the general group SU(N), the gauge-fixed functional qI(A)

satisfies

qI(A) ∧ uI = 0 , (6.73)

qI(A)→ vTI , x→∞ . (6.74)
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If there is a copy, then there exists a gauge transformation U(x) such that

qUI (A) ∧ uI = 0 , (6.75)

U(x)→ I, x→∞ . (6.76)

For infinitesimal transformations, equation (6.76) reads

faIγfanmqnI ξ
m = 0 . (6.77)

In the vortex-free sector, the boundary condition of Eq. (6.74) will imply (on the limit of

large v) that the fields Q are close to v I everywhere, i.e. qaI = δaI + εaI . Eq. (6.77) thus

becomes

ξγ + faIγfanmξnεmI = 0 , (6.78)

ξm(δmγ + faIγfanmεnI ) = 0 . (6.79)

This yields a system of N2 − 1 linear equations in the variables ξa, with coefficients that

will depend on εaI , i.e.

M(ε)ξ = 0 , (6.80)

where M is the matrix of coefficients. For this system to have a nontrivial solution, a

necessary condition is

k(ε) ≡ detM(ε) = 0 . (6.81)

Since k(ε) is polynomial on the infinitesimal parameters εaI , we may approximate:

k(ε) ≈ k(0) +
∂k(ε)

∂εaI
εaI . (6.82)

As M(0) is simply the (N2 − 1) × (N2 − 1) identity matrix, we have k(0) = 1, a finite

value. Therefore, , in the large v-limit, there are no Gribov copies for the dominant

configurations in the vortex-free sector.

6.6.2 Study of copies in a general sector

In a general sector labeled by a defect S0, the functional ψI(A) satisfies

δSaux

δψI
= 0 . (6.83)
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For a general A in this sector, ψ will be of the form ψI = US0qIS
−1
0 U−1, with U regular.

The gauge-fixed Aµ will be associated to ζI ≡ S0qIS
−1
0 , and should satisfy

ζI(A) ∧ ηI = 0 , (6.84)

ηI ≡ vS0TIS
−1
0 , (6.85)

ζI(A)→ vS0TIS
−1
0 , x→∞ . (6.86)

If there is a copy, then there exists a gauge transformation U(x) such that

ζUI (A) ∧ ηI = (US0qIS
−1
0 U−1) ∧ S0TIS

−1
0 = 0 , (6.87)

U(x)→ I, x→∞ . (6.88)

We may write condition (6.87) in terms of qI :

(S−1
0 US0qI(S

−1
0 US0)−1) ∧ uI = 0 . (6.89)

In terms of the matrix Q defined in the previous section, this is

R(S−1
0 US0)Q = Q′ , (6.90)

with Q,Q′ being pure modulus matrices. By defining Ũ ≡ S−1
0 US0, we arrive at the

conditions that problematic matrices Q should satisfy:

R(Ũ)Q = Q′ , (6.91)

Ũ(x)→ I , x→∞ . (6.92)

An important fact that follows from the definition of Ũ is that if U is infinitesimal, so is Ũ .

This is so because S0 ∈ SU(N), so that it preserves the norm of the vector ξ. Specifically,

U = I + ξATA → Ũ = I + (ξ′)ATA ,

ξ′ = R(S0)ξ . (6.93)

The equation for infinitesimal copies is therefore the same in all sectors. However, in

a general sector there is no reason to believe that qI will be close to vTI everywhere, since

some of its components must go to zero at the guiding centers of the vortices. Gauge

transformations with parameters that are non-zero only in these regions surrounding the

guiding-centers of the vortices could, in principle, yield copies. However, as v grows, these

regions become increasingly small.

An example of configuration that could yield copies is when Aµ = a(ρ)∂µϕβ · T . As
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discussed in (6.57), for SU(2), the solution for ψ(A) is known. It is of the form

ψI = hIJS0TIS
−1
0 . (6.94)

This implies

qI = hIJTJ . (6.95)

The associated Q−matrix is symmetric, as required by the gauge fixing. For this to admit

infinitesimal copies, eq (6.72) should be satisfied at some finite region. The necessary

condition for the existence of copies is (eq. (6.72))

2h(h1 + h)2 = 0 . (6.96)

Since the profiles h1(ρ) and h(ρ) are positive for all ρ > 0 (see Ref. [114]), it is easy to see

that this condition is only satisfied at ρ = 0, which is a region in R4 of null measure. The

transformations that lead to copies are not continuous, as they should be nontrivial only

in this plane. Then, they should not be considered as associated to gauge transformations.

This configuration, therefore, does not admit Gribov copies.
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Chapter 7

Discussion

Ensembles of percolating center-vortex worldlines and worldsurfaces have been detected in

Monte Carlo simulations of SU(N) Yang-Mills theory in 3D and 4D Euclidean spacetime.

They are relevant degrees that at asymptotic distances provide a Wilson loop area law with

N -ality. A complete picture must also relate this law to the formation of a confining flux

tube between a quark and antiquark. Such an object, as well as the effect of its transverse

quantum fluctuations, have also been observed. This calls for a field model that supports

stable smooth topological objects, with the fields localized around a string in real space.

Indeed, relying on different field contents and SSB patterns, many models have been

explored in the literature. However, this was mainly done independently of the possible

underlying ensembles detected in the simulations. In (3 + 1)D, due to Derrick’s theorem,

besides a vacua manifold for scalars (M) with nontrivial first homotopy group, a gauge

field is required to stabilize an infinite1 stringlike soliton in R3-real space. In this regard,

in a recent work [56], it was satisfying to see that a 4D ensemble of percolating center-

vortex worldsurfaces with a sector of correlated monopole worldlines can be generated by

a dual gauge field with frustration, and a set of adjoint Higgs fields with Π1(M) = Z(N).

In this thesis, we analyzed a similar picture in (2+1)D. In 3D spacetime, center vortices

generate worldlines, so they became described by (fundamental) scalars with frustration,

rather than by a dual gauge field. In addition, a sector of correlated pointlike defects

(instantons) led to a discrete set of vacua (Π0(M) = Z(N)). Accordingly, in (2 + 1)D, an

infinite (or finite) stringlike soliton in R2-real space does not require a dynamical gauge

field to be stabilized, while the vacua for the scalars must be disconnected.

Initially, we defined a 3D measure to compute averages of center elements that depend

on the linking number between a Wilson loop and center-vortex worldlines. Modeling

these defects with tension and stiffness, we were able to show that, at large distances,

center-vortex loops are effectively described by fundamental Higgs fields. On the one

hand, this is related to the fact that elementary center vortices carry fundamental weights,

1This can also be extended to a finite object in the presence of appropriate external quark-antiquark
sources.
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on the other, this type of field is originated when taking into account non-Abelian d.o.f.

propagated on the worldlines. The possibility of N -line center-vortex matching is natural,

as the different weights of the fundamental representation add up to zero. This was

included by means of N flavors, which can be arranged as an N × N complex matrix

Φ. All possible combinations of loops and correlated lines were generated by an effective

theory with (local) SU(N) magnetic color and (global) SU(N) flavor symmetry. The

N -line matching is responsible for breaking the local U(N) = U(1) × SU(N) symmetry,

that would be present for loops, to SU(N). If this model were restricted to Abelian-

like configurations Φ = V IN , V ∈ C, we would make contact with the ‘t Hooft model,

where a U(1) symmetry is spontaneously broken to Z(N), due to presence of a term

V N + V̄ N . However, there is no dynamical basis for such a restriction, and at this point

our effective description possesses large quantum fluctuations. Next, we incorporated the

effect of chains formed by different center-vortex lines interpolated by pointlike defects.

For this aim, the variables used to represent chains were carefully written in terms of

dual holonomies, in analogy with the ones describing loops and N matched lines. The

immersion of all chain combinations into the ensemble led to an additional effective vertex.

In a percolating phase, where large center vortices are favored, a discrete set of vacua was

then obtained Φ = vei
2πn
N IN , n = 1, 2, ..., N , dynamically reducing the SU(N) magnetic

color symmetry to the required discrete Z(N). This led to the formation of a stable

domain wall sitting on the Wilson loop. Therefore, the center-element average not only

displays an asymptotic area law with N -ality but it is due to a localized field configuration,

which constitutes the interquark confining string. The potential also contains a subleading

universal Lüscher term associated with the first corrections to the saddle point: the

transverse string fluctuations. The asymptotic string tension for a general antisymmetric

representation of SU(N) was then derived by computing the domain wall for a large

Wilson loop. The solution is given by a kink that interpolates a pair of different vacua.

Furthermore, there is a region in parameter space where the wall is governed by the

Cartan sector. In this region, we approximately closed an ansatz to solve the equations of

motion and showed that the string tension satisfies the asymptotic Casimir law observed

in Monte Carlo simulations of 3D SU(N) Yang-Mills theory.

In 4D spacetime, we studied a dual YMH effective model with N2 − 1 adjoint Higgs

fields. In particular, we were able to develop an ansatz for a topologically stable static

vortex carrying charge in the k-antisymmetric representation. The model has four pa-

rameters: the gauge coupling constant g, plus the quadratic (µ2), cubic (κ), and quar-

tic (λ) couplings in the Higgs potential. We focused in the region µ2 < 2
9
κ2

λ
, where

the SU(N)color is spontaneously broken to Z(N) and the vacuum manifold is given by

Ad(SU(N)) = SU(N)/Z(N), thus implementing N -ality. By using the algebraic struc-

ture of the model, especially that concerning the weights and roots of SU(N), we showed

that a collective behavior takes place. For k = 1, the many adjoint scalar field equations
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are closed in terms of the profiles h, h1 and h2, while for k > 1 only an additional pro-

file h3 is required. Since this is valid for every value of N and k, it allows for a simple

numerical simulation. Furthermore, when µ2 = 0, we found an exact Casimir law and

nontrivial profiles coinciding with those of the Nielsen-Olesen vortex. This is compatible

with the observed string tension and in agreement with the chromoelectric field distribu-

tion obtained in the lattice. Finally, upon an appropriate rescaling, the dependence of

string tension ratios on the model parameters was reduced from four to two adimensional

quantities: µ̄2 and λ̄. This made it easier to numerically explore the parameter space

by using the relaxation method. We noticed that the scaling law depends in fact on the

particular combination µ̄2λ̄ and that it is very stable throughout the parameter space. In

particular, taking N = 8 as an example, we observed that it deviates by at most 4% from

the exact Casimir law at µ̄2 = 0. Our analysis encourages a thorough exploration of the

interplay between ensembles observed in pure Yang-Mills lattice simulations, the associ-

ated large distance effective field description, the implied asymptotic properties, and their

comparison with Monte Carlo calculations. Some of these connections were successfully

verified in the model analyzed here.

In addition, we studied the stability of the Casimir law. As the distance between the

quark and antiquark grows, to lower the total energy, the YMH model allows for the

formation of dynamical adjoint monopoles localized around the sources (valence gluons).

These objects cannot induce transitions that change the N -ality of the confining state,

so that the asymptotic confining string will be the one with the lowest energy among

those with the same N -ality. In this thesis, we were able to find a set of BPS equations

which provide center string solutions for the 4D YMH effective model. In this manner,

we obtained the energy of an infinite string solution to the BPS equations in a general

representation of SU(N). We showed that the energy corresponding to the k-A represen-

tation is the lowest among all the quark representations with N -ality k. In other words,

for widely separated quark/antiquark sources, the stable state is indeed given by the k-A

string.2 This together with the fact that the k-A string tension was shown to be pro-

portional to the quadratic Casimir, completes the proof that the effective YMH model

reproduces an asymptotic Casimir Law.

Finally, we studied the consistency of a recently proposed procedure to fix the gauge

on different sectors of the gauge-field configuration space {Aµ}. Unlike the usual proce-

dure, based on a unique gauge-fixing condition and a restriction to the first Gribov region

(to avoid infinitesimal copies), the proposal is based on the consideration of different local

conditions on the infinitely many sectors of a partition of {Aµ}. These sectors are labelled

by oriented and nonoriented center vortices, and the Yang-Mills path-integral measure in-

cludes a sum over partial contributions. This procedure is suited to detect the microscopic

features of center vortices in the continuum, which in global gauge-fixing conditions, like

2Of course, for the trivial N -ality k = N (mod N) this corresponds to the string breaking.
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the Landau gauge, are effectively seen signaling the breaking of the perturbative regime at

the Gribov horizon [146, 154]. Each partial contribution can be associated to a problem

written in a form closer to the usual one. Here, along the way, we clarified the relevance

of the regularity conditions to solve the auxiliary field equations and provide a physical

determination of center-vortex sectors. In principle, this is different from considering a

thin or thick center-vortex background plus quantum fluctuations. Instead, it is based on

path integrating over gauge and auxiliary fields with given singular phases and regularity

conditions. We provided explicit examples of thick center-vortex configurations belonging

to nontrivial sectors. We also discussed the existence of nonabelian degrees of freedom,

which are related to physically inequivalent labels with the same guiding centers. Finally,

we showed the absence of Gribov copies for typical configurations of the vortex-free sector

and for the simplest example in the sector labelled by a center vortex. This points to

the idea that a possibility to deal with Singer’s obstruction to a global gauge-fixing is to

approach Yang-Mills theories as an ensemble of center-vortex degrees.

In a future work, it would be interesting to establish the absence of copies for more

general configurations in oriented and nonoriented center-vortex sectors, and for more

general values of the gauge-fixing parameters. This, together with the all-orders per-

turbative renormalizability of these sectors [62], [63], is an important step towards the

establishment of the Yang-Mills ensemble in the continuum.

7.1 Final thoughts

In this thesis, we mainly studied field models that effectively describe ensembles formed

by oriented and nonoriented center vortices in 3d and 4d Euclidean spacetime. These

ensembles could capture the confinement properties of SU(N) pure Yang–Mills theory.

Different measures to compute center-element averages were discussed. In 3d and 4d,

they include percolating oriented center-vortex worldlines and worldsurfaces that gener-

ate emergent Goldstone modes, which correspond to compact scalar and gauge fields,

respectively. The models also have the natural matching rules of N center vortices, as

well as the nonoriented component where center-vortex worldlines (worldsurfaces) are

attached to lower-dimensional defects, i.e., instantons (monopole worldlines) in 3d (4d).

The effective field content and the SSB pattern of the corresponding models may lead

to the formation of a confining center string, represented by a domain wall (vortex) in

two-dimensional (three-dimensional) real space. The Lüscher term is originated as usual,

from the string-like transverse fluctuations of the flux tube. An asymptotic Casimir law

can also be accommodated. This asymptotic behavior was observed in 3d, while in 4d it

is among the possibilities.

More recently, the transverse distribution of the 4d YM energy-momentum tensor

Tµν and the field profiles have been analyzed at intermediate and nearly asymptotic dis-
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tances [9, 10, 11]. In [11], it was numerically shown that the Tµν tensor of the Abelian

Nielsen–Olesen (ANO) model cannot fit the SU(3) data at the vortex guiding center for

L = 0.46 fm (intermediate distance) and L = 0.92 fm (near asymptotic distance) at the

same time. In fact, in [11], it was shown that the components of the energy-momentum

tensor at the origin may not be accommodated for L = 0.46 fm. Then, on this basis, an

ANO effective model to describe the fundamental string was discarded. However, while it

is clear that an effective model for the confining flux tube should work at asymptotic dis-

tances, it is not that obvious that the same model could be extrapolated to intermediate

distances. By intermediate distances we mean those where the string tension scales with

the quadratic Casimir of the quark representation. In particular, this is the region where

adjoint quarks are still confined by a linear potential, before the breaking of the adjoint

string. On the other hand, in the asymptotic region, gluonic excitations around external

quarks in a given irreducible representation D(·) may be created, so as to produce an

asymptotic scaling law that only depends on the N -ality of D(·). As discussed in this

thesis, the effective field descriptions were derived by considering the (weighted) average

of center elements over oriented and nonoriented thin center vortices, which is expected

to be applicable at asymptotic distances. In other words, we wonder if it is meaningful to

discard possible effective models on the basis of the lack of adjustment to lattice data on

a wide range that includes the intermediate region, where these models are not expected

to fully capture the physics. Additionally, note that the known mechanism to explain

intermediate Casimir scaling is based on including center-vortex thickness. In turn, these

finite-size effects are not included in the ensemble definition that leads to our effective

model. Interestingly, while the lattice data rule out the ANO model at intermediate dis-

tances L = 0.46 fm, such profiles are still among the possibilities at the nearly asymptotic

distance L = 0.92 fm. Accordingly, the 4d SU(N) → Z(N) models we discussed in this

review have a point in parameter space where the infinite flux tube profiles Abelianize,

while keeping all the required N -ality properties. Additionally, the ideas presented in this

thesis imply that not only an asymptotic Casimir law should be observed, but also that

the transverse confining flux tube profiles for quarks in different representations should

be the same, up to the asymptotic scaling law. This is true for both 3d and 4d, with

the profiles being of the Sine-Gordon type in 3d. It would be interesting to test these

predictions with lattice simulations.
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Appendix A

Cartan decomposition of su(N)

Here, we summarize the main properties of the su(N) Lie algebra, as well as the conven-

tions used throughout the paper. For a more detailed discussion, see [94]. The construc-

tion of the Cartan-Weyl basis is initiated by defining a maximal commutative subspace,

whose generators Tq satisfy

[Tq, Tp] = 0 , (A.1)

where q, p = 1, . . . , N − 1. The remaining basis elements are the so called root vectors

Eα, which diagonalize the adjoint action of Tq

[Tq, Eα] = α|qEα . (A.2)

The eigenvalues α|q form an (N−1)-tuple α = (α|1, α|2, . . . , α|N−1) which is referred to as

root. Since the dimensions of su(N) and the Cartan subalgebra are, respectively, N2 − 1

and N − 1, there are N(N − 1) root vectors. A well known result is that if α is a root, so

is −α. Moreover, the associated root vectors are related by

E−α = E†α . (A.3)

We are considering the Cartan-Weyl basis {Tq, Eα} as orthonormal with respect to the

product

〈A,B〉 = Tr
(
Ad(A)Ad(B)

)
, (A.4)

where Ad(·) stands for the adjoint representation. In this case, we have

[Eα, E−α] =
N−1∑
q=1

αqTq = α · T . (A.5)
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In order to completely specify the commutation relations of root vectors, we need to

address two roots that do not sum up to zero. These relations turn out to be

[Eα, Eα′ ] = Nα,α′Eα+α′ , (A.6)

where α′ 6= −α and Nα,α′ vanishes when α + α′ is not a root. With the normalization

adopted, one can show that

N 2
α,α′ =

1

2N
(A.7)

whenever it does not vanish. These structure constant also have the property

Nα′,α = N−α,−α′ = −Nα,α′ . (A.8)

Moreover, if α, α′, α′′ are roots that add up to zero, then

Nα,α′ = Nα′′,α = Nα′,α′′ . (A.9)

The root vectors Eα, which live in the complexified Lie algebra, can be replaced by the

hermitian generators Tα and Tᾱ in Eq. (4.26). When using the latter as basis elements,

one must consider only positive roots α > 0 to avoid overcounting (for the notion of

positiveness, see App. B). In this basis, the following commutation relations hold

[Tq, Tα] = iα|qTᾱ , [Tq, Tᾱ] = −iα|qTα , [Tα, Tᾱ] = iα|qTq , (A.10)

[Tα, Tβ] =
i√
2

(
Nα,βTα+β +Nα,−βTα−β

)
, (A.11)

[Tα, Tβ̄] = − i√
2

(
Nα,βTα+β −Nα,−βTα−β

)
, (A.12)

[Tᾱ, Tβ̄] = − i√
2

(
Nα,βTα+β −Nα,−βTα−β

)
. (A.13)

However, these relations remain true even for negative roots, recalling that the extended

hermitian generators are not independent from their positive-root counterparts, and sat-

isfy

T−α = Tα , T−ᾱ = −Tᾱ . (A.14)
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Appendix B

Weights and representations of su(N)

A weight of an irreducible representation D of su(N) is an (N − 1)-tuple formed by the

eigenvalues of a simultaneous eigenvector of D(Tq), q = 1, . . . , N − 1. Each irreducible

representation, or irrep. for short, has its own set of weights. That corresponding to the

fundamental representation has N elements ω1, ω2, . . . , ωN constrained by

ω1 + ω2 + · · ·+ ωN = 0 . (B.1)

The weights of the adjoint representation are the roots, as they are eigenvalues for the

adjoint action [Tq, ·]. They can be expressed as the differences

α = ωi − ωj , (B.2)

for some i, j = 1, . . . , N , which is consistent with the previous counting of N(N−1) roots.

Some useful sums are

N∑
i=1

ωi|qωi|q =
1

2N
δqp ,

∑
α

α|qα|p = δqp . (B.3a)

A weight is said positive if its last nonvanishing component is positive. Consequently,

a weight is greater than another if their difference is positive. In particular, given the set

of weights of a given irrep., we can always determine the highest. For the fundamental

representation, we choose the ordering convention

ω1 > ω2 > · · · > ωN . (B.4)

Then, a root α = ωi − ωj is positive if and only if i < j.

Among the irreps. withN -ality k, we have the k-Symmetric (k-S) and k-Antisymmetric

(k-A), k = 1, . . . , N − 1. They are constructed from the totally symmetric and anti-

symmetric decomposition of k tensor products of the fundamental representation. The
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corresponding highest weights are given by1

λk-S = kω1 , λk-A =
k∑
i=1

ωi . (B.5)

It is important to emphasize that the highest weight of any irrep. can always be written

as a nonnegative integer linear combination of the k-Antisymmetric weights, which are

called fundamental weights (not to be confused with the weights of the fundamental

representation). The coefficients are called Dynkin numbers and there is a one-to-one

correspondence between irreps. and these combinations.

To end this quick review, the quadratic Casimir operator for a given representation D

is

C2(D) =
N2−1∑
A=1

D(TA)D(TA) . (B.6)

This operator commutes with every element of su(N) and thus it is proportional to the

identity matrix. The proportionality constant is known as the quadratic Casimir. For our

choice of normalization, the quadratic Casimir for the fundamental, adjoint, k-S and k-A

representations are, respectively,

N2 − 1

2N2
, 1 ,

k(N + k)(N − 1)

2N2
,
k(N − k)(N + 1)

2N2
. (B.7)

Finally, for any irrep. D, the quadratic Casimir can be expressed in the form

C2(D) = λD · (λD + 2δ)ID , (B.8)

where λD is the highest weight and δ is the Weyl vector, given by half the sum of the

positive roots.

1Notice that Λ1-S = Λ1-A = ω1.
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Appendix C

Petrov-Diakonov representation of

W4q

We note that the integral∫
dµ(g)dµ(g2)dµ(g′′)dµ(g′′′) 〈g, ν1|Γ1|g′, ν1〉〈g, ν2|Γ2|g′, ν2〉

× 〈g′′, νG′ |ΓG′|g′, νG′〉〈g′′, ν3|Γ3|g′′′, ν3〉〈g′′, ν4|Γ4|g′′′, ν4〉〈g, νG|ΓG|g′′′, νG〉 . (C.1)

is nonzero and proportional to W4q if and only if νG = νG′ , ν3 +ν4 +νG = ν1 +ν2 +νG = 0.

Here, we used the group coherent states [95, 88] |g, ν〉 = g|ν〉, with |ν〉 being weight

vectors of the fundamental representation, and the formula (the normalization of the

Haar measure is
∫
dµ(g) = 1)∫

dµ(g)gaa′gbb′gcc′ =
1

3!
εabcεa′b′c′ , g ∈ SU(3) . (C.2)

Then, a possible choice to accompany the holonomies {Γ1,Γ3}, {Γ2,Γ4}, {ΓG,ΓG′} in Eq.

(C.1) is given by ν1 = ν3 = ω1, ν2 = ν3 = ω2), νG = νG′ = ω3, respectively, where ω1,

ω2, ω3 are the three (ordered) fundamental weights of su(3). Next, for each factor in Eq.

(C.1), we can use the Petrov-Diakonov (PD) representation [89]

〈gf , ν|Γγ|gi, ν〉 ∝
∫

[dg(s)] ei
∫
dsTr((g−1Ag+ig−1∂sg)ν·T) , A =

dxµ
ds

Aµ , (C.3)

where Γγ is an holonomy, and the measure [dg(s)] integrates over paths g(s) defined on

γ (parametrized by x(s)), with initial and final conditions gi and gf , respectively. In

the exponent of the PD representation of W4q thus obtained, the six line integrals can

be replaced by five integrals along the loops γck, k = 1, . . . , 5, after extending [dg(s)] →
[dg̃(s)], which also integrates over group elements defined on the dotted lines. Indeed,

because of the weight distribution, the additional integrals along γL and γR are canceled
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because of the property ω1 + ω2 + ω3 = 0. A further extension of the paths in the group

to configurations Ũ(x) such that g̃(s) = Ũ(x(s)), and the Stokes’ theorem, finally lead to

W4q ∝
∫

[DŨ ]e
i
2

∫
d4xTr(Ũ−1Yµν Ũ Jµν) , Yµν(Ũ , g) = εµνρσDρ(L̃)(Aσ − L̃σ) , (C.4)

where L̃µ ≡ iŨ∂µŨ
−1 and Jµν is given by Eq. (5.58).
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Appendix D

Non-Abelian diffusion

Center vortices in 3 dimensions and monopoles in 4 dimensions are propagated along

worldlines in Euclidean spacetime. Then, the corresponding ensembles will naturally

involve the building block Q associated to a worldline with length L that starts at x0 with

orientation u0 and ends at x with final orientation u. This is given by

Q(x, u, x0, u0, L) =

∫
[dx(s)]x,ux0,u0

e−S(γ) D
(
Γγ[bµ]

)
, (D.1)

Γγ[bµ] = P{ei
∫
γ dxµbµ} , (D.2)

where S(γ) is a vortex effective action, and an interaction with a general non-Abelian

gauge field bµ was considered. We are interested in the specific form

S(γ) =

∫ L

0

ds

(
1

2κ
u̇µu̇µ + µ

)
, uµ(s) =

dxµ
ds

, (D.3)

which corresponds to tension µ and stiffness 1/κ. These objects were extensively studied

in [56, 81]. In what follows, we review the results obtained.

For the simplest center-vortex worldlines in 3d, D is the defining SU(N) represen-

tation, while for monopole worldlines in 4d, D corresponds to the adjoint. To derive a

diffusion equation for this object, the paths were discretized into M segments of length

∆L = L/M . In this case, the path ordering was obtained from

P{e−
∫ L
0 dsH(x(s),u(s))} = e−H(xM ,uM )∆L . . . e−H(x1,u1)∆L, (D.4)

where H(x, u) = −iD(uµbµ(x)). The relation between the building block QM associated

to a discretized path containing M segments of length ∆L and that associated with a

path of length L−∆L is given by:
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QM(x, u, x0, u0, L) =

∫
dnx′dn−1u′e−µ∆Lψ(u− u′)×

e−µ∆Le−H(x,u)∆Lδ(x− x′ − u∆L)QM−1(x′, x0, u
′, u0) , (D.5)

with

ψ(u− u′) = N e−
1

2κ
∆L
(
u−u′
∆L

)2

(D.6)

arising from the discretization of the stiffness term. It acts like an angular distribution in

velocity space, which tends to bring u′ close to u. Expanding Eq.(D.5) to first order in

∆L, and taking the limit ∆L→ 0, the diffusion equation(
∂L −

κσ

2
L̂2
u + µ+ uµ(∂µ − iD(bµ)

)
Q(x, u, x0, u0, L) = 0 , (D.7)

was obtained, to be solved with the initial condition

Q(x, u, x0, u0, 0) = δ(x− x0)δ(u− u0)ID . (D.8)

D is the dimension of the quark representation D and L̂2
u is the Laplacian on the

sphere Sn−1. The constant σ is given, in n spacetime dimensions, by

σ =

√
π

2n−3

Γ
(
n−2

2

)
Γ
(
n+1

2

)
Γ2
(
n−1

2

)
Γ
(
n−3

2

) (4Γ(n− 3)

Γ
(
n−3

2

) − Γ(n− 1)

Γ
(
n+1

2

) ) . (D.9)

For the cases considered in this thesis (n = 3, 4), σ = 1, 2/π, respectively. In the limit

of small stiffness, there is practically no correlation between u and u0, which allowed for a

consistent solution of these equations with only the lowest angular momenta components:

Q(x, u, x0, u0, L) ≈ Q0(x, x0, L) , ∂LQ0(x, x0, L) = −OQ0(x, x0, L) , (D.10)

O = − 2

(n− 1)σκn
(∂µ − iD(bµ))2 + µ , Q0(x, x0, 0) =

1

Ωn−1

δ(x− x0) , (D.11)

Ωn−1 being the solid angle of Sn−1. This implies,

Q(x, u, x0, u0, L) ≈ 〈x|e−LO|x0〉 . (D.12)

Then, in this limit, we also have∫ ∞
0

dL du du0

∫
[Dx]x,ux0,u0

e−S(γ) D(Γ[b]) =

∫ ∞
0

dL du du0Q(x, u, x0, u0, L)

≈ 〈x|O−1|x0〉 , OG(x, x0) = δ(x− x0) ID . (D.13)
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