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Abstract

We provide a comparative study between the Witten’s topological

quantum field theory (TQFT), which is based on the twist trans-

formation of the N = 2 super Yang-Mills (SYM) action, with the

Baulieu-Singer (BS) one, which, in turn, is based on the BRST gauge

fixing of a non-Abelian action composed of topological invariants for

four-manifolds. We analyze the on-shell character of Witten theory,

and confront it to the off-shell Baulieu-Singer one in the self-dual

Landau gauges. As it is well known in literature, both theories share

the same observables given by the Donaldson polynomials.

Studying the Ward identities of the Baulieu-Singer theory in the self-

dual Landau gauges, we first show that all two-point Green functions

are tree-level exact in this model. In particular, the gauge field prop-

agator vanishes to all orders as a consequence of the Ward identity

associated to the vector supersymmetry. We then generalize this re-

sult by proving that not only the two-point functions but all n-point

Green functions are tree-level exact, being this property protected

by the topological BRST cohomology. In a few words, we prove the

absence of radiative corrections in self-dual Landau gauges for the off-

shell topological gauge theory of Baulieu-Singer type. Besides that,

we demonstrate the existence of an extra non-linear bosonic symme-

try that relates the Faddeev-Popov ghost with the topological one



derived from the shift symmetry. From the quantum stability con-

dition, taking into account this new symmetry, we identify a kind of

renormalization ambiguity concerning the system of Z-factors in the

BS theory, and explain the origin of such an ambiguity by analyzing

the discrete symmetries of the classical action. We relate this ambi-

guity to the non-physical character of the β-function in the off-shell

model, as the coupling constant only appears in the trivial part of the

BRST cohomology.

The quantum properties of the self-dual Landau gauges were used to

prove that the BS β-function (βg) vanishes to all orders, a different

result from the twisted N = 2 SYM one, which is not zero (propor-

tional to g3) and receives contributions at one-loop. The Donaldson

polynomials, however, are reproduced by the Witten’s TQFT in the

weak coupling limit (g2 → 0) of the twisted N = 2 SYM, i.e., for

βg → 0, which shows that the conformal property of the self-dual

Landau gauges in the BS theory is in agreement with Witten’s TQFT

— an expected result as the BS and Witten theories possess the same

observables in this energy regime.

Finally we study the Gribov problem in topological Yang-Mills theo-

ries of BS type in the self-dual Landau gauges. We show that the in-

troduction of the usual Gribov horizon in ordinary Yang-Mills theory

is sufficient to eliminate the infinitesimal gauge copies in the topolog-

ical case, for the Fadeev-Popov and bosonic ghost sectors, preserving

the global degrees of freedom that characterize the dimension of the

instanton moduli space. After applying the no-pole condition, we

could prove that the gap equation forbids the introduction of an in-

frared massive Gribov parameter in the gauge field propagator. In



other words, the BRST symmetry structure and the conformal prop-

erty of the self-dual Landau gauges hide a mechanism that protects

the original topological properties of the BS model, in such a way that

the elimination of the gauge copies in the Feynman path integral does

not affect the infrared dynamics in the topological Yang-Mills theory.
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Chapter 1

Introduction

The whole extent of topological effects to the quantization of field theories is far

from being completely understood. A general method for the computation of am-

plitudes involving topologically inequivalent configurations, taking into account

nonperturbative aspects, and its quantum implications is, up to now, a great

challenge in Physics and Mathematics. The most famous case in Yang-Mills the-

ories must be undoubtedly the Pontryagin action in Euclidean four-dimensional

spacetime which represents the tunnelling amplitude between topologically in-

equivalent configurations with different winding numbers known as instantons

[1; 2]. These topological field configurations are present in the vacuum of Yang-

Mills theories such as the Quantum Chromodynamics (QCD) — the theory that

describes the strong interactions between quarks and gluons.

Another example, with a much more mathematical bias, is the computation of

topology-changing amplitudes in (2+1)-dimensional gravity [3]. In 2+1 dimen-

sions, gravity is a topological finite theory, and, in this paper, Witten showed

that it is possible to compute amplitudes associated to the topology of spacetime

itself if the cosmological constant is zero. In the 1980s, many concepts about

quantum field theory and topology were developed, as the concept of worm-

1



holes (originally, a theory for nontrivial spacetime topology that could explain

monopole-like singularities [4]), and its consequences to describe the behaviour of

the cosmological constant. At the time, some physicists related wormholes to the

vanishing of the cosmological constant [5; 6]. Hawking also speculated that quan-

tum fluctuations in spacetime topology at small scales may shift the cosmological

constant to zero [7; 8]. The presence of wormholes, however, was never detected.

Nowadays we know that the Universe is accelerating with a non-vanishing cos-

mological constant.. In quantum field theories, the topology generally affects the

theory observables at the quantum level, but not the classical equations of mo-

tion. It illustrates the difficulty in investigating topology in gravity as there is no

consistent theory — unitary and renormalizable — of four-dimensional quantum

gravity.

Despite the difficulty of studying topological effects in gravity, the connec-

tion between topology and Physics has become narrower. Today we are able to

say that both theories walk together. Approximately during the same period,

topological Abelian models were used to describe topological phases of electrons,

and to explain the Physics of superconductors. Just to illustrate the success of

topological models, J. M. Kosterlitz and D. J. Thouless, in 1972, identified a new

type of phase transition in two-dimensional systems in the presence of topological

defects [9; 10]. Their theory describes superconducting and superfluid films. In

1982, D. J. Thouless et al applied topology to explain the quantum Hall conduc-

tance of an electron gas in a two-dimensional periodic potential [11]. In 1983, D.

Haldane proposed a model for spin chains taking into account topological effects

based on a nonlinear field theory of large-spin antiferromagnets [12; 13]. All these

models were later observed in experiments1.

The success of topology in describing phases of matter should not seem sur-

1In 2016 D. J. Thouless was awarded with the Nobel prize due to his “theoretical discoveries
of topological phase transitions and topological phases of matter”.
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prising. We can find physical evidence of topological properties in well-known

experiments, such as the Aharonov-Bohm effect [14]. In this effect, it does not

matter the shape of the electric circuit around the (infinite) solenoid. The circuit

could be circular or square. The phase acquired by the electron that surrounds

the solenoid depends on the number of loops, but not on the path shape. The

magnetic field along the solenoid works as a singularity in the space, in such a way

the paths that could be continuously deformed into the other represent a class of

topologically equivalent configurations, i.e., that describe the same Physics. The

usual Feynman diagrams, for example, are composed of topologically inequiva-

lent one-dimensional paths. In the same way, it is impossible to continuously

deform one diagram into the other. The Feynman diagrams give a perturbative

tool to compute the probabilistic amplitudes of particle scatterings for the four

interactions in the Universe. It is not difficult to find topological properties in

the mathematical structure of physical theories that describes Nature with high

precision, and we must deal naturally with the occurrence of topological effects

in many branches of Physics.

Our aim is to study the quantum properties of non-Abelian topological field

theories. In this kind of theories the instantons play a crucial role. However, many

problems involving instantons remain unsolved. Some topological field theories

whose global observables are defined by instanton configurations are essentially

based on supersymmetry. We would like to investigate four-dimensional topolog-

ical gauge theories capable of producing the same global observables of super-

symmetric models, in particular of the Donaldson-Witten topological quantum

field theory, by employing the machinery of BRST (Becchi-Rouet-Stora-Tyutin)

quantization.

3



1.1 Motivation

1.1 Motivation

During the early eighties, Donaldson constructed a whole new class of topological

invariants as integrals of differential forms over the moduli space of instantons [15;

16; 17]. The Donaldson polynomials are of utmost importance in the classification

of four-manifolds as they keep track of the topologically inequivalent ways one

may cover a topological space with local charts. This created a new toolbox to

study the so-called “exotic” manifolds [18], a.k.a. manifolds with non-standard

differential structures.

The classification of four-manifolds is not only an abstract topic reserved for

mathematicians. The physics on exotic manifolds has also being investigated with

results ranging from particle physics to cosmology, [19; 20; 21; 22; 23]. In theses

works, topological structures showed to be capable of generating a cosmological

constant from small exotic R4, and introducing fermions into general relativity by

exotic smoothness structures. In the recent paper [21], the authors also applied

a topological approach based on exotic smoothness to predict neutrinos masses,

in very good agreement with experiments. They also used topology to speculate

about the origin of an asymmetry between neutrinos and anti-neutrinos.

Moreover topology-changing processes might play a relevant role in quantum

gravity and QCD, to name only these two examples. For instance, the knowledge

of topologically inequivalent four-manifolds might be fundamental to define the

physically inequivalent states in some quantum gravity models [24; 25], in which

the classical theory of general relativity is recovered for large scales. On the

other hand, the moduli space of instantons represents a huge degeneracy of the

QCD vacuum. Topology-changing processes among these vacua, a famous non-

perturbative effect, can explain the anomalous U(1) axial symmetry [26] and it is

related to the strong CP problem. Undoubtedly, the most famous solution to the

strong CP problem was proposed by Peccei and Quinn (PQ) in 1977 [27; 28]. The

4



1.1 Motivation

PQ model consists of an extended Standard Model with an extra UPQ(1) global

symmetry, which is constructed through the introduction of two Higgs doublets

— one that couples to up-type quarks, and the other to down-type ones. When

the electroweak symmetry is broken, together with the Z boson, an axion field

is produced [29], giving rise to a pseudoscalar field in the instanton sector of the

action, that depends on the vacuum expectation values of the Higgs fields. The

PQ mechanism solves the CP problem as parity is not violated anymore. Over

the years, this model has aroused the interest of many researchers, as axions are

appear to be effectively collisionless, i.e., the only significant long-range interac-

tions of axions are gravitational, providing a candidate for (cold) Dark Matter,

the missing mass of the Universe [30; 31; 32; 33; 34; 35; 36; 37].

The challenge of constructing a topological phase in quantum field theory

consists in how to built a mechanism to liberate the local degrees of freedom

from the global ones, and provide a physical interpretation of it. In [38], the

authors have demonstrated that inflation can arise from exotic smoothness. It

is a model for a topological phase transition, in which the geometric observables

are described in terms of topological invariants, calculated via path integral. The

sum over all metrics in the Feynman path integral, together with the background

dependence, represents an obstacle to finding a consistent quantum theory of

gravity, and the topological models appear to be good candidates to solve this

problem, since the observables in these models are constructed independently of

the metric choice, and because the general covariance is built before integrating

over the space of all metrics [39; 40].

All of these issues motivate our study of topological quantum field theories,

where we could analyze, for instance, the topological Yang-Mills symmetries and

their relation to the mass gap problem [41], following the Gribov procedure [42], in

an attempt to shed fome light on the quantum properties of a possible topological

5



1.2 Overview of the thesis

phase in non-Abelian field theories.

1.2 Overview of the thesis

In the Chapters 2, 3 and 4, we study topological aspects of non-Abelian field

theories based on the well-known literature results. In Chapter 5, we provide

an overview of the Gribov quantization. Our results concerning the quantum

analysis of topological Yang-Mills theories are in the Chapters 5, 6 and 8. The

thesis was organized as follows.

In Chapter 2, we introduce the basic elements of non-Abelian topological field

theory that will be widely used throughout the thesis, namely, the concept of topo-

logical invariants; the (anti-)self-dual field strength configurations — instantons

and anti-instantons configurations — as the classical minima of the Yang-Mills

action; the BPST instanton solution for SU(2) theories; the θ-vacuum term de-

scribed by the Pontryagin action, as the result of tunneling between degenerate

vacuum states with different winding numbers; etc. The study of the Pontrya-

gin action is based on the semi-classical approach for transition amplitudes with

imaginary time systems, that can be found in S. Coleman book, The Uses of

Instantons [43], here presented in a direct way. Such an approach is inspired

in the periodic structure of the instanton sector of QCD vacuum [44; 45]. In

the last section of the chapter we qualitatively discuss the solution of the UA(1)

problem in QCD theory, due to the presence of instantons in the vacuum, and

justify the necessity of further investigation concerning non-Abelian topological

configurations.

The Chapter 3 is dedicated to the study topological quantum field theories

(TQFT), i.e., quantum field theories that possesses a partition function1 which

1By abuse of language, throughout the thesis we say partition function instead of partition
functional.
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1.2 Overview of the thesis

is independent of the metric choice, therefore having only global observables,

described by topological invariants that characterize the target manifold [40].

We present the definition of Schwarz and Witten type topological models, and

how the observables are formally defined for both theories. Then we study the

relativistic Witten’s TQFT which is obtained through the twist transformation of

the N = 2 super Yang-Mills theory in the Wess-Zumino gauge. We demonstrate

how the observables given by the Donaldson polynomials are obtained in the

weak coupling limit of Witten theory, following the original Witten paper [46].

We largely discuss the on-shell character of Witten’s TQFT, and, qualitatively,

its perturbative exact β-function, which only receives one-loop contributions, as

can be demonstrated via algebraic analysis [47].

In Chapter 4, we start the study of the Baulieu-Singer approach [48], which

consists of an anomaly-free Schwarz type TQFT, built form the BRST gauge-

fixing of an action composed of topological invariants, in particular, the Pon-

tryagin action. Summarizing, we discuss the off-shell character of Baulieu-Singer

theory, described by topological BRST transformations that define a field space

with trivial cohomology; we present a geometric interpretation of such a BRST

quantization (which possesses a different nature of the BRST construction of

Witten’s TQFT, performed by Brooks et al. [49], as we discuss in details in this

chapter) in an “extended” space; and relate its observables with the Witten ones

(both possesses the same classical observables, given by the Donaldson polyno-

mials [50; 51]), in terms of the equivariant cohomology, and the nth Chern class

by which the observables are defined with respect to the universal curvature of

this extended space [52]. Finally, by using arguments from the BRST cohomol-

ogy, we compare the Baulieu-Singer and twisted N = 2 SYM theories, and show

that, despite sharing the same observables (in the weak coupling limit of Witten

theory), the quantum properties of each theory are not necessarily the same (for

7
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every energy regime).

We start the study of the quantum properties of the off-shell Baulieu-Singer

theory in Chapter 5, where we describe the Ward identities of the model in self-

dual Landau gauges, with the introduction of a new non-linear bosonic symmetry

that relates the Faddeev-Popov ghost, ca(x), with the topological one, ψaµ(x),

derived from the topological shift symmetry. With this new Ward identity, we

prove, by employing BRST algebraic techniques, that the theory is renormalizable

to all orders in perturbation theory with only one independent renormalization

parameter1. We then analyze the consequences of the Ward identities to the two-

point functions, and conclude that the propagators of the theory are tree-level

exact, as a consequence of the vector supersymmetry present in Landau gauges

[53]. In fact, all two-point are tree-level exact, being this result associated to the

fact that, in this gauge choice, the gauge field propagator vanishes to all orders

in perturbation theory — all of theses results were published in [54].

In Chapter 6 we study the renormalizability of the model in generalized classes

of gauges, where we verify the presence of a renormalization ambiguity concern-

ing the system of Z-factors obtained from the quantum stability condition. We

interpret this ambiguity as a consequence of the absence of certain discrete sym-

metries, and due to the non-physical character of the gauge field propagator in

the Baulieu-Singer approach, see [55]. This ambiguity is transferred to the renor-

malization of the coupling constant. In self-dual Landau gauges, by analyzing the

Feynman diagrams and the vertex structure, we prove that the BS theory does

not receive radiative corrections, i.e., that all n-point Green functions are tree-

level exact, due to the BRST cohomology and the impossibility of closing loops

with a vanishing gauge field propagator [56]. From this result, we analyze the

1The renormalizability of such theories is a well-known result in literature, see for instance
[53]. With the new Ward identity, we were able to reduce the independent renormalization
parameters from four to one.
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non-physical character of the β-function in off-shell topological Yang-Mills theo-

ries, and conclude that the BS theory in the Landau gauges possesses a vanishing

β-function.

In Chapter 7, we provide an overview of the Gribov problem in Yang-Mills

theories [42]. We discuss the Faddeev-Popov quantization [57]; the semi-classical

method developed by Gribov to eliminate the infinitesimal gauge copies; how

the physical content of the Feynman path integral is preserved inside the Gribov

region; the non-perturbative character of the Gribov procedure, which only affects

the infrared dynamics, by generating an infrared massive parameter in the gluon

propagator; the Zwanziger generalization of Gribov horizon to all orders [58]; and

the physical character of the massive Gribov parameter, that does not belong to

trivial part of the BRST cohomology [59]. We finish the chapter with a discussion

about the Fundamental Modular Region [60]. In this chapter we also argue that

we do not have any physical motivation to introduce condensates, cf. [59], in the

topological Yang-Mills case, as in the presence of such condensates the results of

the next chapter would be the same.

Finally, Chapter 8 is dedicated to the study of Gribov copies in topological

Yang-Mills theories of Baulieu-Singer type, worked out in [61]. We first prove the

equivalence between the Fadeev-Popov gauge-fixing procedure and the topological

BRST quantization in self-dual Landau gauges. Then we obtain the copy equa-

tions in this gauge choice, and we conclude that the infinitesimal Gribov copies

can be eliminated trough the introduction of the usual Gribov horizon. We com-

pute the no-pole condition at one-loop order for the Faddeev-Popov and bosonic

sectors, and prove the triviality of the gap equation, in other words, that the

symmetry structure of the topological Yang-Mills theory forbids the introduction

of an infrared massive parameter of Gribov type in the gauge field propagator.

After obtaining the one-loop result, we extended it to all orders, as a consequence

9



1.2 Overview of the thesis

of the absence of radiative corrections in the presence of the Gribov-Zwanziger

horizon. We finalize the chapter with a discussion about the preservation of the

original BRST-cohomological properties of the off-shell topological Yang-Mills

theory. Chapter 9 contains our conclusions and perspectives.
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Chapter 2

Non-Abelian field theory and

topology

As mentioned in the overview of the thesis, this chapter will be used to introduce

the basic elements and principles of non-Abelian topological theories that will

appear throughout the thesis. In the the last section, we provide a qualitative

analysis of the solution of the UA(1) problem in strong interactions, that indicates

the necessity of further investigation concerning topological effects in non-Abelian

theories.

2.1 The Yang-Mills vacuum: Instantons and the

θ-vacuum in Quantum Chromodynamics

For a long time, the vacuum was treated in a secondary way as a state of little

importance to the physical phenomenon. Almost unanimously, the physicists be-

lieved that only variations with respect to the vacuum energy (the lowest energy)

could be experimentally observed. Only in 1998, Steve Lamoreaux, at the Uni-

versity of Washington, proved the unexpected [62]. He verified experimentally,
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using a system of two plates (a curved plate and a flat plate), the intriguing

Casimir effect, proposed by Hendrik Casimir in 1948 [63]. Essentially he proved

the Casimir force, which depends on the space between the plates in a closed box

without air or source of heat. Following the Casimir explanation, the force is due

to the residual energy of the empty space: the vacuum.

The Casimir force equals the electrical attraction holding an electron in a

hydrogen atom. It’s a tiny force, but it could directly affect the particle world.

In Quantum Electrodynamics, the source of such a residual energy is interpreted

as a soup of virtual photons1. In agreement with the Heisenberg’s uncertainty

principle, these vacuum fluctuations must prevent a particle from reaching the

absolute rest. There is no perfect analogue to the Casimir experiment in QCD,

but the Casimir effect has elucidated that the vacuum, which could have peculiar

symmetry properties, represents a state of great physical significance in quantum

field theory, that could explain the existence (or absence) of certain particles in

Nature. In Yang-Mills theories, the vacuum, beyond other possible fluctuations,

is filled by nontrivial topological field configurations called instantons, that can

directly affect the quantum behaviour of the theory.

2.1.1 Classical minima of the Yang-Mills action

In this section, we would like to discuss the physical condition in which the Yang-

Mills action must be finite over all space, and how this condition naturally leads

to topological nontrivial vacuum solutions. Differently of Abelian theories like

QED, which possesses U(1) symmetry — being the gauge fields numbers —, in

non-Abelian theories the G-valued gauge fields are matrices given by

Aµ = AaµT
a , (2.1)

1Photons that are created and subsequently annihilated at the quantum level.
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where Aaµ are the components of the gauge field, and the matrices T a are the

generators of the Lie algebra of the group G, which obey

[
T a, T b

]
= fabcT c , (2.2)

where fabc are the structure constants characteristic of the group. (If all fabc are

zero, the group is Abelian. Otherwise, non-Abelian.) For a theory with SU(N)

symmetry, a = {1, · · · , N2 − 1}, and fabc is completely antisymmetric, defined

by

S†S = 1 and detS = 1 , (2.3)

where S = eiω
aTa , being ωa the G-valued parameters. The covariant derivative,

Dµ = ∂µ − igAµ , (2.4)

must obey

(DµΨ)′ = SDµΨ , (2.5)

where Ψ is a field in the fundamental representation of the group, which trans-

forms as Ψ′ = SΨ, such that S ∈ G. The equations (2.4) and (2.5) define the

gauge transformation of the gauge field as1

A′µ = S−1AµS + S−1∂µS , (2.6)

(we are using the redefinition Aµ → i
g
Aµ, where g is the coupling constant). The

curvature Fµν = [Dµ, Dν ], also known as field strength, takes the form

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] . (2.7)

1In Abelian theories like QED, G is the U(1) group, S†S = 1, where S are only phases
(numbers) given by eiα, and we naturally get A′µ = Aµ − ∂µα.
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From (2.5), its is easy to see that D′µ = SDµS
−1, consequently, the gauge trans-

formation of the field strength is F ′µν = [D′µ, D
′
ν ] = SFµνS

−1. In four dimensions,

the Lagrangian must have mass dimension equal to four. Hence the respective

non-Abelian action, invariant under Lorentz and gauge transformations, takes

the form

SE(A) =
1

2g2

∫
d4x tr (FµνFµν) . (2.8)

The trace appears to compensate the gauge transformation of Fµν , such that

tr
(
F ′µνF

′
µν

)
= tr (SFµνFµνS

−1) = tr (FµνFµν), using the cyclic property of the

trace. The action SE is the well-known Yang-Mills action in four-dimensional

Euclidean spacetime, which could be thought as a theory in imaginary time,

in other words, in Minkowski space after the Wick rotation x0 → ix0. (Most

calculations of scattering amplitudes in quantum field theory are calculated after

a Wick rotation.)

The physical requirement is that the action must vanish at infinity, in such a

way that SE must be finite. This boundary condition reads

lim
|x|→∞

Fµν = 0 , (2.9)

in other words, that the field strength must vanishes at infinity. Normally we

take this to mean Aµ(x) = 0 at infinity, but this is too much restrictive. The

condition (2.9) only requires that

lim
|x|→∞

Aµ(x) = S−1∂µS , (2.10)

which means that the gauge field is a pure gauge in the boundary (one can easily

prove that Fµν(S
−1∂µS) = 0, using (2.3) and (2.7)). In the SU(2) theory, eq.

(2.10) represents a S3 → S3 mapping: a mapping from the three-sphere of space-
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time at infinity into the SU(2) space which is also a three-sphere. To understand

the latter statement, we must recall that the SU(2) manifold is topologically

equivalent to a three-sphere S3. For S ∈ SU(2), we have S = eiω
aσa , being σa,

for a = {1, 2, 3}, the three Pauli matrices. We can rewrite S, using the Pauli

matrices identities, as

S = x0 + xiσ
i , (2.11)

where x0 and the vector components xi are real. As S satisfies S†S = 1, we

obtain x2
0 + x2

i = 1, which is exactly the equation of a sphere with radius one in

four-dimensional Euclidean space. The S3 → S3 mapping consists of a mapping

between the points of the S3 in the boundary of spacetime into the elements of

the SU(2) group, since if S ∈ SU(2), S−1∂µS also belongs to the algebra su(2)1.

This kind of mappings characterizes the winding number. Before studying the

four-dimensional S3 → S3 mapping, let us analyze the one-dimensional case.

The S1 → S1 mapping. We call an homotopy between two maps, f0(x) and

f1(x), a continuous function F (x, t), t ∈ [0, 1], which continuously deforms f0

into f1, i.e., F (x, 0) = f0(x) and F (x, 1) = f1(x). (In one dimension, the maps

are paths.) If such F (x, t) exists, we say that f0 and f1 are homotopic, in other

words, f0 and f1 belong to the same homotopic class, which means that they are

topologically equivalent. In the S1 → S1 mapping, we start with a unit circle

labelled by an angle θ, where the angles θ and θ + 2π are identified. This circle

could be expressed by the complex number z = eiα. We can read this mapping

as {θ} → {eiα}. The continuous functions

f
(n)
i (θ) = exp [i(nθ + ωi)] (2.12)

1These interpretation can be generalized to others non-Abelian groups. The SU(2) group
is only simpler and illustrative. Non-trivial configurations in SU(N) are constructed through
maps embedded into a suitable SU(2) subgroup, that retains their winding numbers in higher
rank gauge groups. For the SU(N) generalization, see for instance [64; 65].
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naturally form a homotopic class for different values of ωi, being n integer numbers

accordingly to the identification between θ and θ+2π, i.e., f(θ) = f(θ+2π) which

yields ei2πn = 1. As we can see, there is a homotopy described by

F (θ, t) = exp{i[nθ + (1− t)ωi + tωj]}, t ∈ [0, 1] , (2.13)

which continuously deforms f
(n)
i into f

(n)
j . The integers n, also known as the

winding number or Pontryagin index, denotes the number of times we walk around

a unit circle, which maps f
(n)
i into the same point of f

(n)
j . The first group of

homotopy1 (Π1) of a S1 sphere is then the integers: Π1 (S1) = Z, characterized

by n = {0,±1,±2, · · · }, where the “+” sign” means clockwise loops, and the “−”

sign, counterclockwise loops. The winding number n can be written as

n =

∫ 2π

0

dθ

2π

[
−i
f(θ)

df(θ)

dθ

]
. (2.14)

For the winding number n = 1, we have

f (1)(θ) = eiθ . (2.15)

The mappings [f (1)(θ)]k will have winding number k. In Cartesian coordinates

we can write an unit circle as

f(x, y) = x+ iy with x2 + y2 = 1 . (2.16)

Considering the identification between the end-points −∞ and +∞, i.e, f(x =

−∞) = f(x = +∞), we can generalize the domain from an unit circle to the

1In topology, a mapping (or map) is a continuous function. A homotopy is a continuous path
between maps. In one dimension, the Π1 maps are closed paths. The first group of homotopy
counts the topologically inequivalent closed paths which can be mapped into a S1 sphere (or a
circle).
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whole real line −∞ < x < +∞. The both are topologically equivalent. Thus, in

Cartesian coordinates the winding number is expressed by

n =

∫ +∞

−∞

dx

2π

[
−i
f(x)

df(x)

dx

]
. (2.17)

The corresponding winding number n = 1 in one dimension, for example, could

be expressed by

f1(x) = exp{ iπx

(x2 + λ2)2
} , (2.18)

where λ is an arbitrary parameter called instanton size.

In the four-dimensional case, the domain is the three-dimensional S3 sphere

with all points identified at infinity. The natural generalization of (2.12) and

(2.16) in S1 → S1 to S3 → S3 mappings is

f(x0, xi) = x0 + ixi · σi with x2
0 + x2

i = 1 . (2.19)

It can be shown that the generalization of the winding number as a volume

integral takes the form

n = − 1

24π2

∫
d3x tr{εijk[f−1(x)∂if(x)][f−1(x)∂jf(x)][f−1(x)∂kf(x)]} . (2.20)

Looking at equation (2.17), the expression above reveals three components with

a similar form, embed in a general topological structure. It counts the times

the group wraps itself around the three-sphere S3, such that the third group

of homotopy1 (Π3) of S3 is also the integers: Π3(S3) = Z. The sign of n is

determined by the sense we twisted it around S3, like a plastic bag around a

four-dimensional ball (that cannot be visualized). The winding number n = 1 for

1While the mapps of Π1 are closed paths, for Π3 the mapps are closed four-dimensional
surfaces.
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(2.20) is obtained with

f (1)(x) = exp{ iπxiσ
i

(x2 + λ2)
1
2

} . (2.21)

Looking at (2.16), (2.18) and (2.18), this expression is the natural 4D generaliza-

tion. (For a detailed study about the winding number generalization in 4D, see

[43].)

Equations (2.19) and (2.20) contain exactly the same structure of the Yang-

Mills vacuum, taking into account the physical condition of the gauge field as a

pure gauge at infinity (2.10). To see that, we must first determine the classical

minima of the Yang-Mills action. To this aim we must remember that the winding

number can be expressed in terms of the gauge field. The volume integral

Sinst = Tr

∫
d4xFµνF̃µν , (2.22)

where F̃ = 1
2
εµναβFαβ is the dual of the field strength, can be written as a total

derivative of the Chern-Simons (unobservable) gauge dependent current,

Kµ = 4εµναβTr [Aν∂αAβ +
2

3
AνAαAβ] , (2.23)

expressly,

Tr

∫
d4xFµνF̃µν =

1

2

∫
d4x ∂µKµ =

1

2

∫
S3
∞

d3SµKµ , (2.24)

where we applied the Stokes theorem, being the surface integral over S3 at infinity.

In this region the gauge field is given by the pure gauge (2.10), hence, using
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S†S = 1, we obtain at S3
∞

Kµ =
4

3
εµναβTr[(S−1∂νS)(S−1∂αS)(S−1∂βS)] . (2.25)

The eq. (2.24) reveals that the Pontryagin action, TrFµνF̃µν , is a Chern-Simons

(CS) surface term in the 4D boundary. The Chern-Simons current Kµ establishes

Figure 2.1: 4D Pontryagin is a 3D Chern-Simons in the boundary.

the conservation of a topological charge. This conservation law (different of the

Noether’s theorem concept) means that there is a conserved quantity whose char-

acterization is the impossibility of classical transitions between field configuration

with different winding numbers. These configurations are topologically inequiv-

alent, and cannot be continuously deformed between each other. The proof is

achieved by taking an infinitesimal transformation of the Lie group S = eω
aTa ,

i.e.,

δ̃S = Sδ̃ωaT a ≡ Sδ̃T . (2.26)

Under this transformation, δ̃(S∂µS
−1) = −S∂µδ̃TS−1, therefore, using ∂µS

−1S =

−S−1∂µS, we find

δ̃Sinst = 0 , (2.27)

due to the antisymmetric property of the Levi-Civita tensor, which shows that the

Pontryagin action represents topological invariants, i.e., invariant quantities under
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continuous deformations, thus defining a conserved topological charge accordingly

to each winding number. For the winding number in S3 → S3 mappings (2.20),

identifying f(x0, xi) with S(x0, xi), and replacing (2.25) into (2.24), we get

∫
d4xTrFµνF̃µν = 16π2n . (2.28)

This is the well-known relation which make it possible to write the topological

winding number in terms of the non-Abelian gauge fields. The positivity condition

in Euclidean space yields

Tr

∫
d4x (Fµν + F̃µν)

2 ≥ 0 . (2.29)

By using (Fµν ± F̃µν)2 = 2(FµνFµν ± FmuνF̃µν), and eq. (2.28), we automatically

obtain the inequality

Tr

∫
d4xFµνFµν ≥ |Tr

∫
d4xFµνF̃µν | = 16π2|n| , (2.30)

The equation above shows that the four-dimensional Yang-Mills action in a topo-

logical sector with winding number n is bounded by

SE(A) ≥ 8π2|n|
g2

. (2.31)

The minimization of SE occurs when this equation reaches the equality. From

(2.29) we conclude that the instanton configurations

Fµν = ±F̃µν (2.32)

represent the classical minima of SE. As we know the Feynman path integral

is dominated by the classical configuration. The Yang-Mills path integral can
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be seen as quantum perturbations around instantons. For the “+” sign, the

field which obeys (2.32) is called instanton, for the “−” sign, anti-instanton. The

Bogomoln’yi argument states that the (anti-)self-dual configuration must solve the

full equations of motion since it minimizes the action in some topological sector.

In the case of instantons this is immediately satisfied, as DµFµν = Dµ(±F̃µν) = 0

via Bianchi identity. In practice nontrivial topological instanton solutions define

a lowest level, a kind of a energy source that cannot be “switched off” in the

presence of instantons, like the vacuum fluctuation of virtual photons in QED1.

The physical interpretation in Yang-Mills theory is that the vacuum is degenerate,

filled by topological field configurations, in such a way that the tunneling between

vacuum states with different winding numbers, intermediated by instantons, will

affect the system at the quantum level.

The BPST instanton. In 1975, A. Belavin, A. Polyakov, A. Schwartz, and

Y. Tyupkin (BPST) found a classical instanton solution with winding number 1,

which obeys the equations of motion of SU(2) Yang-Mills theory in Euclidean

spacetime [1], namely,

Aaµ(x) =
2

g

ζaµν(x−X)ν

(x−X)2 + λ2
, (2.33)

wherein X is the instanton center (an arbitrary parameter); λ (another parame-

ter), the instanton size; and ζaµν , the anti-self-dual ’t Hooft matrices,

ζ1 =

0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0

 , ζ2 =

0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0

 , ζ3 =

 0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0

 . (2.34)

1The comparison is not completely satisfactory, as the instantons are configurations of
purely topological origin. However it is well-known that instantons are responsible for producing
short-range attractive forces at the quantum level in strong interactions [66], basically between
quarks. See for instance [67], about the attractive quantum force due to instantons acting on
glueballs.
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Due to the anti-self-duality of ζa, this field automatically satisfies the self-dual

configuration in (2.32), in other words, it is a n = 1 solution that minimizes the

Yang-Mills action. This solution is called regular instanton, and obeys the Landau

gauge, ∂µA
a
µ = 0. The BPST instanton (2.33) will be of great importance for the

thesis, in particular for the analysis of Gribov copies in topological quantum field

theories.

Large ρ2 solutions. The SU(2) gauge transformation for winding number

n = 1 has the form

S(x) =
x0 + ixiσ

i

ρ
, where ρ2 = x2

0 + x2
i . (2.35)

For large ρ2, it gives rise to the gauge field

Ainstµ (x) =
ρ2

ρ2 + λ2
S−1∂µS . (2.36)

As we can see, for ρ � λ, Aµ → S−1∂µS, showing that the instanton field

(2.36) naturally reduces to the pure gauge configuration that satisfies the physical

condition (2.10). Writing it in components,

Ainst0 (x) =
−ixiσi

ρ2 + λ2
, Ainsti (x) =

−i[x0σi + (−→σ ×−→x )i]

ρ2 + λ2
. (2.37)

One can check that (2.36) yields the finite Euclidean action

S
(1)
E (Ainst) =

8π2

g2
, (2.38)

i.e, it provides an explicit n = 1 solution for large ρ2, that also minimizes SE. This

kind of instanton solution was the starting point for understanding the Yang-Mills

quantum vacuum structure as a tunnelling event.
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2.1.2 Tunneling between vacuum sates

When we include the condition (2.10) into the path integral, the non-Abelian

gauge theory shows up a nontrivial vacuum structure, which corresponds to a

superposition of vacuum states with different winding numbers. The instanton

configurations can connect initial and final vacuum states, through vacuum-to-

vacuum tunneling transitions. The first study in this direction was done by G.

‘t Hooft in 1976 [2], followed by the seminal studies on the periodic structure of

Yang-Mills vacuum in the same year [44; 45].

2D system. In order to construct a two-dimensional analogy, let us analyze

the system with only one spatial coordinate. In non-relativistic quantum me-

chanics, there is no classical transition between the two vacuum states, located

in q0 and −q0 (see Fig. 1.2 (a) below), for a Higgs potential V (q) = (q − q0)2,

being q ≡ q(t) some generalized coordinate. The energy of the system is

E =
1

2

(
dq

dt

)2

+ V (q) , (2.39)

such that the quantum-tunnelling is the only possible transition between the

states |q0〉 and | − q0〉.

Figure 2.2: (a) Higgs potential; (b) the same potential in imaginary time.
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In general, the ground (vacuum) state is given by the superposition

|0〉 =
1√
2

(|q0〉+ | − q0〉) . (2.40)

The tunneling amplitude can be calculated in the corresponding time imaginary

system, t→ iτ , as it shows a classical particle trajectory for a particle moving in

the potential −V (q) (see Fig. 1.2 (b)), with the energy

−E =
1

2

(
dq

dt

)2

− V (q) . (2.41)

For the vacuum state, E = 0, we immediately get the solution for the trajectory

in the imaginary time as

q(τ) = q0 tanh
(

2
1
2 q0τ

)
. (2.42)

Consequently, the corresponding action can be calculated, and gives a finite value,

namely,

Sτ =

∫ +∞

−∞
dτ{1

2

(
dq

dt

)2

− [−V (q)]} =
4

3

√
2q3

0 . (2.43)

In the Feynman path-integral formalism, the transition amplitude in Euclidean

space (imaginary time) is computed via

T = 〈qf |e−
Hτ
~ |qi〉 =

∫
Dq e

−SE
~ , (2.44)

where SE is the Euclidean action, and Dq is the integration measure which denotes

a sum over all paths between |qi〉 and |qf〉. The integral (2.44), for an expansion

in powers of ~, is dominated by the path for which SE is stationary. Naturally, in

the semi-classical approximation e
−SE

~ ∼ e
−Sτ
~ [1 + ϕ(~)], (an explicit calculation
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can be found in [43])

T ∼ e−
4
3

√
2q3

0 , (2.45)

in which the transition amplitude is clearly dominated by the vacuum-to-vacuum

quantum tunneling.

4D Yang-Mills quantum vacuum. Going back to the non-Abelian four-

dimensional case, we shall see that the amplitude transition between degenerate

vacuum states is dominated by |0, n〉 → |0, n + 1〉 transitions, being |0, k〉 the

multiple vacuum states with different winding numbers k. (Hereafter, we will

denote these vacuum states only by |k〉.)

Imposing the physical condition in a four-dimensional cylinder, we say that

Fµν(t,
−→x ) vanishes in the region

t < −T
2
, t >

T

2
, and |−→x | > L , (2.46)

for T and L very large. It means that outside the cylinder with length T and

radius L, the gauge field behaves as a pure gauge. Henceforth, in the Feynman

path integral, one sums over all field configurations including the vacuum states

which are recognized as the ones outside the cylinder. In the gauge choice

A0(x) = 0 , (2.47)

only the space-like segments contribute. Moreover the gauge transformations

S(x) must be time independent, since, under a gauge transformation in the gauge

(2.47), A′(x) = S−1∂0S = 0, i.e., ∂0S(x) = 0. Thus the vacuum is described by

the time-independent field

Ai(
−→x ) = S(−→x )−1∂iS(−→x ) . (2.48)
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By choosing S(−→x ) = 1 at initial time t = T
2
, we have

Ai(
−→x ) = 0 for t =

T

2
. (2.49)

The vacuum condition Fµν = 0 for the equation above implies that F0i = ∂0Ai =

0, where we use the gauge (2.47). From it, we conlcude that Ai = 0 throughout

the vacuum (in the region outside the cylinder). Consequently, the vacuum at

T
2

is identified. For large T , it corresponds to mappings from the SU(2) gauge

manifold into the three-dimensional space with infinities identified, in other words,

the S3 → S3 mapping1. As we saw in the previous section, the trivial solution

with winding number n = 0 (2.49) is not the only one that satisfies the physical

condition, in fact this kind of solution can be divided into inequivalent homotopic

classes. For the same Ai(
−→x ) we can construct the topological nontrivial solution

(see eq. (2.21))

S(−→x ) = exp{ iπxiσ
i

(x2 + λ2)
1
2

} (2.50)

with winding number n = 1. We conclude that the vacuum is degenerate formed

by multiple topologically inequivalent states with different winding numbers. For

completeness, we must verify if there is a field that connects these vacuum states

making it possible a coherent Feynman path integral representation of the quan-

tum tunneling between them.

The instanton is that field. In order to verify if the n = 1 instanton (2.36)

could be gauge transformed into the gauge form (2.47), we must analyze the

1A good way to “visualize” this four-dimensional mapping is to consider the three-
dimensional (2+1) case, with the time as the z-axis. In the top of the cylinder, we have a
disc (a S2 surface) with its edge identified by (2.49), which, at the large T limit, assuming
the condition Fµν = 0 outside the cylinder, consists of a mapping from the SU(2) group to
infinities identified. In four dimensions, the top is a S3 surface — then the S3 → S3 mapping
— although the 4D cylinder cannot be visualized.
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solution for the gauge transformation

Ainst0 → Ainst
′
0 = 0 , (2.51)

and interpret if such solution has a physical meaning. The condition above yields

U−1(x)Ainst0 (x)U(x) + U−1∂0U(x) = 0 , (2.52)

where U(x) ∈ SU(2). Replacing (2.36) into (2.52), we get the equation

∂0U(x) =
ixiσ

i

x2
0 +−→x 2 + λ2

U(x) ; (2.53)

this equation can be easily integrated. The solution is

U(x) = exp{ ixiσ
i

(−→x 2 + λ2)
1
2

(
tan−1

[
x0

(x2
0 + λ2)

1
2

]
+ (n+

1

2
)π

)
} , (2.54)

where (n + 1
2
)π is the integration constant. In order to obtain a solution also

consistent with the space-like pure gauge (2.48) we require Ainsti to be zero at

x0 = ±∞, so that

Ainst′i = U−1(x)∂iU(x) , (2.55)

where

U(x0 = −∞) = exp{iπn xiσ
i

(−→x 2 + λ2)
1
2

} (2.56)

and

U(x0 = +∞) = exp{iπ(n+ 1)
xiσ

i

(−→x 2 + λ2)
1
2

} , (2.57)

from which we prove that the instaton connects two vacuum states that differ by

one unit of winding number. (These solutions give, respectively, the Euclidean

finite actions 8π2n
g2 and 8π2(n+1)

g2 .) It is possible to generalize this result for an
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instanton with winding number k that connects two states |m〉 and |n〉, being

k = n −m, i.e., the difference between the final and initial winding numbers of

the vacuum states (see [43]).

The θ-vacuum. The transition amplitude between two neighboring states

(2.45) in the 2D-system suggests that in the semi-classical approximation for the

4D non-Abelian system, the tunnelling amplitude is dominated by

T ∼ e
− 8π2

g2 , (2.58)

being the exponent the finite energy of the BPST instanton with winding number

n = 1, which connects the states |n〉 and |n + 1〉. We can think this problem

as a vacuum constructed through a periodic potential [45], in which we can ac-

commodate multiple vacuum states with different winding numbers, separated by

finite-energy WKB (Wentzel-Kramers-Brillouin) barriers.

In general, for an arbitrary vacuum state, under a gauge transformation T1

with winding number n = 1, we have

T1|n〉 = |n+ 1〉 , [T1, H] = 0 , (2.59)

where H is Hamiltonian of the system, being the second equation in (2.59) a

consequence of the gauge invariance of the system. (This is the transition made

by instantons; for (anti-)instantons, the transition is |n〉 → |n − 1〉.) The eq.

(2.59) reveals a Bloch structure for a periodic potential. In this case, the complete

vacuum – the so-called θ-vacuum – is given by the superposition

|θ〉 =
∑
n

e−inθ|n〉 , (2.60)
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which is an eigenstate of T1,

T1|θ〉 = eiθ|θ〉 . (2.61)

The amplitude transition between classically distinct θ-vacuums takes the form

〈θ′|e−iHt|θ〉J =
∑

all instatons (m,n)

eimθ
′
e−inθ〈m|e−iHt|n〉J , (2.62)

where J is the external source. The term 〈m|e−iHt|n〉J denotes a general transition

amplitude between states with different winding numbers, |n〉 → |m〉, which are

dominated by |n〉 → |n±1〉 transitions. As we discussed before, theses states are

connected by instantons with winding number n−m, therefore

〈θ′|e−iHt|θ〉J =
∑

all instatons (m,n)

eim(θ′−θ)e−i(n−m)θ

∫
DA(n−m)

µ e−i
∫
d4x (LYM+JµAµ) ,

(2.63)

where we just rearranged the exponential terms. Calling n−m = k, and summing

over m, aftermath we get

〈θ′|e−iHt|θ〉J = δ(θ − θ′)
∑
k

∫
DA(k)

µ e−i
∫
d4x (LYM+kθ+JµAµ) , (2.64)

in which we obtain an effective Lagrangian Leff = L + kθ, being k a general

winding number. Using the expression of the winding number in the Pontryagin

action form, we conclude that the sum over all instantons gives rise to the effective

action

Leff = LYM +
θ

16π2
TrFµνF̃µν , (2.65)

where θ is, in principle, a free parameter associated to the inequivalent vacuum

sates described by the superposition (2.60) in the non-Abelian Bloch-like model
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for a periodic potential1. We saw that the θ-vacuum term, despite being a total

derivative of a CS current, admits nontrivial topological solutions through pure

gauge fields for S3 → S3 mappings at infinity. These instanton solutions were the

first successfully vacuum theory to explain the UA(1) problem in QCD, related

to a particular boson that does not appear in the QCD spectra after a chiral

symmetry breaking.

2.2 Solution of the UA(1) problem and its rela-

tion with strong CP violation

. The description of strong interactions via a non-Abelian gauge theory with

SU(3) symmetry (QCD theory) was proposed by Murray Gell-Mann in 1961

[68]. The “Eightfold Way” refers to the eight gauge fields Aaµ — the gluons —

present in the theory, since a = {1, · · · , 8} in the adjoint representation of SU(3)

group. The QCD is a theory of interactions between quarks (spin-1
2

fermions) and

gluons (spin-1 bosons), the elementary particles that make up composite hadrons

(such as protons and neutrons). Gluons are the force carrier of the theory, like

photons in QED that carries the electromagnetic force between electrons and

positrons. The great difference is the self-interactions between gluons, which do

not occur between photons. The QCD Lagrangian, invariant under local SU(3)

gauge transformations, is given by

LQCD =
1

g2
TrFµνFµν +

i

2
q̄αγµD

αβ
µ qAα −

i

2
Dαβ
µ qAα γµq

A
α −mAq

A
α q

A
α , (2.66)

1We emphasize that the construction of Leff was done here in the semi-classical approxi-
mation. The non-perturbative analysis, that shows that this construction is consistent at the
quantum level, was worked out by G. ’t Hooft in [2].
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where γµ are the Dirac matrices, mA are the quark masses, and Dαβ
µ = ∂µδ

αβ +

Aaµλ
αβ, the covariant derivative in color space, being λαβ the generators of the

Lie algebra of the SU(3) color symmetry. The quantum number A, called flavor,

refers to six types of quarks qAα of the Standard Model1. The QCD Lagrangian

(2.66), however, does not have a SU(6) flavor symmetry. This reflected in the

fact that the quark masses for each flavor type are different2.

The Lagrangian (2.66) is invariant under certain global transformations. One

of them defines the baryonic charge, associated to the transformation qAα (x) →

q′Aα (x) = e−iθIqAα (x), where θ is a real parameter and I is the unit matrix in color

and flavor spaces. If we consider now global transformations acting only on flavor

space, one can check that LQCD is invariant under

qα(x) → q′α(x) = e−iθ
ATAqα(x) , (2.67)

qα(x) → q′α(x) = e−iθ
ATAγ5qα(x) , (2.68)

if the quark masses are zero, mA = 0. In eq.’s (2.67) and (2.68), θA are real

parameters; TA, with A = {1, · · · , N2
1 − 1}, are the generators of SU(Nf ) group

in the fundamental representation, and qα(x), vectors with Nf components. In

the absence of quarks masses, it defines the left- and right-handed charges, QA
L

and QA
R, which represents the global symmetry SUL(Nf ) × SUR(Nf ), where the

1The proton, for instance, is composed of two quarks up, and one down.
2The quarks which compose the hadrons always appear in Nature as colorless bound states.

In order to separate two quarks, ever-increasing amounts of energy is required, capable of pro-
ducing quark-antiquark pairs, but never an isolated color charge. This is the dogma of color
confinement [69], one of the greatest unsolved problems in Physics since the last century. An-
other crucial feature of QCD theory is the asymptotic freedom of strong interactions, demon-
strated by D. Gross and F. Wilczek [70], and independently by D. Politzer [71] both in 1973.
(All three shared the 2004 Nobel Prize in Physics for their discovering.) As the energy scale
increases, the strength of interactions between quarks and gluons decreases (and vice-versa).
For very large energies (or very short distances), the interactions between quarks and gluons
will be very weak, and they will behave almost like free particles (a state of matter at extremely
high temperature and/or density, called quark-gluon plasma) — hence the name asymptotic
freedom.
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left and right quark fields are decoupled in the Lagrangian accordingly to their

quiralities1. In Nature, the chiral symmetry SUL(Nf )×SUR(Nf ) is spontaneously

broken through

QA|0〉 = 0 , QA
5 |0〉 6= 0 , (2.69)

where the vacuum state is not invariant under the axial subgroup, being Q5 the

conserved charge for the transformation (2.68). The Goldstone’s theorem states

that to each generator of a continuous symmetry that does annihilate the vacuum

there is an associated spin-zero massless particle [72; 73]. Eq. (2.69) implies the

existence of a (N2
f − 1)-plet of massless pseudoscalars, and a set with massive

multiplets with degenerate masses2.

In addition to the chiral symmetry, the massless LQCD possesses another

global symmetry — the so-called UA(1) symmetry, given by the uniparametric

transformations

qα(x) → q′α(x) = e−iθIγ5qα(x) , (2.70)

where θ is a real constant, and I is the unit matrix in color and flavor indices. The

UA(1) symmetry is broken by the same mass terms that break the approximate

chiral symmetry SUL(2)×SUR(2). The Goldstone’s theorem implies that we must

observe in QCD spectra a pseudoscalar meson with a mass smaller than
√

2mpion

[74]. In this case, the natural candidate is the η-particle, but mη
mpion

' 4. On the

other hand, if we consider an exact SUL(3) × SUR(3) symmetry, η appears as a

member of the 0− octect that contains the pions, but due to the additional UA(1)

1For a right-handed quark, qR = 1
2 (1 + γ5)q, the spin points in the same momentum vector

direction; for a left-handed one, qL = 1
2 (1− γ5)q, it points against the momentum.

2In the Nf = 3 case the O− octet is the one of Goldtone bosons, and the massive multiplets

are 1
2

+
octet, 3

2

+
decuplet, etc. The pion mass, however, is small if compared to other hadrons,

and this observation is attributed to the existence of an approximate chiral SU(2)L × SU(2)R
symmetry. The diagonal part of SU(2)L×SU(2)R group is the isospin group, and its invariance
is well realized in Nature, as the masses of the up and down quarks is very small if compared
to pertubative QCD mass scale Λ.
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symmetry, a singlet meson with mass smaller than
√

3mpion is missing. Moreover,

a Wigner-Weyl realization1 would imply parity doublets of all massive hadrons,

but this was also never observed. This inconsistency is known in literature as the

UA(1) problem [2; 26; 74; 75; 76; 77; 78; 79].

The current associated to the UA(1) symmetry is not conserved at the quan-

tum level, due to an Adler-Bell-Jackiw anomaly [80; 81] present in the Ward

identity related to the axial current, which yields

∂µj
5
µ =

g2Nf

16π2
FµνF̃µν . (2.71)

At this point we may think that there is no UA(1) problem to be concerned with,

since there is no UA(1) symmetry to be broken at the quantum level. Nevertheless

the right term in (2.71) can be written as a total divergence of the CS current

(2.24), then we can define a gauge-variant current j̄5
µ = jµ −Kµ such that

∂µj̄
5
µ = 0 . (2.72)

When we integrate (2.72) over whole space, the charge corresponding to j̄5
µ, Q̄5,

will be conserved in the absence of instantons [82], and the unwanted Goldstone

bosons are not eliminated. In the presence of instantons, however, G. ’t Hooft

has proved in his seminal paper [2] that the Goldstone boson associated to the

gauge-variant current j̄5
µ does not appear as a Kogut-Susskind zero mass pole [83]

of physical gauge-invariant Green functions. In principle, the instanton solved the

UA(1) problem2 [26].

1In the Wigner-Weyl realization both charges annihilate the vacuum, QA|0〉 = 0, QA5 |0〉 = 0.
2In one sense, the instanton does not fully explain the QCD spectra, as the mass of the η

meson — much heavier than expected — remains a mystery. Some physicist tried to explain the
UA(1) problem making use of alternative approaches: Witten explained the problem from the
large Nc point of view [78], while Veneziano introduced an additional ghost state, and showed
the possibility of computing the mass of the η particle without introducing instantons [79].
This approach, however, has problems concerning BRST invariance (as it breaks the BRST
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The strong CP problem. We must point out that the introduction of the

θ-vacuum term brought to light another problem: the violation of CP symmetry

[86], as the Pontryagin action is odd under parity transformation, and such a

violation was never observed in strong interactions. The original QCD Lagrangian

(2.66) is CP invariant in accordance with experimental data. A realistic model

capable of explaining all the aspects related to the UA(1) problem and its relation

with CP violation is considered an open problem in Physics up to now [34; 87;

88; 89; 90; 91; 92]. An electric dipole moment (dn) for the neutron is one of the

consequence of strong CP violation that could be observed, as |dn| ∼ 10−16θ e cm ,

where e is the electric charge. The experimental upper limit is

|dn| ≤ .3× 10−26 e cm , (2.73)

so that |θ| ≤ 10−9, approximately. The small value of θ lies at the heart of

the matter — how to give a rationale for such a small value, if θ is a strong

interaction parameter? The natural value of θ is expected to be of order one (see

for instance [34]). In the early 80’s, some physicists believed that θ would be

effectively zero as a symmetry requirement, however this argument is not enough

since higher-order CP-violating weak interactions generate γ5-dependent quark

mass terms, and to eliminate them one has to apply a chiral symmetry rotation

which induces a θ-vacuum term. If at least one of the quarks of the Standard

Model were massless, then θ will become unobservable, and to set θ = 0 would

be consistent, but this solution has proved to be fragile, since empirical evidence

strongly suggests that none of the quarks are massless — see [93].

Recently, at HERA (Hadron-Electron Ring Accelerator at DESY-Deutsches

Elektronen-Synchrotron in Hamburg), with the effort of a great collaboration,

physicists have been trying to detect a quantum state induced by instantons

symmetry) and, consequently, problems concerning renormalizability [84; 85].
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known as fireball. An instanton is likely to create a miniature fireball giving

rise to quarks and gluons, in addition to a quark jet, in a electron-proton deep

inelastic scattering [94] — see Fig. 2.4 below1.

Figure 2.3: Schematic diagram of an instanton contribution to the electron-proton
deep inelastic scattering.

No evidence for the production of QCD instanton-induced events was observed

up to now. Anyway, the instantons play a crucial role in order to comprehend

the QCD spectra, once they explain the absence of pseudoscalars that was never

observed in any experiment — pseudoscalars that would have a mass bigger then

the pion via chiral symmetry breaking, and we must remember that the chiral

symmetry breaking is responsible for producing 95% of the mass in the Universe

[95]. The (partial) solution of the UA(1) problem through the introduction of

instanton represents an indirect evidence of the presence of non-Abelian topolog-

ical configurations in Nature. A further investigation on the topological structure

of such a configuration, and its quantum properties showed to be necessary in

order to shed some light on unsolved problems concerning topological effects in

the quantization of non-Abelian field theories.

1Extracted from “The Quantum Quark” by A. Watson.
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Chapter 3

Topological quantum field

theories

Essentially, a topological quantum field theory (TQFT) on a smooth manifold is

a quantum field theory which is independent of the metric on the basis manifold.

Such a theory has no dynamics, no local degrees of freedom, and is only sensitive

to topological/differential invariants that describes the manifold in which the the-

ory is defined. The observables of a TQFT are naturally metric independent. The

latter statement leads to the main property of topological field theories, namely,

the metric independence of the vacuum expectation values of the observables,

〈Oα1(φi)Oα2(φi) · · ·Oαp(φi)〉 =

∫
[Dφi]Oα1(φi)Oα2(φi) · · ·Oαp(φi)e

−S[φ] , (3.1)

which reads
δ

δgµν
〈Oα1(φi)Oα2(φi) · · ·Oαp(φi)〉 = 0 , (3.2)

where gµν is the metric tensor, φi(x) are quantum fields, and Oα, functional

operators of the fields that compose the global observables. A typical operator

Oα is integrated over the whole space in order to capture the global structures
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of the manifold. There are no local particles, no energy available for particle

scatterings. The only nontrivial observables are of global nature defined by the

cohomology of the target manifold, as all BRST-invariant local operator belong

to the trivial part of cohomology, which means that the theory has no local

observables [96; 97].

As a particular result of (3.2), the partition function of a topological theory

is itself a topological invariant,

δ

δgµν
Z[J ] = 0 , (3.3)

insofar as Z[J ] represents the expectation value of the vacuum in the presence of a

external source, Z[J ] = 〈0|0〉J . In literature, if the action is explicitly independent

of the metric, the topological theory is said to be of Schwarz type1; otherwise, if

the variation of the action with respect to the metric gives a BRST-exact term,

one says the theory is of Witten type. More precisely, being δ an infinitesimal

transformation that denotes a symmetry of the action S, δS = 0, if the following

properties are satisfied,

δOα(φi) = 0 , Tµν(φi) = δGµν(φi) , (3.4)

where Tµν is the energy-momentum tensor of the model,

δ

δgµν
S = Tµν , (3.5)

and Gµν some tensor, then the quantum field theory can be regarded as topolog-

ical. Obviously, in this case eq. (3.3) is also satisfied, since the expectation value

1The Pontryagin action, which represents the tunnelling between vacuum sates with differ-
ent winding numbers, is typically a Schwarz type action.
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of a “BRST-exact term” vanishes1 [46; 48]. As we can see, by using (3.5) and

(3.4), and assuming that the measure [Dφi] is invariant under δ,

δ

δgµν
〈Oα1(φi)Oα2(φi) · · ·Oαp(φi)〉 = −

∫
[Dφi]Oα1(φi)Oα2(φi) · · ·Oαp(φi)Tµνe

−S

= 〈δ[Oα1(φi)Oα2(φi) · · ·Oα2(φi)Gµν ]〉

= 0 . (3.7)

In the equation above we assumed that all Oα are metric independent. Neverthe-

less this is not a requirement of the theory, as we can have

δgµνOα = δQµν 6= 0 , (3.8)

that preserves the topological structure of δgµν 〈Oα1 · · ·Oαp〉 = 〈δ(· · · )〉 = 0 [101].

Analogously to the BRST operator, eq. (3.7) only makes sense if the δ operator

is nilpotent2.

From the physical point of view, topological quantum field theories provide

mathematical tools capable of revealing the topological structure of field theories

that are independent of the metric, and of the background choice, together with

the set of symmetries behind these properties. One of the major obstacles to

construct a quantum theory of gravity is the integration over all metrics. An

introduction of a topological phase in gravity would have the power to make a

theory of gravity arises, after a spontaneous breaking of general covariance, with-

out having to integrate over the space of all metrics [40; 46]. We must say that

1Broadly speaking, the vacuum expectation values are invariant under a BRST transforma-
tion, so that

s〈(· · · )〉 = 〈s(· · · )〉 − 〈(· · · )sS〉 = 0 , (3.6)

being (· · · ) an arbitrary operator, s the BRST operator, and S the action. As sS = 0, the
equation above yields 〈s(· · · )〉 = 0. For a further analysis of its renormalization properties, and
definition of physical observables, see for instance [98; 99; 100].

2In the Witten theory, for instance, such an operator is on-shell nilpotent, i.e., δ2 = 0 by
using the equations of motion.
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the introduction of such a topological phase is one of the intricate problems in

topological quantum theories, since one must develop a mechanism for sponta-

neously breaking the topological symmetry, but, by construction, these theories

have no dynamics. A realistic mechanism for a symmetry breaking in topological

field theory is still a challenge. On the other hand, we can also investigate confor-

mal properties of field theories via topological models, based on the connection

between three-dimensional Chern-Simons theory and two-dimensional conformal

theories [102]. In the Mathematics/Physics frontier, TQFT’s are intimately con-

nected with the AdS/CFT correspondence [103; 104].

In practice, TQFT’s have the power to reproduce topological invariants of the

basis manifold. The first one to obtain topological invariants from a quantum field

theory was A. S. Schwarz in 1978 [105]. He showed that the Ray-Singer analytic

torsion [106] can be represented as a partition function of the Abelian Chern-

Simons action, which is invariant by diffeomorphisms. The Schwarz topological

theory was the prototype of Witten theories in the 1980’s. Indeed the well-

known Witten paper in which he reproduces the Jones polynomial of knot theory

[102] is the non-Abelian generalization of [105]. In his work Witten was actually

able to represent invariants of three-manifolds as the partition function of the

non-Abelian CS theory. Besides the knot invariants, the computation of the

expectation value of the Wilson loop in U(1) CS gauge theory, in a loop C,

WC = ei
∮
C Aµ(x)dxµ , (3.9)

which is a gauge invariant observable in this case, gives the Gauss’s linking integral

representation of the linking number. In Mathematics, the linking number is a

topological invariant in three-dimensional space, which represents the number of

times that each curve winds around the other — see Figure 3.1 below. As we can

easily see, the linking number is invariant under continuous deformations in the

39



curves.

Figure 3.1: The algorithm to compute the linking number consists of labeling
each crossing as positive or negative, according to the rule in figure (a); the total
number of positive crossings minus the total number of negative crossings is equal
to twice the linking number. Examples: (b) two curves that have linking number
two; (c) the Whitehead link with linking number zero.

Explicitly, the partition function of Abelian CS theory in R3 is

Z[J ] =

∫
Aµ exp

(
i

4π

∫
d3x ελνµAλ∂νAµ + i

∫
d3x JµAµ

)
, (3.10)

where ελνµ is the three-dimensional Levi-Civita antisymmetric tensor, and Aµ,

the gauge field. The theory is pure Gaussian, as the CS action is quadratic in the

fields, and so exact soluble at one-loop order. For a source Jµ describing a point

particle moving in a loop C1,

Jµ(x) =

∮
C1

dxµi δ
3(x− xi(t)) , and

∫
d3x JµAµ =

∮
C1

Aµdx
µ . (3.11)

Therefore, computing the expectation value of the Wilson loop (3.9) in a loop

C2,

Z(C1, C2) = 〈WC2〉C1 , (3.12)
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we get exactly

Z(C1, C2) = exp [2πiζ(C1, C2)] , (3.13)

where

ζ(C1, C2) =

∮
C1

dxλ
∮
C2

dyµ
(x− y)ν

|x− y|3
ελµν (3.14)

is the expression of Gauss’s linking integral, that counts the linking number be-

tween two non-intersecting differentiable curves, C1 and C2, in R3. This is the

simplest case in which we can represent a topological invariant by using the Feyn-

man path integral of a quantum field theory. In R3 we can visualize its topological

invariants. In four dimensions the topological/differential invariants cannot be

visualized, and are defined with the effort of differential geometry. Topological

quantum field theories that obey eq. (3.2) have the power of reproducing these

differential invariants in higher dimensions, as the Witten’s TQFT that describes

the Donaldson invariants in R4 through a metric independent partition function

of a relativistic non-Abelian action, namely, the twisted version of the N = 2

super Yang-Mills (SYM) action.

3.1 Witten’s topological quantum field theory

Throughout the 1980s, based on the self-dual Yang-Mills equations introduced by

A. Belavin, A. Polyakov, A. Schartz, and Y. Tyupkin in their study of instantons

[1], S. K. Donaldson discovered and described topological structures of polyno-

mial invariants for smooth four-manifolds [15; 16; 17]. The connection between

the Floer theory for three-manifolds [107; 108] and Donaldson invariants for four-

manifolds with a non-empty boundary, i.e., that assumes values in Floer groups,

has led to the Atiyah’s conjecture, in which he proposed that the Floer homology

must lead to a relativistic quantum field theory. This conjecture was the moti-
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vation for the Witten theory in four dimensions, as Witten himself admits [46].

Answering Atiyah’s conjecture, Witten found a relativistic formulation of [109],

capable of reproducing the Donaldson polynomials in the the weak coupling limit.

3.1.1 The twist transformation: A mapping between N =

2 super and topological Yang-Mills theories

The eight supersymmetric charges (Qi
α, Q̄jα̇) of N = 2 SYM theories obey the

susy algebra

{Qi
α, Q̄jα̇} = δij(σµ)αα̇∂µ ,

{Qi
α, Qjα} = {Q̄i

α̇, Q̄jα̇} = 0 , (3.15)

where the indices (i, α, α̇) both run from one to two. The index i = {1, 2}

denotes the internal SU(2) symmetry accordingly to the susy algebra above, and

(α, α̇) = {1, 2} are Weyl spinor indices: α denotes right-handed spinors, and α̇,

left-handed ones. The fact that both indices equally run form one to two suggest

the identification between spinor and supersymmetry indices,

i ≡ α . (3.16)

The N = 2 SYM action theory possesses a gauge group symmetry given by

SUL(2)× SUR(2)× SUI(2)× UR(1) , (3.17)

where SUL(2) × SUR(2) is the rotation group, SUI(2) is the internal supersym-

metry group labeled by i, and UR(1), the so-called R-symmetry defined by the

supercharges (Qi
α, Q̄jα̇) which are assigned eigenvalues (+1, −1), respectively.

The identification performed in eq. (3.16) amounts to a modification of the rota-
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tion group,

SUL(2)× SUR(2)→ SUL(2)× SUR(2)′ , (3.18)

where SUR(2)′ is the diagonal sum of SUR(2) and SUI(2). The twisted global

symmetry of N = 2 SYM takes the form SUL(2) × SUR(2)′ × UR(1), with the

corresponding twisted supercharges

Qi
α → Qβ

α , Q̄iᾱ → Q̄αα̇ , (3.19)

which can be rearranged as

1√
2
εαβQαβ ≡ δ , (3.20)

1√
2
Q̄αα̇(σµ)α̇α ≡ δµ , (3.21)

1√
2

(σµν)
α̇αQα̇α ≡ δµν , (3.22)

where we adopt the conventions for εαβ, (σµ)αα̇ and (σµν)
α̇α as the same of [110].

The operator δµν is manifestly self-dual due to the structure of σµν ,

δµν =
1

2
εµνλρδ

λρ , (3.23)

reducing to three the number of its independent components. The operators

δ, δµ and δµν possess eight independent components in which the eight original

supercharges (Qβα, Q̄αα̇) are mapped into. These operators obey the following
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twisted supersymmetry algebra

δ2 = 0 , (3.24)

{δ, δµ} = ∂µ , (3.25)

{δµ, δν} = {δµν , δ} = {δµν , δλρ} = 0 (3.26)

{δµ, δλρ} = −(εµλρσ∂
σ + gµλ∂ρ − gµρ∂λ) . (3.27)

The nilpotent scalar supersymmetry charge δ defines the cohomology of Witten’s

TQFT, as its observables appear as cohomology classes of δ, which is invariant

under a generic differential manifold. It is implicit in the anti-commutation rela-

tion (3.25) the topological nature of the model, as it allows to write the common

derivative as a δ-exact term.

The gauge multiplet of the N = 2 SYM in Wess-Zumino gauge is given by

the fields

(Aµ, ψ
i
α, ψ̄

i
α̇, φ, φ̄) , (3.28)

where ψiα is a Majorana spinor (the supersymmetric partner of the gauge connec-

tion Aµ), and φ, a scalar field, all of them belonging to the adjoint representation

of the gauge group. The twist transformation is defined by the identification

eq. (3.16), and thus only acts on the fields (ψiµ, ψ̄
i
µ), leaving the bosonic fields

(Aµ, φ, φ̄) unaltered. Expressly, the twist transformation is given by the linear

transformations

ψiβ → ψαβ =
1

2

(
ψ(αβ) + ψ[αβ]

)
, (3.29)

ψ̄iα̇ → ψ̄αα̇ → ψµ = (σµ)αα̇ψ̄αα̇ , (3.30)
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together with

ψ(αβ) → χµν = (σµν)
αβψ(αβ) , (3.31)

ψ[αβ] → η = εαβψ[αβ] . (3.32)

The twist consists of a mapping of degrees of freedom. The field ψ̄αα̇ has four

independent components as (α, α̇) = {1, 2}, and is mapped into the field ψµ that

also has four independent components, as the Lorentz index µ = {1, 2, 3, 4} in

four dimensions. In the other mappings occurs the same, as the symmetric part of

ψαβ, i.e., ψ(αβ) has three independent components mapped into the self-dual field

χµν , and the antisymmetric part, ψ[αβ], with only one independent component,

into η, a scalar field. We must note that (ψµ, χµν , η) anticommute due to their

spinor origin.

Because it is a linear transformation, the twist simply corresponds to a change

of variables with trivial Jacobian that could be absorbed in the normalization

factor, in other words, both theories (before and after the twist) are perturbatively

indistinguishable. Finally, twisting the N = 2 SYM action (SN=2
SYM), in Euclidean

space, we obtain the Witten four-dimensional topological Yang-Mills action (SW ),

SN=2
SYM [Aµ, ψ

i
α, ψ̄

i
α̇, φ, φ̄] → SW [Aµ, ψµ, χµν , φ̄, φ] , (3.33)

where

SW =
1

g2
Tr

∫
d4x

(
1

2
F+
µνF

+µν − χµν (Dµψν −Dνψµ)+ + ηDµψ
µ

− 1

2
φ̄DµD

µφ+
1

2
φ̄{ψµ, ψµ} −

1

2
φ{χµν , χµν} −

1

8
[φ, η] η

− 1

32

[
φ, φ̄

] [
φ, φ̄

])
, (3.34)
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wherein F+
µν is the self-dual field

F+
µν = Fµν + F̃µν , (F̃+

µν = F+
µν) , (3.35)

and, analogously,

(Dµψν −Dνψµ)+ = Dµψν −Dνψµ +
1

2
εµναβ (Dαψβ −Dβψα) . (3.36)

The Witten action1 (3.34) possesses an usual Yang-Mills gauge invariance, see

eq. (2.6), denoted by

δYM
gaugeSW = 0 . (3.37)

The theory, however, does not possess gauge anomalies [112]. The symmetry that

defines the cohomology of the theory, also known as equivariant cohomology, is

the fermionic scalar supersymmetry which, acting on the fields, has the form:

δAµ = −εψµ , δφ = 0 , δλ = 2iεη , δη =
1

2
ε[φ, φ̄] ,

δψµ = −εDµφ , δχµν = εF+ , (3.38)

where ε is the supersymmetry fermionic parameter that carries no spin, ensur-

ing that the propagating modes of commuting and anticommuting fields have the

1Technically, the Witten action (3.34) is the four-dimensional generalization of the non-
relativistic topological quantum field theory [109], whose construction is based on the Floer
theory for three-manifolds M3D, in which the Chern-Simons action is taken as a Morse function
on M3D, see Floer’s original paper [108]. In few words, the critical points of CS action (WCS)
yield the curvature free configurations, as δWCS

δAa
i

= − 1
2ε
ijkF jk, where F jk is the 2-form curvature

in three dimensions, which defines the gradient flows of a Morse function, see [40]. In the
supersymmetric formulation of [109], the Hamiltonian (H) is obtained via the “supersymmetric
charges” dt and d∗t , from the well-known relation dtd

∗
t + d∗t dt = 2H, see [111], whereby dt =

e−tWCSdetWCS and d∗t = etWCSd∗e−tWCS , for a real number t, being d the exterior derivative
on the space of all connections A, according to the transformation δAai = ψai , and d∗ its dual.
Before identifying the twist transformation, this formulation (in four-dimensions) was employed
by Witten in his original paper [102] to obtain the relativistic topological action (3.34).
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same helicities1. This symmetry relates bosonic and fermionic degrees of freedom,

which are identical — an inheritance of the supersymmetric original action2. The

price of working in Wess-Zumino gauge is the fact that, disregarding gauge trans-

formations, one needs to use the equations of motion to recover the nilpotency of

δ [97]. One can easily verify that (see [46])

δ2Φ = 0 , for Φ = {A,ψ, φ, φ̄, η} , (3.39)

but

δ2χ = equations of motion . (3.40)

Considering the result of eq. (3.40), hereafter we will say that the Witten

fermionic symmetry is on-shell nilpotent. This symmetry is associated to an

on-shell nilpotent “BRST charge”, Q, according to the definition of the varia-

tion δO of any functional O under the fermionic symmetry eq. (3.38) as a linear

transformation on the space of all functionals of field variables, namely,

δO = −iε · {Q,O} , such that Q2|on-shell = 0 . (3.41)

In order to verify that Witten theory is valid in curved spacetimes, it is worth

noting that the commutators of covariant derivatives always appears acting in the

scalar field φ, like in δTr{Dµψν · χ̄µν} = 1
2
Tr([Dµ, Dν ]φ · χ̄µν), so the Riemann

tensor does not appear, and the theory could be extended to any Riemannian

1Precisely, the propagating modes of Aµ have helicities (1,−1), and of (φ, φ̄), (0, 0); while
of the fermionic fields (η, ψ, χ), helicities (1,−1, 0, 0).

2The action SW is also invariant under global scaling with dimensions (1, 0, 2, 2, 1, 2) for
(A, φ, φ̄, η, ψ, χ), respectively; and preserves an additive U symmetry for the assignments
(0, 2,−2,−1, 1,−1). In the BRST formalism, the latter is naturally recognized as ghost num-
bers, as we will see in Section 4.
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manifold. In practice one can take

∫
d4x→

∫
d4x
√
g , (3.42)

if one wants to work in a curved spacetime. Such a theory has the property of

being invariant under infinitesimal changes in the metric. This property charac-

terizes the Witten model as a topological quantum field theory. Such a property

is verified by the fact that the energy-momentum tensor can be written as the

anti-commutator

Tµν = {Q, Vµν} , (3.43)

which means that Tµν is an on-shell BRST-exact term,

Tµν = δVµν , δ2|on-shell = 0 , (3.44)

with

Vµν =
1

2
Tr{Fµσχ σ

ν + Fνσχ
σ
µ −

1

2
gµνFσρχ

σρ}+
1

4
gµνTrη[φ, φ̄]

+
1

2
Tr{ψµDνφ̄+ ψνD

µφ̄− gµνψσDσφ̄} . (3.45)

Equation (3.44) together with δSW = 0 means that Witten theory satisfies

(on-shell) the second condition displayed in eq. (3.4), that allows to say that SW

automatically leads to a four-dimensional topological field model, in other words,

δ

δgµν
ZW =

∫
DΦ(− δ

δgµν
SW )exp(−SW )

= − 1

g2
〈{Q,

∫
M

d4x
√
gVµν}〉 = 0 , (3.46)

as all expected value of a BRST-exact term vanish. It remains to know which
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kind of topological/differential invariants can be represented by the Feynman

path integral of Witten’s TQFT. As it is well-known, it will naturally reproduce

the Donaldson invariants for four-manifolds.

3.1.2 Donaldson polynomials

An important feature of Witten’s TQFT is the fact that the theory can be in-

terpreted as quantum fluctuations around classical instanton configurations. To

find the nontrivial classical minima one must note that the gauge field terms in

SW are

SgaugeW [A] =
1

2
Tr

∫
d4x(Fµν + F̃µν)(F

µν + F̃ µν) , (3.47)

which is positive semidefinite, and only vanishes if the field strenght Fµν is anti-

self-dual,

Fµν = −F̃µν , (3.48)

the same nontrivial vacuum configuration that minimizes the Yang-Mills action in

the case of anti-instantons fields, see (2.32). We conclude that Witten action has

a nontrivial classical minima for F = −F̃ and Φother fields = 0. Being precise, the

evaluation of the Witten’s TQFT path integral computes quantum corrections to

classical anti-instantons solutions.

Another important property of Witten theory is the invariance under infinites-

imal changes in the coupling constant. The variation of ZW with respect to g2

yields, for similar reasons,

δg2ZW = δg2(− 1

g2
)〈{Q,X}〉 = 0 , (3.49)

where

X =
1

4
TrFµνχ

µν +
1

2
TrψµD

µφ̄− 1

4
Trη[φ, φ̄] . (3.50)
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The Witten partition function, ZW , is independent of the gauge coupling g2,

therefore we can evaluate ZW in the weak coupling limit, i.e., in the regime of

very small g2, in which ZW is dominated by the classical minima.

Instanton moduli space. The instanton moduli space, Mk,N , is defined

to be the space of all solutions to F = F̃ for a giving winding number k and

gauge group SU(N). By perturbing F = F̃ nearby the solution Aµ via a gauge

transformation Aµ → Aµ + δAµ, we obtain the self-duality equation

DµδAν +DµδAν + εµναβD
αδAβ = 0 . (3.51)

Solutions to equation above are called zero modes. Requiring the orthogonal

gauge fixing condition, DµA
µ = 0, one gets

Dµ(δAµ) = 0 . (3.52)

The Atiyah-Singer index theorem [113; 114] counts the number of solutions to eq.

(3.51) and eq. (3.52). In Euclidean spacetimes, for instance, the index theorem

gives

dim(M) ≡Mk,N = 4kN , (3.53)

where the modes due to global gauge transformations of the group were included.

Looking at fermion zero modes, the χ equation for SW gives

Dµψν +Dνψµ + εµναβD
αψβ = 0 , (3.54)

and from the η equation,

Dµψ
µ = 0 . (3.55)

These are the same equations obtained for the gauge perturbation around an
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instanton in the orthogonal gauge fixing, so the number of ψ zero modes is also

given by Mk,N
1. In order to get a non-vanishing partition function, Witten as-

sumed that the moduli space consists of discrete, isolated instantons, in other

words, that the dimension of the moduli space vanishes2.

In expanding around an isolated instanton, in the weak coupling limit g2 → 0,

the action is reduced to quadratic terms,

S
(2)
W =

∫
M

d4x
√
g
(
Φ(b)DBΦ(b) + iΨ(f)DFΨ(f)

)
, (3.57)

where Φ(b) ≡ {A, φ, φ̄} are the bosonic fields, and Ψ(f) ≡ {η, ψ, χ}, the fermionic

ones. The Gaussian integral over DB and DF gives

ZW |g2→0 =
Pfaff(DF )√

det(DB)
, (3.58)

where Pfaff(DF ) is the Pfaffian of DF , i.e., the square root of the determinant

of DF up to a sign. The supersymmetry relates the eigenvalues of the operators

DB and DF . The relation is a standard result in instanton calculus [115], which

yields

ZW |g2→0 = ±
∏
i

λi√
|λi|

2 , (3.59)

with i running over all non-zero eigenvalues of DB (DF ). Therefore, for the kth

1As Witten himself admits in his paper [46], “this relation between the fermion equations
and the instanton moduli problem was the motivation for introducing precisely this collection
of fermions”.

2Otherwise, it occurs a net violation of the U(1) global symmetry of SW , and ZW vanishes
due to the fermion zero modes, see [2; 46]. The dimension of the intanton moduli spaces depends
on the bundle, E, and the manifold, M . In the SU(2) gauge theory, it can be written as

dim(M) = 8k(E)− 3

2
(χ(M) + σ(M)) , (3.56)

where k(E) is the first Pontryagin (or winding) number of the bundle E, and χ(M) and σ(M)
are the Euler characteristic and signature of M [114]. (For M = R4, χ(R4) = σ(R4) = 0.)
Thus one can choose a suitable E and M in order to get a vanishing dimension, dim(M) = 0.
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isolated instanton, Z
(k)
W = (−1)nk , where nk = 0 or 1 according to the orientation

convention of the moduli space (Donaldson proved the orientability of the moduli

space, i.e., that the definition of the sign of Pfaff(DF ) is consistent, without global

anomalies [16; 46]). In the end, summing over all isolated instantons,

ZW |g2→0 =
∑
k

(−1)nk , (3.60)

which is precisely one of topological invariant for four-manifolds described by

Donaldson.

The other metric independent observables are constructed in the context of

eq. (3.8), in which they should appear as BRST-exac terms. These observables

can be generated by exploring the descent equations defined by the equivariant

cohomology, i.e., the supersymmetry δ-cohomology. For that, being Ui the global

charge of the operator Oi (see footnote on page 44), it must be understood that,

for the observable
∏

iOi, dim(M) =
∑

i Ui
1. The simplest BRST invariant op-

erator, that does not depend explicitly on the metric, and cannot be written as

δ(X) = {Q, X} (due to the scaling dimensions) is

W0(x) =
1

2
Trφ2(x) , U(W0) = 4 . (3.61)

Although W0 is not a BRST-exact operator, taking the derivative of W0 with

respect of the coordinates, we find

∂

∂xµ
W0 = i{Q,Trφψµ} , (3.62)

1In order to construct topological invariants, the net U charge must equal the dimension of
the moduli space, see [40; 46].
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which is BRST exact. Using the exterior derivative1, d, we can rewrite (3.62) as

dW0 = i{Q,W1} , (3.63)

where W! is the 1-form Tr(φψµ)dxµ. A straightforward calculation gives

dW1 = i{Q,W2} , dW2 = i{Q,W3} , (3.64)

dW3 = i{Q,W4} , dW4 = 0 , (3.65)

with

W2 = Tr(
1

2
ψ ∧ ψ + iφ ∧ F ) , (3.66)

W3 = iTrψ ∧ F , (3.67)

W4 = −1

2
TrF ∧ F , (3.68)

where “∧” is the wedge product, the total charge is U = 4 − k for each Wk,

and φ, ψ, and F are zero, one, and two forms on M , respectively. F is the field

strenth in the -p-form formalism, F = dA + AA, where A is the 1-form Aµdx
µ.

Considering now the integral

I(γ) =

∫
γ

Wk , (3.69)

being γ a k-dimensional homology cycle on M, we have

{Q, I} =

∫
γ

{Q,Wk} = i

∫
γ

dWk+1 = 0 . (3.70)

It proves that I(γ) is BRST invariant and, then, a possible observable. To be

1See Section 4.1.1 in Chapter 4 for the definitions of the geometric elements concerning the
p-form formalism.
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a global observable of the topological theory, we just have to prove that I(γ) is

BRST exact, which can be immediately verified taking γ as the boundary ∂β,

and applying the Stokes theorem,

I(γ) =

∫
∂β

Wk =

∫
β

dWk = i{Q,
∫
β

Wk+1} . (3.71)

We conclude, from equations (3.70) and (3.71), that I(γ) are the global observ-

ables of the model as their expectation values produce metric independent quan-

tities, i.e., topological invariants for four-manifolds. Finally, the general path

integral representation of Donaldson invariants in Witten’s TQFT takes the form

Z(γ1, · · · , γr) =

∫
DΦ

(∏
i

∫
γi

Wki

)
e−SW = 〈

∏
i

∫
γi

Wki〉 , (3.72)

with moduli space dimension

dim(M) =
r∑
i

(4− kr) . (3.73)

One of the beautiful results is the appearing of W4 in the descent equations. Up

to a sign, the observable

∫
γ

W4 = −1

2

∫
γ

F ∧ F (3.74)

is the Pontryagin action written in the formalism of p-forms. The Pontryagin

action, a well-known topological invariant of four-manifolds, naturally appear as

one of the Donaldson polynomials — with a trivial winding number in this case,

since U(W4) = 0, and consequently the dimension of the moduli space vanishes.
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3.2 Perturbative β-function of N = 2 super Yang-

Mills via twist

We would like to present some quantum properties of Witten’s TQFT that are

well known in literature. This will serve as a basis for comparison between Witten

on-shell model and Baulieu-Singer off-shell approach1 [48], which may provide a

broader understanding of the quantum behavior of topological Yang-Mills theo-

ries, according to the particularities of each theory.

The authors in [47] employed the algebraic renormalization techniques, which

give results valid to all orders in perturbation theory, to study the twisted N =

2 SYM, and to prove that the β-function of Witten’s TQFT (βg) is one-loop

exact, as a consequence of the non-renormalization of the composite operator

Trφ2(x) [116]. To this aim they considered the fact that the operator δµν (3.22) is

redundant to define the theory [117], and provide the quantum extension through

the definition of an extended BRST operator, namely,

S = sYM + ωδ + εµδµ , (3.75)

where sYM is the usual Yang-Mills BRST operator, ω and εµ are global ghosts,

and δ and δµ are defined in equations (3.20) and (3.21). The relevant property

of the operator S is that it is on-shell nilpotent in the space of integrated local

functionals, since

S2 = ωεµ∂µ + eqs of motion . (3.76)

Such a property allows for a standard application of algebraic BRST techniques.

1Throughout the thesis we will denote the theories as on-shell or off-shell according to their
BRST charges: on-shell for theories in which the BRST charge is only nilpotent through the
use of equations motion, and off-shell, for the ones in which the equations of motion are not
needed to prove its nilpotency.
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3.2 Perturbative β-function of N = 2 super Yang-Mills via twist

(We would like to point out here that such a BRST construction requires the equa-

tions of motion to obtain a nilpotent BRST operator — a standard behavior of

the BRST quantization of Witten theory.) Considering the non-renormalization

of Trφ2 and eq. (3.76), the result is that the β-function only receives contributions

to one-loop order, and is given by

βg = −Kg3 , (K ≡ constant) , (3.77)

differently of the N = 4 SYM, which possesses a vanishing β-function. The N = 2

βg is one-loop exact, as all higher order loop corrections vanish. The computation

of βg via Feynman diagrams was performed in [49] by evaluating the one-loop

contributions to the gauge field propagator (where the Landau gauge was used to

fix the Yang-Mills symmetry of Witten action (3.37)). The behavior of one-loop

exactness of the β-function had been usually understood in terms of the analogous

Adler-Bardeen theorem for the U(1) axial current in the N = 2 SYM [118]. In

[47], we may say, the authors developed a formal proof to all orders based on the

Ward identities of the model.

Despite the independence of the Witten partition function under infinitesimal

changes in the coupling constant, such a result should not be surprising. In its

twisted version, we can see that the trace of the energy-momentum is not zero,

but given by

gµνT
µν = Tr{DµφD

µφ̄− 2iDµηψ
µ + 2iφ̄[ψµ, ψ

µ] + 2iφ[η, η] +
1

2
[φ, φ̄]2]} , (3.78)

meaning that SW is not conformally invariant under the transformation

δgµν = h(x)gµν , (3.79)
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3.2 Perturbative β-function of N = 2 super Yang-Mills via twist

for an arbitrary real function h(x) on M . Nonetheless, the trace of the energy-

momentum tensor can be written as a total divergence,

gµνT
µν = DµR

µ , (3.80)

where Rµ = Tr(φ̄Dµφ−2iηψµ), which means, in turn, that SW is invariant under

a global rescaling of the metric: δgµν = wgµν , with w constant – see [46]. The

liberty of choosing g2 → 0 in the partition function, treating the problem in the

weak coupling limit, does not eliminate the possibility of loop corrections to the

effective action (Γ), since there is no Ward identity, or a particular property of the

vertices and propagators of SW capable of eliminating these quantum corrections.

In the off-shell Baulieu-Singer approach, the situation is considerably distinct, as

we shall see in the following sections.
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Chapter 4

Baulieu-Singer approach

In 1988, L. Baulieu and I. M. Singer (BS) proposed a topological off-shell the-

ory based on the BRST symmetry of non-Abelian topological gauge models [48].

The BS approach is not built through a linear transformation of a supersymmetric

gauge theory, like Witten’s TQFT. It is built through a gauge-fixing procedure

of a topological invariant action, in such a way that the BRST operator natu-

rally appears as nilpotent without requiring the use of equations of motion. The

geometric interpretation of such an approach is that the non-Abelian topological

theory lie in an universal space graded as a sum of the ghost number and the

form degree, where the vertical direction of this double complex is determined by

the ghost number, and the horizontal one, by the form degree. In this space the

topological BRST transformations is written in terms of an universal connection,

and its curvature naturally explains the BS approach as a topological Yang-Mills

theory with the same global observables of Witten’s TQFT.
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4.1 BRST symmetry in topological gauge theories

4.1 BRST symmetry in topological gauge theo-

ries

The four-dimensional spacetime is assumed to be Euclidean and flat1. The non-

Abelian topological action S0[A] in four-dimensional spacetime that represents

topological invariants is the Pontryagin action2,

S0[A] =
1

2

∫
d4xF a

µνF̃
a
µν , (4.1)

that labels topologically inequivalent field configurations, as S0[A] = 32π2n, in

which n is the topological charge known as winding number — see Chapter 2.

We must note that the Pontryagin action has three different gauge symmetries

to be fixed, these are:

(i) the gauge field symmetry,

δAaµ = Dab
µ ω

b + αaµ ; (4.2)

(ii) the topological parameter symmetry,

δαaµ = Dab
µ λ

b ; (4.3)

1Throughout the thesis we consider flat Euclidean spacetime. Although the topological ac-
tion is background independent, the gauge-fixing term entails the introduction of a background.
Ultimately, background independence is recovered at the level of correlation function due to
BRST symmetry [48; 119; 120].

2It is worth mentioning that the action S0[A] encompasses a wide range of topological gauge
theories. The Pontryagin action is the most common case because it can be defined for all semi-
simple Lie groups. Nevertheless, other cases can also be considered. For instance, Gauss-Bonnet
and Nieh-Yang topological gravities can be formulated for orthogonal groups [121].
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4.1 BRST symmetry in topological gauge theories

(iii) the field strength symmetry1,

δF a
µν = −gfabcωbF c

µν +Dab
[µα

b
ν] ; (4.4)

where Dab
µ ≡ δab∂µ − gfabcAcµ is the covariant derivative in the adjoint repre-

sentation of the Lie group G, g is the coupling constant, fabc are the structure

constants of the gauge group and ωa, αaµ and λa are the infinitesimal G-valued

gauge parameters. The first parameter (ωa) reflects the usual Yang-Mills sym-

metry of S[A], whereas the second one (αaµ) is the topological shift associated

to the fact that S[A] is a topological invariant, i.e., invariant under continuous

deformations, see (2.27). The third gauge parameter (λa) is due to an internal

ambiguity present in the gauge transformation of the gauge field (4.2). The trans-

formation of the gauge field is composed by two independent symmetries. If the

space has a boundary, the parameter αaµ(x) must vanish at this boundary but not

ωa(x), what explains the internal ambiguity described by (4.3) in which αaµ(x) is

absorbed into ωa(x), and not the other way around.

Following the BRST quantization procedure, the gauge parameters present

in the gauge transformations (4.2)-(4.4) are promoted to ghost fields: ωa → ca,

αaµ → ψaµ, and λa → φa; ca is the well-known Faddeev-Popov (FP) ghost; ψaµ is a

topological fermionic ghost; and φa is a bosonic ghost. The corresponding BRST

transformations are

sAaµ = −Dab
µ c

b + ψaµ,

sca =
g

2
fabccbcc + φa,

sψaµ = gfabccbψcµ +Dab
µ φ

b,

sφa = gfabccbφc, (4.5)

1The antisymmetrization index notation here employed means that, for a generic tensor,
S[µν] = Sµν − Sνµ.
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4.1 BRST symmetry in topological gauge theories

from which one can easily check the nilpotency of the BRST operator,

s2 = 0 , (4.6)

by applying two times the BRST operator s on the fields. Naturally S0[A] is

invariant under the BRST transformations (4.5). The nilpotency property of s

defines the cohomology of the theory, which allows for the gauge fixing of the

Pontryagin action. Furthermore such a property reveals the geometric structure

of the BRST transformations in non-Abelian topological gauge theories, which

elucidates the nature of the global observables through a generalization of the

gauge connection.

4.1.1 Geometric interpretation

In the p-form formalism, the fields c and φ are 0-forms, ψ is the 1-form ψµdxµ,

and F , the following 2-form

F = dA+ AA =
1

2
Fµνdxµ ∧ dxν , (4.7)

where “∧” is the wedge product which indicates that the tensor product is com-

pletely antisymmetric, and d = dxµ
∂
∂xµ

is the exterior derivative whose operation

in the space of smooth p-forms, Λp, d : Λp → Λp+1, on a generic p-form ωp,

ωp = ωi1,i2,...,ipdx
i1 ∧ dxi2 · · · ∧ dxip , (4.8)

is locally defined by

dωp =
∂ωi1,i2,...,ip

∂xj
dxj ∧ dxi1 ∧ dxi2 · · · ∧ dxip . (4.9)
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4.1 BRST symmetry in topological gauge theories

Being ωp a p-form, dωp is a (p + 1)-form. It follows that the exterior derivative

is nilpotent, d2 = 0, due to the antisymmetric property of the indices. One

assumes that s anticommutes with d, {s, d} = 0. We can then write the BRST

transformations in the form

sA = −Dc+ ψ ,

sc = −1

2
[c, c] + φ ,

sψ = −Dφ− [c, ψ] ,

sφ = −[c, φ] . (4.10)

The geometric meaning of the topological BRST transformations showed up

through the definition of the extended exterior derivative as the sum of the ordi-

nary exterior derivative with the BRST operator,

d̃ = d+ s , (4.11)

and the generalized connection

Ã = A+ c . (4.12)

The space is graded as a sum of form degree and ghost number, in which the

BRST operator is the exterior differential operator in the moduli space direction

A/G, where the gauge fields that differ by a gauge transformation are identified.

The whole space is then M × A/G, being M a compact oriented Riemannian

four-dimensional manifold. By direct inspection one sees that the BRST trans-
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4.1 BRST symmetry in topological gauge theories

formations can be written in terms of the generalized curvature1

F = F + ψ + φ , (4.13)

such that

F = d̃Ã+
1

2
[Ã, Ã] , (4.14)

with the Bianchi identity

D̃F = d̃F + [Ã,F] = 0 . (4.15)

In the definition (4.12) and following equations we are adding quantities with

different form degrees and ghost numbers as though they were of the same nature.

Obviously this is not being done directly. We must see equations (4.14) and (4.15)

as an expansion in form degrees and ghost numbers in which the elements with

the same nature on both sides have to be compared.

The topological Yang-Mills theory appear as an extension of the ordinary

Yang-Mills theory in an appropriate extended space, where the group of gauge

transformations G acts on P ×A where A is the set of all vector potentials on the

principle bundle P over M . In this sense G has a connection in the M direction,

and an orthogonal complement in the direction A/G. (For a detailed study on

the geometric interpretation of the universal fibre bundle and its curvature, we

suggest [52].) The relevant cohomology is defined by the cohomology of M×A/G,

d̃2 = 0, as the nilpotency property of s follows from the Bianchi identity (4.15),

being valid without requiring equations of motion. Such a geometric structure

reveals the BRST off-shell character of the BS approach. We will discuss in the

1The nature of φ as the “curvature” in the in instanton moduli space direction is implicit
in the BRST transformation of the FP ghost, that can be rewritten in the geometric mnemonic
form sc+ 1

2 [c, c] = φ.
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4.1 BRST symmetry in topological gauge theories

last section how the universal curvature F generates the same global observables

of Witten theory, i.e., the Donaldson polynomials.

4.1.2 Doublet theorem and gauge fixing: BS gauges

Let us recall the doublet theorem which will be indispensable later on, in order

to fix the gauge ambiguities without changing the physical content of the theory.

Suppose a theory that contains a pair of fields or sources that form a doublet,

i.e.,

δ̂Xi = Yi ,

δ̂Yi = 0 , (4.16)

where i is a certain index, and δ̂ is a fermionic operator. The field (source) Xi

is assumed to be fermionic. As the operator δ̂ increases the ghost number in one

unity by definition, if Xi is an anti-commuting quantity, Yi is a commuting one.

The doublet structure of (Xi,Yi) in eq. (4.16) implies that such fields (or sources)

belong to the trivial part of the cohomology of δ̂. The proof is as follows. Firstly

we define the operators

N̂ =

∫
dx

(
Xi

∂

∂Xi

+ Yi
∂

∂Yi

)
, (4.17)

Â =

∫
dxXi

∂

∂Yi
(4.18)

δ̂ = Yi
∂

∂Xi

, (4.19)

which obey the algebra

{δ̂, Â} = N̂ , (4.20)[
δ̂, N̂

]
= 0 , (4.21)
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4.1 BRST symmetry in topological gauge theories

where δ̂ is a nilpotent operator as it is fermionic, δ̂2 = 0. The operator N̂

counts the number of Xi and Yi. Being 4 a polynomial in the fields, sources and

parameters, the cohomology of the nilpotent operator δ̂, as we know, is given by

the the solutions of

δ̂4 = 0 , (4.22)

that is not exact, i.e., that cannot be written in the form

4 = δ̂Σ . (4.23)

The general expression of 4 is then

4 = 4̃+ δ̂Σ , (4.24)

where 4̃ belongs to the non-trivial part of the cohomology, in other words, it is

closed, δ̂4̃ = 0, but not exact, 4̃ 6= δ̂Σ̃. One can expand 4 in eigenvectors of N̂ ,

4 =
∑
n≥0

4n , (4.25)

such that N̂4n = n4n, where n is the total number of Xi and Yi in 4n. Such

a expansion is consistent as each 4n is a polynomial in Xi and Yi, and δ4n = 0

inclusive for ∀n ≥ 1, according to (4.16) and the commuting properties of Xi and

Yi. Finally, rewriting (4.25) as

4 = 40 +
∑
n≥1

1

n
N̂4n , (4.26)
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then, using the commuting relation (4.20), we get

4 = 40 + δ̂

(∑
n≥1

1

n
Â4n

)
, (4.27)

which shows that all terms which contain at least one field (source) of the doublet

never enter the non-trivial part of the cohomology of δ̂, being thus non-physical.

In order to fix the three gauge symmetries of the non-Abelian topological

theory we introduce the following three BRST doublets:

sc̄a = ba , sba = 0 ,

sχ̄aµν = Ba
µν , sBa

µν = 0 ,

sφ̄a = η̄a , sη̄a = 0 , (4.28)

where χ̄aµν and Ba
µν are (anti-)self-dual fields according to the (negative) positive

sign in (4.31), see below. The G-valued Lagrange multiplier fields ba, Ba
µν and η̄

have respectively ghost numbers 0, 0, and −1; while the antighost fields c̄a, χ̄aµν

and φ̄a, ghost numbers −1, −1 and −2. (For completeness and further use, the

quantum numbers of all fields are displayed in Table 4.1.)

Field A ψ c φ c̄ b φ̄ η̄ χ̄ B

Dim 1 1 0 0 2 2 2 2 2 2

Ghost no 0 1 1 2 -1 0 -2 -1 -1 0

Table 4.1: Quantum numbers of the fields.

Working in Baulieu-Singer gauges amounts to considering the constraints [48]

∂µA
a
µ = −1

2
ba , (4.29)

Dab
µ ψ

a
µ = 0 , (4.30)

F a
µν ± F̃ a

µν = −1

2
ρBa

µν , (4.31)
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4.1 BRST symmetry in topological gauge theories

where ρ is a real parameter. Beyond the gauge fixing of the topological ghost

(4.30), we must interpret the requirement of two extra gauge fixings due to the

fact that the gauge field possesses two independent gauge symmetries. In this

sense the condition (4.29) fixes the usual Yang-Mills symmetry δAaµ = Dab
µ ω

b,

and the second one, (4.31), the topological shift δAaµ = αaµ. The (anti-)self-dual

condition for the field strength (in the limit ρ → 0) is convenient to identify

the well-known observables of topological theories in four dimensions (see [40])

known as Donaldson polynomials [15; 17], see Chapter 3, that are described in

terms of the instantons — in which we are interested in here. This condition on

Fµν (4.31), which is indirectly a condition on the gauge field as Fµν only depends

on Aaµ, corresponds to the gauge fixing of the field strength itself, because F a
µν also

transforms as a gauge field, cf. (4.4). The first gauge condition on Aaµ fixes the

information about its divergence while the second one restricts its curl freedom,

in such a way that, from the point of view of the four-dimensional Helmholtz

theorem [122], the gauge field is well-defined — disregarding the Gribov copies

for a moment.

The partition functional of the topological action in BS gauges (4.29) takes

the form

ZBS =

∫
[dc][dc̄][dψµ][dχ̄µν ][dBµν ][dφ][dφ̄][dη]e−SBS , (4.32)

whereby

SBS = S0[A] + SBSgf , (4.33)

being SBSgf the gauge-fixing action which belongs to trivial part of the cohomology,
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given by

SBSgf = sTr

∫
d4x

[
χ̄µν

(
Fµν ± F̃µν +

1

2
ρBµν

)
+ φ̄Dµψµ + c̄

(
∂µAµ −

1

2
b

)]
= Tr

∫
d4x

[
Bµν

(
Fµν ± F̃µν +

1

2
ρBµν

)
+ χ̄µν

(
D[µψν] ±

1

2
εµναβD[αψβ]

)
− χ̄µν

[
c, Fµν ± F̃µν

]
+ ηDµψµ + φ̄ [ψµ, ψµ] + φ̄DµDµφ− b

(
∂µAµ −

1

2
b

)
− c̄∂µDµc− c̄∂µψµ] . (4.34)

A key observation is that, for ρ = 1, one can eliminate the the topological

term S0[A], i.e., the Pontryagin action, by integrating out the field Bµν , such that

Tr{Bµν

(
Fµν + F̃µν

)
+

1

2
BµνBµν} ∼ Tr{FµνFµν + FµνF̃µν} , (4.35)

and

∫
[dc][dc̄][dψµ][dχ̄µν ][dBµν ][dφ][dφ̄][dη]→

∫
[dc][dc̄][dψµ][dχ̄µν ][dφ][dφ̄][dη] .

(4.36)

In this case we obtain a classical topological action which is equivalent to a Yang-

Mills action plus ghost interactions. Such an action, however, does not produce

local observables as the cohomology of the theory remain the same, as we will

discuss in more detail later. The Green functions of local operators in (4.32)

does not depend on the choice of the background metric. Let SgBS be an action

with metric choice gµν , and Sg+δgBS , the same action up to the change of gµν into

gµν + δgµν . As the only terms that depends on the metric belong to the trivial

part of cohomology we conclude immediately that SgBS and Sg+δgBS only differ by

a BRST-exact term,

SgBS − S
g+δg
BS = s

∫
d4x4(−1) , (4.37)
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where 4(−1) is a polynomial of the fields, with ghost number −1. It means

that the expectation values of local operators are the same if computed with a

background metric gµν or gµν + δgµν ,

δ

δgµν
〈
∏
p

Oαp(φi)〉 = 0 , (4.38)

where Oαp(φi) are functional operators of the quantum fields φi(x) – see Chapter

3, eq. (3.7). An anomaly in the topological BRST symmetry would break the

equation above. However there is no 4-form with ghost number 1,4(1)
4−form, defined

modulo s- and d- exact terms which obeys (cf. [48])

s4(1)
4−form +d4(2)

3−form = 0 , (4.39)

therefore radiative corrections that could break the topological property (4.38)

at the quantum level are not expected. The formal proof of the absence of gauge

anomalies to all orders in the topological BS theory is achieved by employing the

isomorphism described in [50; 123].

4.1.3 Absence of gauge anomalies

The proof of the absence of gauge anomalies for the Slavnov-Taylor identity,

S(S) = 0 , (4.40)

consists in proving that the cohomology of S is empty. In equation above, S is

the classical action for a given gauge choice, and

S =

∫
d4x (sΦσ)

δ

δΦσ
, (4.41)

69



4.1 BRST symmetry in topological gauge theories

where Φσ represents all fields. As S is a Ward identity, in the absence of anomalies

the symmetry (4.40) is also valid at the quantum level, i.e., S(Γ) = 0, being Γ

the quantum action with loop corrections — see Appendix A.

In eq. (4.41), sΦσ represents the BRST transformation of each field Φσ. The

fields c̄, b, χ̄µν , Bµν , φ̄ and η̄ transform as doublets, cf. eq. (4.28). Changing the

variables according to the redefinitions

ψ → ψ′ = ψ −Dc ,

φ → φ′ = φ− 1

2
[c, c] , (4.42)

the BRST transformations (4.10) are reduced to the doublet transformations

sA = ψ′ ,

sψ′ = 0 ,

sc = φ′ ,

sφ′ = 0 .

(4.43)

It configures a reduced transformation in which the non-linear part of the BRST

transformations in the Slavnov-Taylor identity were eliminated. The complete

transformation in this space is given by the reduced operator

Sdoublet =

∫
d4x (sΦ′

σ
)
δ

δΦ′σ
, (4.44)

where Φ′ = {A,ψ′, c, φ′, c̄, b, χ̄µν , Bµν , φ̄, η}, which is composed of five doublets. It

means that Sdoublet has vanishing cohomology (H),

H(Sdoublet) = ∅ , (4.45)
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in other words, that any polynomial of the fields Φ′, 4(Φ′), that satisfies

Sdoublet(4(Φ′)) = 0 , (4.46)

belongs to the trivial part of the cohomology of Sdoublet — see the doublet theorem

in previous section. The crucial point here is the fact that the cohomology of S in

the space of local integrated functionals in the fields and sources is isomorphic to

a subspace of H(Sdoublet). Consequently S has also vanishing cohomology [123],

H(S) = ∅ . (4.47)

(For an algebraic demonstration of the isomorphism between H(Sdoublet) and

H(S), see [50]. An alternative algebraic proof of the H(S) triviality can be found

in [96].) The result (4.47) shows that there is no room for an anomaly in the

Salvnov-Taylor identity (4.40). All counterterms at the quantum level will be-

long to the trivial part of cohomology of the linearized Slavnov-Taylor operator,

see Appendix A, and the condition (4.39) for the existence of an anomaly capable

of breaking the topological property (4.38) never occurs, being the background

metric independence valid to all orders in perturbation theory.

The second point, and not least, is the conclusion that the BS theory has no

local observables. Due to its vanishing cohomology (4.47), all BRST-invariant

quantities must belong to the non-physical (or trivial) part of the cohomology of

s, and the only possible observables are the global ones, i.e., topological invari-

ants for four-manifolds. Such observables are characterized by the so-called basic

cohomology of s [96; 124], in which the observables are globally defined in agree-

ment with the supersymmetric formulation of J. H. Horne [125]. A simple way

to identify theses observables is accomplished by studying the cohomology of the

extended space M × A/G, where the metric independent observables, known as
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Chern classes, are constructed in terms of the universal curvature F (4.13). The

Donaldson polynomials are naturally recovered, characterized by the so-called

equivariant cohomology, that relates the BS approach to Witten theory.

4.2 Baulieu-Singer approach versus Donaldson-

Witten theory

We would like to emphasize that the Baulieu-Singer gauge-fixing procedure does

not exactly recover the Witten action. The BRST charge in the Baulieu-Singer

approach is off-shell nilpotent, as a consequence of the Bianchi identity for the

universal curvature F of the space M×A/G (4.15). Such a cohomological property

does not depend on the gauge choice, while the BRST charge in Witten theory is

only on-shell nilpotent. It is possible to obtain exactly the Witten action following

the BRST gauge-fixing construction of Brooks et al. [49]. In this construction, one

first gauge fixes a Lagrangian, L0, which is assumed to be Yang-Mills invariant,

and also invariant under a topological shift

δ1A
a
µ = αaµ . (4.48)

The Lagrangian that satisfies both gauge conditions is “zero” or, in our case,

a topological invariant for four-manifolds, namely, the Pontryagin action (4.1),

considering that the parameter αaµ asymptotically drops off as one power faster

than the gauge field in order to not change the winding number. By choosing the

anti-self-dual gauge constraint (4.31) with ρ = 0 to fix L0 ∼ TrFµνF̃µν , one gets

L1 = L0 + L
(1)
gf+FP

= L0 + Tr{1

4
iBµν(Fµν + F̃µν)− iχµνDµψν} , (4.49)
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where the antisymmetric field χ̄µν in (4.28) was redefined through χ̄µν → iχµν .

The resulting Lagrangian, L1, contains a BRST symmetry given by the set of

doublet transformations

s1A
a
µ = ψaµ , s1ψ

a
µ = 0 ,

s1χ
a
µν = Ba

µν , s1B
a
µν = 0 , (4.50)

being s1 off-shell nilpotent. Without a new restriction, ψ possesses four degrees

of freedom (in Lorentz index), while the anti-self-dual antisymmetric χµν field,

only three. In order to equal their degrees of freedom (a particular feature of

Witten theory), another restriction on ψ is required. Fortunately, L1 has an

extra symmetry given by

δ2ψ
a
µ = i(Dφ)a , δ2B

a
µν = ig[φ, χµν ]

a , (4.51)

where the scalar field φa is a bosonic ghost (the same as before, present in the s

operator). To gauge fix this extra symmetry, the authors of [49] started with an

ansatz given by the gauge-fixing Lagrangian

L
(2)
gf+FP = (δ1 + δ2)Tr {ic0φ̄(Dµψµ + c1ζ) + c2χµνBµν} , (4.52)

where ci are arbitrary real constants, φ̄a is the bosonic anti-ghost field, and ζa,

a fermionic auxiliary field. In order to obtain a final action with a global scaling

and U symmetries with the same weights of (A, φ, φ̄, ψ, χ) in Witten theory, which

are (1, 0, 2, 1, 2) and (0, 2,−2, 1,−1), respectively, we identify ζ = g[φ, η], being

η the anti-commuting field with weights 2 and −1, which is the transform of

φ̄, i.e., δ2φ̄ = 2iη, cf. eq. (3.38). One observes that (φ̄, η) is not a doublet, as

δ2η = − i
2
g[φ, φ̄] 6= 0, an structure considerably different to what one would expect
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4.2 Baulieu-Singer approach versus Donaldson-Witten theory

from traditional BRST gauge fixing, but in complete agreement with Witten’s

TQFT [103], as the algebra of (4.51) only closes up to an ordinary Yang-Mills

gauge transformation [49]. In order to maintain the time-reversal symmetry of

the final Lagrangian, L, the natural and unique choice of ci are c0 = c1 = 1
2

and

c2 = 1
8
. After using the auxiliary field equations of motion, one finally obtains

L− L0 = L
(1)
gf+FP + L

(2)
gf+FP

= LW , (4.53)

where LW is the full Witten Lagrangian in eq. (3.34), which shows that Witten

theory can be obtained through a BRST gauge-fixing construction. This proce-

dure, however, is not equivalent to Baulieu-Singer approach. The final Witten

Lagrangian possesses a remaining Yang-Mills ambiguity. The gauge-fixing con-

struction of Brooks et al. is based on a class of gauges in which the independence

of the Faddeev-Popov ghosts is imposed. The gauge fixing is performed in two

“steps”, and the final action cannot be written in the form sW, being W a poly-

nomial in the fields, and s the on-shell BRST operator. The closure of Brooks

et al. algebra requires the equations of motion, as it just reproduces the Witten

action. In the BS approach, all symmetries are fixed at once through s, charac-

terized by an on-shell BRST charge, and the final BS Lagrangian does not possess

a remaining Yang-Mills ambiguity.

It is possible to choose gauges in the BS approach in order to obtain the Witten

action plus ghost interactions, but never the Witten action alone. These new

ghost interactions are needed as the topological Yang-Mills symmetry are fully

gauge-fixed, inclusive the ordinary Yang-Mills one, according to the cohomology

of the complete s. In particular, taking into account ghost numbers and mass
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4.2 Baulieu-Singer approach versus Donaldson-Witten theory

dimensions, we can add to BS action (4.33) the BRST-exact term

sTr {c[χ̄µν , χ̄µν ]−
1

2
c̄[φ, φ̄]} = Tr {φ[χ̄µν , χ̄µν ]−

1

2
[c, c][χ̄µν , χ̄µν ]

+ 2Bµν [c, χ̄µν ] + b[φ, φ̄]

− c̄[[φ, c], φ̄] + c̄[φ, η̄]} . (4.54)

After integrating out the bosonic fields Bµν and b, cubic and quartic interactions

involving χµν , φ, φ̄ and η are produced1. These interactions are present in Witten

action. In short, together with the BRST-exact term above, the Baulieu-Singer

approach recovers the Witten action accompanied by quadratic ghost terms and

ghost interactions,

S
(W )
BS = SBS + sTr {c[χ̄µν , χ̄µν ]−

1

2
c̄[φ, φ̄]}

= SW + ΣG , (4.56)

where ΣG represents the ghost quadratic terms and interactions mentioned above.

The inclusion of the BRST-term (4.54) only amounts to a change of the equations

of motion of the Lagrange multipliers, i.e., Bµν = Fµν ± F̃µν into Bµν = Fµν ±
1The elimination of Bµν and b partially breaks the nilpotency of s, giving rise to a new

BRST operator, s0,

s0Aµ = −Dµc+ ψµ ,

s0c = φ− 1

2
[c, c] ,

s0ψµ = −Dµφ− [c, ψµ] ,

s0φ = −[c, φ] ,

s0c̄ = −∂µAµ ,
s0χ̄ = Fµν + F̃µν ,

s0φ̄ = η̄ ,

s0η̄ = 0 , (4.55)

where s2
0 does not annihilate the antighosts χ̄ and c̄, being proportional, in contrast, to antighost

equations of motion, a standard property in BRST quantization.
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4.2 Baulieu-Singer approach versus Donaldson-Witten theory

F̃µν + [c̄, χ̄µν ], and b = ∂µAµ into b = ∂µAµ + [φ, φ̄], that is obtained through a

simple modification of the gauge constraints in (4.29). Eq. (4.56) shows that the

supersymmetric Witten action appears as a sector of the topological Yang-Mills

gauge theory characterized by a larger BRST symmetry. The extra ghost action,

ΣG, does not belong to the trivial cohomology of s, as part of the BRST-exact

term included in (4.56) — cubic and quartic interactions — was incorporated in

SW to obtain the full Witten action. Consequently,

SW − S(W )
BS 6= sW , (4.57)

with W some polynomial in the fields, which shows that Witten and Baulieu-

Singer actions do not differ by a BRST-exact term. This relation does not depend

on the gauge choice. In principle, it is not clear that Witten and Baulieu-Singer

theories share the same observables. In spite of relation (4.57), the fact that BS

theory also has the Donaldson polynomials as observables is a well-known result

in topological gauge theories [50; 51; 52]. Such a behavior can be explained by the

equivariant cohomology, defined as a cohomology for invariant quantities under

ordinary Yang-Mills gauge transformations, which are independent of Faddeev-

Popov ghost fields. This cohomology also showed up in the BS topological case,

specifically in the Chern classes defined on the extended space M ×A/G.

4.2.1 Equivariant cohomology and global observables

Witten’s topological theory is constrcuted without fixing its remaining ordinary

Yang-Mills symmetry. Witten works all the time in the instanton moduli space

A/G. A generic observable of his theory, O
(W )
αi , is naturally gauge invariant under
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4.2 Baulieu-Singer approach versus Donaldson-Witten theory

Yang-Mills gauge transformations,

sYMO(W )
αi

= 0 , (4.58)

where sYM is the nilpotent BRST operator in ordinary Yang-Mills symmetry, i.e.,

without including the topological shift:

sYMAµ = −Dµc ,

sYMΦadj = −[c,Φadj] , (4.59)

where Φadj is a generic field in adjoint representation that suffers a group rotation.

We conclude that we can add an ordinary Yang-Mills gauge transformation (in

the A/G direction) to Witten fermionic symmetry based on the “topological shift”

δAµ ∼ ψµ,

δ → δeq = δ + sYM , (4.60)

that the descent equations for δ ∼ {Q, · } will remain the same, see (3.41) and

(3.64)-(3.68). The operator δeq is nilpotent when acting on gauge-invariant quan-

tities under YM transformations, thus defining a cohomology in a space where

the fields that differ by a Yang-Mills gauge transformations are identified, known

as equivariant cohomology. Such a property indicates that there is a link between

Witten theory and BS approach in which the BRST operator, s, is naturally

defined taking into account the topological shift and the ordinary Yang-Mills

transformation in a single formalism.

To prove the link between both, we must remember that the universal curva-

ture in the space M × A/G, F, is given by the sum F + ψ + φ. The difference

between the on-shell BRST operator, s, and the Witten fermionic symmetry, δ,
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4.2 Baulieu-Singer approach versus Donaldson-Witten theory

for X = (F, ψ, φ) is of the form

sX = δX + [X, c] , (4.61)

in other words, in the space of the fields (F, ψ, φ), s and δ differ by an ordinary

Yang-Mills transformation, as (F, ψ, φ) transform in the adjoint representation of

the gauge group. These fields are the only ones we need to obtain the Donaldson

polynomials as the observables of the BS theory, since in the space M×A/G they

are constructed in terms of F, which are composed of a sum of these three fields.

This allows for identifying the equivariant operator with the BRST one,

δeq ≡ s , (4.62)

according to the construction of the observables in Witten and BS theory, respec-

tively.

To understand the above statement, we must invoke the n’th Chern class,

W̃n, defined in terms of the universal curvature by

W̃n = Tr (F ∧ F ∧ · · · ∧ F︸ ︷︷ ︸
n times

) (4.63)

where n = {1, 2, 3, · · · } is the number of wedge products1. (The Polyakov loop,

W
(C)
P = Tr{Pei

∮
C Aµdxµ} , (4.64)

unlike the Wilson loop which is a gauge-invariant observable obtained from the

holonomy of the Abelian gauge connection (3.9), is not an observable in the non-

1It is not possible to construct topological observables using the Hodge product, as
it is metric dependent. For this reason we never obtain Yang-Mills terms of the type
{Tr(FµνF

µν),Tr(FµνF
νσFµ σ), · · · }, without Levi-Civita tensors in the internal product, in

the place of metric tensors.
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Abelian topological BS case, as it is not gauge-invariant due to the topological

shift symmetry. In any case, it does not make sense to discuss confinement in the

BS theory, as it is not confining to any energy scale. So that the only possibilities

for topological invariants are the wedge products in W̃n.) The Weyl theorem

ensures that W̃n is closed with respect to the extended differential operator d̃ =

d+ s [48; 126], i.e.,

d̃ W̃n = 0 . (4.65)

If we choose the first Chern class

W̃1 = Tr (F ∧ F) , (4.66)

the expansion in ghost numbers of equation (4.65) yields

sTr (F ∧ F ) = dTr (−2ψ ∧ F ) , (4.67)

sTr (ψ ∧ F ) = dTr (−1

2
ψ ∧ ψ − φF ) , (4.68)

sTr (ψ ∧ ψ + 2φF ) = dTr (2ψφ) , (4.69)

sTr (ψφ) = dTr (−1

2
φφ) , (4.70)

sTr (φφ) = 0 , (4.71)

which are the same descent equations obtained in (3.64)-(3.68) following Witten

analysis, only replacing δ (or δeq) by s, proving that the Baulieu-Singer and

Witten (in the weak coupling limit) theories possess the same observables given

by the Donaldson invariants (3.72).

It should not seem surprising the fact that the observables in the BS approach

are naturally invariant under ordinary Yang-Mills symmetry, as the n’th Chern

class is Yang-Mills invariant itself (4.63) since F transforms in the adjoint repre-

sentation of the gauge group. Equation (4.65) provides a powerful tool to obtain
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4.2 Baulieu-Singer approach versus Donaldson-Witten theory

Donaldson polynomials in any ghost number. One must note that we do not

have to worry about with the independence of Fadeve-Popov ghosts to construct

the observables in the BS approach. Although the gauge-fixed BS action has FP

ghosts due to the gauge fixing of the Yang-Mills ambiguity, the (c, c̄) indepen-

dence of W̃n is a direct consequence of the fact that the universal curvature of

the sapce M×A/G does not depend on FP ghosts, but only on F , and the ghosts

ψ and φ.

in the weak coupling limit of Witten’s TQFT, the observables of both theories

are undoubtedly the same: the topological Donaldson invariants. We might ask

if the quantum behavior are also compatible, once BS and Witten actions does

not differ by a BRST-exact term, cf. (4.57), in other words, we cannot say, in

principle, that BS and Witten partition functions are quantically correspondent,

as

ZBS =

∫
DΦe−SBS =

∫
DΦe−SW−ΣG , (4.72)

wherein ΣG does not belong to the trivial part of the s cohomology. At a first

view, ZBS 6= ZW =
∫
DΦe−SW . If we could write ΣG as a BRST-exact term, i.e.,

ΣG = sW for W a generic polynomial in the fields, then we would get

e−ΣG = 1 + s

(
∞∑
n=0

W (sW)n

)
, (4.73)

due to the nilpotency of s; and therefore including e−ΣG would be equivalent to

introduce an unit in the path integral, since the expectation values of BRST-

exact terms vanish, — but this is not the case. In fact ΣG 6= sW, which opens the

possibility for both theories to have different quantum properties. The one-loop

exactness of twisted N = 2 SYM is a well-known result in literature [47]. We

will carefully analyse the Ward identities of the BS theory in self-dual Landau

gauges, in order to compare the quantum behavior between on-shell and off-shell
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4.2 Baulieu-Singer approach versus Donaldson-Witten theory

approaches in topological Yang-Mills theories. We conclude that the BS and

twisted N = 2 SYM theories are not quantically equivalent — the β-functions

are different, unless we take the limit g → 0 in the Witten theory. Such a

behaviour is in agreement with the energy regime in which the BS and Witten

theories share the same observables.
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Chapter 5

Quantum properties of

topological Yang-Mills theories I:

Ward identities and

renormalizability

The so-called Algebraic Renormalization [98] provides a systematic setup to con-

struct the quantum extension of classical symmetries, which allows to prove if

the theory is renormalizable (or not) to all orders in perturbation theory, with-

out explicitly computing Feynman diagrams. The proof of renormalizability is

accomplished via computation of cohomological classes, defined by the Slavnov-

Taylor identity, which contains all the information of the BRST transformations

of the the model, under which the classical action is gauge invariant. Such an

algebraic method applies to the perturbative regime, built order by order in the

loop expansion of the quantum action. It gives all allowed non-trivial countert-

erms and anomalies, accordingly to the set of symmetries of the theory. As the

procedure is recursive, the results are automatically extended to all orders. We
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must say that the convergence of the perturbative series is not handled within

this algebraic setup, meaning that the method requires the theory to be renor-

malizable by power counting. In few words, the Algebraic Renormalization does

not provide the renormalization of the theory for a particular regularization, but

its renormalizability to all orders, independently of the regularization scheme.

Our aim is to apply the algebraic BRST-renormalization techniques to study

the quantum properties of the topological Baulieu-Singer theory which is based

on an off-shell BRST gauge fixing of a metric independent action of Schwarz

type, composed only of topological invariants, namely, the Pontryagin action in

four dimensions. The BS theory represents the quantization of the Pontryagin

action, which, in turn, represents the instanton sector of QCD vacuum. (The

analysis of the symmetry structure of the Pontryagin action and its consequences

could reveal some topological aspects of the QCD asymptotic behavior in the

low energy limit, or, in general, of Yang-Mills theories following the effective

action (2.65) in the presence of the θ-vacuum.) As discussed in the previous

chapter, such a topological theory possesses the same observables — given by the

Donaldson polynomials — of the Witten on-shell topological theory (for g → 0)

derived from a twisted version of the N = 2 super Yang-Mills action. Despite

this correspondence in the weak coupling limit, it is not guaranteed that both

theories have the same quantum behavior (the same β-function), as they have

different cohomological properties. Moreover, the BS theory does not recover the

N = 2 SYM observables in the strong limit.

The quantum stability to all orders of the BS theory was first worked out

in [127], where the author applied algebraic BRST-renormalization techniques.

In the latter, it was chosen the Landau gauge for the gauge field, and the same

constraints in the BS gauges, (4.31) and (4.30), with ρ = 0. The result, in this

particular gauge choice, is that the theory is renormalizable to all orders with
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seven independent renormalization parameters. The allowed counterterms found

in [127] are in agreement with one-loop evaluations via background method due to

Birmingham et al. [128], where the topological nature of the theory is preserved

at the quantum level. The Birmingham et al. evaluation was worked out based

on the Labastida-Pernici gauge fixing [129] which, in turn, has its origin in the

Batalin-Vilkovisky algorithm [130]. Taking a particular configuration of auxiliary

fields, the Labastida-Pernici gauge-fixing action, SLP , can be written as a BRST-

exact term,

SLP = δBV Tr{1

4
χ̄µν(F

(+)
µν +Gµν) +

1

2
φ̄Dµψµ + c̄∂µAµ} , (5.1)

with F (+) defined in (3.35), and δBV the Batilin-Vilkovisky operator of gauge

transformations that consist of an off-shell nilpotent BRST operator, δ2
BV = 0.

The gauges in SLP are the same as the ones employed in the algebraic analysis

of [127] (taking Gµν = 0), whose action has the same off-shell structure of (5.1)

as it is based on the Baulieu-Singer approach. So it its not surprising that the

results of both methods are in agreement.

A similar BRST algebraic analysis was performed in [53], where the authors

considered a subtle change in the gauge choice of the topological ghost ψaµ, for

which they also used the Landau gauge constraint,

∂µψ
a
µ = 0 , (5.2)

instead of Dab
µ ψ

b
µ = 0. In this type of Landau gauges, also known as self-dual

Landau gauges, the topological action enjoys a new symmetry called vector su-

persymmetry, providing a new Ward identity to the BS theory, which reduces

the number of independent renormalization parameters from seven to four. By

investigating the topological Yang-Mills theories in self-dual Landau gauges, we
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discovered two extra symmetries [54]. One of them relates the topological ghost

with the Faddeev-Popov one,

δψaµ ⇐⇒ Dab
µ c

b . (5.3)

Aftermath, applying the new Ward identities corresponding to these extra sym-

metries, we verified that the theory has, in fact, only one independent renormal-

ization parameter. As a consequence of the vector supersymmetry, we proved

that the gauge propagator and the vacuum polarization vanish to all orders in

perturbation theory. Armed with this result, we were able to demonstrated that

the theory is tree-level exact, in other words, that the n-points Green functions

of the theory does not receive any radiative corrections at the quantum level, due

to their vertex structure, and cohomological properties. The system of Z-factors,

dependent on the remaining renormalization parameter, showed up an unusual

ambiguity, which is absolutely consistent for a vanishing β-function, as we can

directly infer from the absence of radiative corrections in self-dual Landau gauges.

5.1 Symmetries in self-dual and anti-self-dual

Landau gauges

Working in the (anti-)self-dual Landau gauges ((A)SDL) amounts to considering

the constraints [53]

∂µA
a
µ = 0 , (5.4)

∂µψ
a
µ = 0 , (5.5)

F a
µν ± F̃ a

µν = 0 . (5.6)
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Through the introduction of the three BRST doublets (c̄a, ba), (χ̄aµν , B
a
µν) and

(φ̄, η̄), described in eq. (4.28), the complete gauge-fixed topological action in the

(A)SDL gauges takes the form

S[Φ] = S0[A] + Sgf [Φ] , (5.7)

for all fields Φ ≡ {A,ψ, c, φ, c̄, b, φ̄, η̄, χ̄, B}, where

Sgf [Φ] = s

∫
d4z

[
c̄a∂µA

a
µ +

1

2
χ̄aµν

(
F a
µν ± F̃ a

µν

)
+ φ̄a∂µψ

a
µ

]
=

∫
d4z

[
ba∂µA

a
µ +

1

2
Ba
µν

(
F a
µν ± F̃ a

µν

)
+ (η̄a − c̄a) ∂µψaµ + c̄a∂µD

ab
µ c

b+

− 1

2
gfabcχ̄aµνc

b
(
F c
µν ± F̃ c

µν

)
− χ̄aµν

(
δµαδνβ ±

1

2
εµναβ

)
Dab
α ψ

b
β + φ̄a∂µD

ab
µ φ

b+

+ gfabcφ̄a∂µ
(
cbψcµ

)]
. (5.8)

Following the Algebraic Renormalization setup described in [98], the starting

point for the quantum investigation is to write the Slavnov-Taylor identity in its

local form. To this aim, we need to introduce external sources in order to control

the non-linear nature of the BRST transformations (4.5), in the form of BRST
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doublets, two of them to be precise, given by1

sτaµ = Ωa
µ , sΩa

µ = 0 ,

sEa = La , sLa = 0 . (5.11)

We shall see later that we need an extra doublet to control a non-linear bosonic

symmetry of the full classical action, because of the non-linear transformation

δBa
µν = fabccbχ̄cµν , (5.12)

so that the extra doublet is given by

sΛa
µν = Ka

µν , sKa
µν = 0 . (5.13)

The corresponding quantum number of the external sources are displayed in Table

5.1 below. The respective external action, written as a BRST-exact contribution

to control the non-linear transformations without changing the physical content,

1The non-linearity of a symmetry of the action, in which a generic field φi transforms as

δφi = Cij1···jnφj1 · · ·φjn , (5.9)

would imply, for example, the variation of a given n-point Green function in the form

δ〈φl1(x1) · · ·φi(xi) · · ·φjn(ln)〉 = 〈φl1(x1) · · · [Cij1···jnφj1(xj1) · · ·φjn(xjn)] · · ·φln(xn)〉 , (5.10)

showing that the composite operator Cij1···jnφj1 · · ·φjn is inserted as an unique entity, that
needs to enter in the renormalization process. We then introduce external sources {Yi, Xi}
to control the non-linearity, whereby Yi = Cij1···jnφj1 · · ·φjn , with Xi as its doublet pair, to
be introduced into the action in the trivial part of BRST cohomology. We absorb the BRST
transformation of the doublet {Yi, Xi} in the symmetry δ, written in its local form where δφi
is replaced by δS

δYi
, and after proving the quantum stability of the model, the physical limit is

obtained by setting the external sources to zero, {Yi, Xi}|phys → 0.
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Source τ Ω E L Λ K

Dim 3 3 4 4 2 2

Ghost no -2 -1 -3 -2 -1 0

Table 5.1: Quantum numbers of the external sources.

takes the form

Sext = s

∫
d4z
(
τaµD

ab
µ c

b +
g

2
fabcEacbcc + gfabcΛa

µνc
bχ̄cµν

)
=

∫
d4z
[
Ωa
µD

ab
µ c

b +
g

2
fabcLacbcc + gfabcKa

µνc
bχ̄cµν + τaµ

(
Dab
µ φ

b + gfabccbψcµ
)

+ gfabcEacbφc + gfabcΛa
µνc

bBc
µν − gfabcΛa

µνφ
bχ̄cµν

− g2

2
fabcf bdeΛa

µνχ̄
c
µνc

dce
]
. (5.14)

Therefore, the full classical action we shall consider is

Σ[Φ] = S0[A] + Sgf [Φ] + Sext[Φ] , (5.15)

where S0[A] is the Pontryagin action. The Slavnov-Taylor identity expresses the

BRST invariance of the full action (5.15), so given by

S(Σ) = 0 , (5.16)

where

S(Σ) =

∫
d4z

[(
ψaµ −

δΣ

δΩa
µ

)
δΣ

δAaµ
+
δΣ

δτaµ

δΣ

δψaµ
+

(
φa +

δΣ

δLa

)
δΣ

δca
+

δΣ

δEa

δΣ

δφa
+

+ ba
δΣ

δc̄a
+ η̄a

δΣ

δφ̄a
+Ba

µν

δΣ

δχ̄aµν
+ Ωa

µ

δΣ

δτaµ
+ La

δΣ

δEa
+Ka

µν

δΣ

δΛa
µν

]
. (5.17)

In order to extend this symmetry to the quantum level, we must invoke the

BRST invariance of the vacuum norm in the presence of an external source, 〈0|0〉J ,
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in orders words, the BRST invariance of the partition functional, i.e.,

sZ[J ] = 0 , (5.18)

where

Z[J ] = 〈0|0〉J =

∫
DΦ e−S−

∫
d4xJσΦσ , (5.19)

wherein

JσΦσ = jaµA
a
µ+ jab b

a+ωaµψ
a
µ+ ζ̄aca+ ζac̄a+ jaφφ

a+ jaφ̄φ̄
a+ jaη̄ η̄

a+ωaµνB
a
µν + ω̄aµνχ̄

a
µν ,

(5.20)

being Jσ ≡ {jaµ, jab , ωaµ, ζ̄a, ζa, jaφ, jaφ̄, j
a
η̄ , ω

a
µν , ω̄

a
µν} the classical sources coupled to

the fields which, being classical, obey

sJσ = 0 . (5.21)

Using equations (5.19)-(5.21), the BRST invariance (5.18) yields

∫
d4x

(
jaµsA

a
µ − ωaµsψaµ − ζ̄asca − ζasc̄a + jaφsφ

a + jaφ̄sφ̄
a − ω̄aµνsχ̄aµν

)
= 0 ,

(5.22)

and finally, using the well-known equation in quantum field theory1

δΓ

δΦσ

= (−1)αJσ , (5.23)

where Γ is the quantum action, following the convention α = 0 or 1 for fermionic

1As usual, we are using a short notation. The quantum fields Φσ here are the ones that
obey the classical equations of motion, i.e., Φσ ≡ 〈Φσ〉c — the expectation value of Φσ only
taking into account the connected Feynman diagrams.
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5.1 Symmetries in self-dual and anti-self-dual Landau gauges

or bosonic fields, respectively, one obtains

S(Γ) = 0 , (5.24)

where

S(Γ) =

∫
d4z

[(
ψaµ −

δΓ

δΩa
µ

)
δΓ

δAaµ
+
δΓ

δτaµ

δΣ

δψaµ
+

(
φa +

δΓ

δLa

)
δΓ

δca
+

δΓ

δEa

δΓ

δφa
+

+ ba
δΓ

δc̄a
+ η̄a

δΓ

δφ̄a
+Ba

µν

δΓ

δχ̄aµν
+ Ωa

µ

δΓ

δτaµ
+ La

δΓ

δEa
+Ka

µν

δΓ

δΛa
µν

]
, (5.25)

which shows that the Slavnov-Taylor identity consists of a Ward identity au-

tomatically transferred to the quantum level. Such a behavior hides a general

property of quantum extension of classical symmetry known as principle of quan-

tum action, see [98], which states that exact (like the Slavnov-Taylor identity) or

linear broken classical symmetries are also symmetries of the quantum action, in

few words1,

δsym(Σ) = 4cl implies δsym(Γ) = 0 , (5.26)

if the polynomial 4cl is at most linear in the fields, (in the case of exact sym-

metries, 4cl = 0); whereby δsym(Σ) stands for transformations on the classical

fields, and δsym(Γ), for transformations on 〈φσ〉c, see footnote on previous page.

Together with the Slavnov-Taylor identity, the full action possesses a rich set

of Ward identities composed of the following symmetries:

1The quantum action principle (QAP) illustrated by equation (5.26) is not a trivial issue.
It is the renormalized version of Schwinger action principle [131], and was worked out in [132;
133; 134], where it was proved that QAP is applicable for local, Lorentz invariant and power-
counting renormalizable theories. For a systematic proof of QAP via algebraic analysis we
strongly suggest [98].
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5.1 Symmetries in self-dual and anti-self-dual Landau gauges

(i) Ordinary Landau gauge fixing and Faddeev-Popov anti-ghost equation:

δΣ

δba
= ∂µA

a
µ ,

δΣ

δc̄a
− ∂µ

δΣ

δΩa
µ

= −∂µψaµ . (5.27)

(ii) Topological Landau gauge fixing and bosonic anti-ghost equation:

δΣ

δη̄a
= ∂µψ

a
µ ,

δΣ

δφ̄a
− ∂µ

δΣ

δτaµ
= 0 . (5.28)

(iii) Bosonic ghost equation:

GaφΣ = ∆a
φ , (5.29)

where

Gaφ =

∫
d4z

(
δ

δφa
− gfabcφ̄b δ

δbc

)
,

∆a
φ = gfabc

∫
d4z
(
τ bµA

c
µ + Ebcc + Λb

µνχ̄
c
µν

)
. (5.30)

(iv) Ordinary Faddeev-Popov ghost equation:

Ga1Σ = ∆a , (5.31)

where

Ga1 =

∫
d4z

[
δ

δca
+ gfabc

(
c̄b
δ

δbc
+ φ̄b

δ

δη̄c
+ χ̄bµν

δ

δBc
µν

+ Λb
µν

δ

δKc
µν

)]
,

∆a = gfabc
∫
d4z
(
Ebφc − Ωb

µA
c
µ − τ bµψcµ − Lbcc + Λb

µνB
c
µν −Kb

µνχ̄
c
µν

)
.(5.32)
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(v) Second Faddeev-Popov ghost equation:

Ga2Σ = ∆a , (5.33)

where

Ga2 =

∫
d4z

[
δ

δca
− gfabc

(
φ̄b

δ

δc̄c
+ Abµ

δ

δψcµ
+ cb

δ

δφc
− η̄b δ

δbc
+ Eb δ

δLc

)]
.

(5.34)

(vi) Vector supersymmetry1:

WµΣ = 0 , (5.35)

where

Wµ =

∫
d4z

[
∂µA

a
ν

δ

δψaν
+ ∂µc

a δ

δφa
+ ∂µχ̄

a
να

δ

δBa
να

+ ∂µφ̄
a

(
δ

δη̄a
+

δ

δc̄a

)
+

+ (∂µc̄
a − ∂µη̄a)

δ

δba
+ ∂µτ

a
ν

δ

δΩa
ν

+ ∂µE
a δ

δLa
+ ∂µΛa

να

δ

δKa
να

]
. (5.36)

(vii) Bosonic non-linear symmetry:

T(Σ) = 0 , (5.37)

where

T(Σ) =

∫
d4z

[
δΣ

δΩa
µ

δΣ

δψaµ
− δΣ

δLa
δΣ

δφa
− δΣ

δKa
µν

δΣ

δBa
µν

+ (c̄a − η̄a)
(
δΣ

δc̄a
+
δΣ

δη̄a

)]
.

1Written in the form Wµ =
∑
A δµΦA δ

δΦA , the generators δµ and the BRST operator satisfy
a supersymmetric algebra {s, δµ} = ∂µ.
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5.1 Symmetries in self-dual and anti-self-dual Landau gauges

(viii) Global ghost supersymmetry:

G3Σ = 0 , (5.38)

where

G3 =

∫
d4z

[
φ̄a
(

δ

δη̄a
+

δ

δc̄a

)
− ca δ

δφa
+ τaµ

δ

δΩa
µ

+ 2Ea δ

δLa
+ Λa

µν

δ

δKa
µν

]
.

(5.39)

The last two symmetries are the new ones introduced in [54]. The non-linear

bosonic symmetry (vii) is precisely the one mentioned above, see eq. (5.3) which

relates the FP and topological ghosts, as

δψaµ =
δΣ

δΩa
µ

= Dab
µ c

b , (5.40)

see eq. (5.38). The vector supersymmetry (vi) is a characteristic feature of topo-

logical theories in Landau gauges1 [135], first introduced in the four-dimensional

case in [53]. We remark that the Faddeev-Popov ghost equations (5.31) and (5.33)

can be combined to obtain an exact global supersymmetry,

∆GaΣ = 0 , (5.41)

where

∆Ga = Ga1 − Ga2 =

∫
d4z fabc

[(
c̄b − η̄b

) δ

δbc
+ φ̄b

(
δ

δη̄c
+

δ

δc̄c

)
+ Abµ

δ

δψcµ
+

+ χ̄bµν
δ

δBc
µν

+ cb
δ

δφc
+ Λb

µν

δ

δKc
µν

+ τ bµ
δ

δΩc
µ

+ Eb δ

δLc

]
. (5.42)

We observe the similarity of the equation (5.41) with the vector supersymmetry

1In the 3D Chern-Simons theory, this kind of symmetry is used to proved that the theory
is completely finite, i.e., it possesses vanishing β-function and anomalous dimensions.
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5.2 Renormalizability: Anomalies and quantum stability

(5.35). It is also worth mentioning that, even though the ghost number of the

operator (5.42) is −1, resembling an anti-BRST symmetry, it is not a genuine

anti-BRST symmetry1.

5.2 Renormalizability: Anomalies and quantum

stability

5.2.1 Most general counterterm

Loop expansion. In perturbation theory, the quantum action is expanded

around the classical action, i.e.,

Γ =
∞∑
n=0

εnΓ(n) , (5.43)

whereby the perturbative parameter ε is naturally recognized as the Plank con-

stant ~. Γ(n) represents the contribution of Feynman diagrams at n-loop order,

being Γ(0) = Σ the classical action. At one-loop order,

Γ = Σ + εΣc , (5.44)

where Γ(1) ≡ Σc is the most general counterterm at one-loop given by an lo-

cal integrated polynomial in the fields (and their derivatives), parameters and

sources, with mass dimension four and vanishing ghost number, which obey all

Ward identities of the model. Replacing (5.44) into (5.24) one gets

S(Γ) = S(Σ) + εSΣΣc + O(ε2) = 0 , (5.45)

1See for instance [136] for the explicit anti-BRST symmetry in topological gauge theories.
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5.2 Renormalizability: Anomalies and quantum stability

where SΣ is the linearized Slavnov-Taylor operator1 given by

SΣ =

∫
d4z

[(
ψaµ −

δΣ

δΩa
µ

)
δ

δAaµ
− δΣ

δAaµ

δ

δΩa
µ

+
δΣ

δτaµ

δ

δψaµ
+

(
Ωa
µ +

δΣ

δψaµ

)
δ

δτaµ
+

+

(
φa +

δΣ

δLa

)
δ

δca
+
δΣ

δca
δ

δLa
+

δΣ

δEa

δ

δφa
+

(
La +

δΣ

δφa

)
δ

δEa
+

+ ba
δ

δc̄a
+ η̄a

δ

δφ̄a
+Ba

µν

δ

δχ̄aµν
+Ka

µν

δ

δΛa
µν

]
. (5.46)

Therefore, from (C.1) and (C.21), we conclude that a non-linear symmetry is

transferred to the counterterm in its linearized version,

SΣΣc = 0 . (5.47)

The linear ones are obviously directly transferred to Σc. Hence, following the

principle of quantum action summarized in (5.26), which relates the classical and

quantum worlds, imposing (C.1), (5.27), (5.28), (5.31), (5.33), (5.35), (5.37), and

(C.9) to Γ we find that the most general counterterm that can be added to the

1We call SΣ the linearized Slavnov-Taylor identity because it is a linear operator, i.e.,
SΣ(A+B + · · ·+C) = SΣA+ SΣB + · · ·+ SΣC. Note that the Slavnov-Taylor operator is not
linear: S(Γ) 6= S(Σ) + εS(Σc).
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5.2 Renormalizability: Anomalies and quantum stability

classical action must obey, together with (C.14),

δΣc

δba
= 0 , (5.48)

δΣc

δc̄a
− ∂µ

δΣc

δΩa
µ

= 0 , (5.49)

δΣc

δη̄a
= 0 , (5.50)

δΣc

δφ̄a
− ∂µ

δΣc

δτaµ
= 0 , (5.51)

GaφΣc = 0 , (5.52)

Ga1Σc = 0 , (5.53)

Ga2Σc = 0 , (5.54)

WµΣc = 0 , (5.55)

TΣΣc = 0 , (5.56)

G3Σc = 0 , (5.57)

where TΣ is the linear version of the operator (5.37), given by

TΣ =

∫
d4z

[
δΣ

δΩa
µ

δ

δψaµ
− δΣ

δψaµ

δ

δΩa
µ

− δΣ

δLa
δ

δφa
− δΣ

δφa
δ

δLa
+

δΣ

δKa
µν

δ

δBa
µν

+
δΣ

δBa
µν

δ

δKa
µν

+ (c̄a − η̄a)
(

δ

δη̄a
+

δ

δc̄a

)]
. (5.58)

The operator SΣ is nilpotent,

SΣSΣ = 0 , (5.59)

and defines a cohomology in the space of fields, such that the constraint (C.14)

represents a cohomology problem for Σc. Moreover, there is no room for gauge

anomalies in the Slavnov-Taylor identity as the new set of sources introduced to

control the non-linearities are only composed of doublets, see (5.11) and (5.13).
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5.2 Renormalizability: Anomalies and quantum stability

It means that the redefinitions (4.42) is enough to recover the subspace with

trivial cohomology, cf. (4.45), and then, due to the isomorphism between this

subspace and the whole space [123], we automatically infer that the cohomology

of the theory is trivial. Hence, the Slavnov-Taylor identity is anomaly-free and

the solution of (C.14) is of the form

Σc = SΣ∆(−1) , (5.60)

where ∆(−1) is an integrated local polynomial in the fields and sources and their

derivatives bounded by dimension four, and with ghost number -1. In principle,

without imposing the Ward identities, the most general counterterm is

Σc = SΣ

∫
d4x

{
c1χ̄

a
µν∂µA

a
ν + c2f

abcχ̄aµνA
b
µA

c
ν + c3φ̄

a∂µψ
a
µ + c4f

abcφ̄aAbµψ
c
µ

+ c5c̄
a∂µA

a
µ + c6τ

a
µ∂µc

a + c7f
abcτaµA

b
µc
c + c8f

abcEacbcc + c9E
aφa + c10L

aca

+ c11Ωa
µA

a
µ + c12τ

a
µψ

a
µ + c13b

ac̄a + c14b
aη̄a + c15η̄

a∂µA
a
µ + c16∂µφ̄

a∂µc
a

+ c17B
a
µνχ̄

a
µν + c18f

abccaη̄bη̄c + c19f
abccac̄bc̄c + c20f

abcφ̄a∂µc
bAcµ

+ c21φ̄
acaAbµA

b
µ + c22φ̄

acbAaµA
b
µ + c23f

abcφ̄acbbc + c24f
abcη̄ac̄bcc

+ c25f
abcφ̄aφbη̄c + c26f

abcφ̄aφbc̄c + c27φ̄
aφaφ̄bcb + c28φ̄

aφbφ̄acb + c29c̄
aφ̄bcacb

+ c30η̄
acaφ̄bcb + c31φ̄

a∂µψ
a
µ + c32f

abcφ̄acb∂µA
c
µ + c33f

abccaχ̄bµνχ̄
c
µν + c34Λa

µνK
a
µν

+ c35f
abcΛaχ̄bcc + c36f

abcΛa
µνA

b
µA

c
ν + c37Λa

µν∂µA
a
ν + c38Λa

µνB
a
µν

+ c39K
a
µνχ̄

a
µν

}
, (5.61)

where ci are arbitrary constants. Applying SΣ and using the equations of motion,

the constraints (C.14)-(5.55) imply that the counterterm above takes the form

Σc = SΣ

∫
d4z
{
a1

[(
Ωa
µ − ∂µc̄a

)
Aaµ +

(
τaµ − ∂µφ̄a

)
ψaµ
]

+ a2(τaµ − ∂µφ̄a)∂µca

+ a3χ̄
a
µν∂µA

a
ν + a4f

abcχ̄aµνA
b
µA

c
ν

}
, (5.62)
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where a1, a2, a3 and a4 are arbitrary constant coefficients, to be calculated by

Feynman diagrams. Although the introduction of the new sources Kµν and Λa
µν

to control the non-linearity of the new symmetry T, the counterterm is the same

as the one found in [53], in the presence of the vector supersymmetry constraint

(5.55). Now, applying the bosonic symmetry constraint (5.56), one can straight-

forwardly show that

a1 = a2 = 0 , (5.63)

and that

a4 =
a3

2
. (5.64)

Hence, the most general local counterterm obeying the symmetry content of the

model is reduced to the simple form

Σc = SΣ

∫
d4z a χ̄aµνF

a
µν , (5.65)

where the parameter a4 was renamed as a: the only renormalization parameter

allowed by the Ward identities of the model. Explicitly, the counterterm (5.65)

reads

Σc = a

∫
d4z {Ba

µνF
a
µν − 2χ̄aµνD

ab
µ ψ

b
ν − gfabcχ̄aµνcbF c

µν} . (5.66)

As pointed out in [127], the choice of Landau gauges forbids the presence of

the counterterm Tr (Fµν ± F̃µν)2. An isolated Yang-Mills term, TrFµνFµν , is also

not produced at the quantum level. Such a result proves that the minima of

the effective action still correspond to instanton configurations, in other words,

that the topological structure of the vacuum is not destroyed at the quantum

level. This is in agreement with previous one-loop computations carried out in

[128]. As mentioned before, this agreement is not surprising as the calculation

performed in [128] was based on the Batalin-Vilkovisky algorithm [130], which
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5.2 Renormalizability: Anomalies and quantum stability

coincides to the BS approach for a particular configuration of Batalin-Vilkovisky

auxiliary fields.

5.2.2 Quantum stability

Once we have at our disposal the most general counterterm consistent with all

Ward identities, we must verify if the counterterm can absorb the divergences

arising in the evaluation of Feynman graphs. In other words, if the counterterm

(5.66) can be consistently absorbed by the classical action (5.15) by means of

the multiplicative redefinition of the fields, sources and parameters of the model.

Therefore, starting from the equation (5.44), we must show that Γ at one-loop is

of the form Σ(Φ0, J0, g0), where

Σ(Φ0, J0, g0) = Σ(Φ, J, g) + εΣc(Φ, J, g) , (5.67)

whereby

Φ0 = Z
1/2
Φ Φ , Φ0 = {Aaµ, ψaµ, ca, c̄a, φa, φ̄a, ba, η̄a, χ̄aµν , Ba

µν} ,

J0 = ZJJ , J = {τaµ ,Ωa
µ, E

a, La,Λa
µν , K

a
µν} ,

g0 = Zgg . (5.68)

Due to the recursive nature of algebraic renormalization theory [98], to impose

the validity of the Ward identities to Γ at one-loop is equivalent to impose their

validity to Γ at all orders in perturbation theory1. Therefore, replacing the final

1It is not difficult to visualize the recursive property of the Algebraic Renormalization. If
we would like to extend the renormalized one-loop action Σ(Φ0, J0, g0) to the two-loops order,
we would start with

Γ2−loops = Γ1−loop + ε2Σc2−loops . (5.69)

As the structure of Γ1−loop ≡ Σ(Φ0, J0, g0) is identical of the classical action one, the Ward
identities are the same for the renormalized fields, parameters and sources, and the form of
Σc2−loops will be the same as Σc, with the new coefficients corresponding to the two-loops
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5.2 Renormalizability: Anomalies and quantum stability

counterterm (5.66) in the stability condition given by eq. (5.67), a direct and

straightforward analysis shows that the model is quantum stable, as the resulting

Z factors obey the following system of equations:

Z
1/2
A = Z

−1/2
b = Z−1

g ,

Z
1/2
c̄ = Z

1/2
η̄ = Z

−1/2
ψ = ZΩ = Z−1/2

c ,

Z
1/2

φ̄
= Z

−1/2
φ = Zτ = ZL = Z−1

g Z−1
c ,

ZE = Z−2
g Z−3/2

c ,

ZK = Z−1
g Z−1/2

c Z
−1/2
χ̄ ,

ZΛ = Z−2
g Z−1

c Z
−1/2
χ̄ ,

Z
1/2
B Z

1/2
A = Z

1/2
χ̄ Z1/2

c = 1 + εa . (5.70)

The results (5.70) are self consistent and show that the model is renormalizable

to all orders in perturbation theory.

It is worth mentioning again that the Ward identities (C.1)-(C.9) hold at

all orders with the classical action Σ replaced by the 1PI generating functional

Γ. In addition, we would like to emphasize that the result (5.66) is a direct

consequence of the absence of anomalies in the Slavnov-Taylor identity. The

anomalous Slavnov-Taylor identity would give SΣΣc = 4(1), being 4(1) a local

polynomial with ghost number 1; but the cohomology of the linearized BRST

operator vanishes, which automatically restricts the most general counterterm

of the theory to the trivial part of the cohomology. As a consequence of this

triviality, the cohomology vanishes in any ghost number sector.

Feynman diagrams of the model, which shows that Σc2−loops can be absorbed into Γ1−loop,
proving the renormalizability at two-loops order. From two- to three-loops order, the process
is identical, and so to all orders.
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5.3 Consequences of the Ward identities for the two-point functions

5.3 Consequences of the Ward identities for the

two-point functions

In this section we provide some strong consequences of the Ward identities in

terms of the two-point functions of the theory. Specifically, we compute exact

properties1 of the propagators and 1PI two-point functions. The conventions

and notation here employed can be found in the Appendix A. Needless to say,

since the theory is renormalizable to all orders in perturbation theory, the Ward

identities are valid for the quantum action Γ and not only for the classical one Σ,

as it was proved in the previous section.

First of all, we evoke the discrete Faddeev-Popov symmetry (dFPs) to re-

call that all two-point functions carrying a non-vanishing ghost-number vanish,

namely,

Γ(ΦAΦB)(p) = 〈ΦAΦB〉(p) = 0 ∀ gA + gB 6= 0 . (5.71)

Second, from Lorentz covariance it is easy to infer that we must have, for the

(anti-)self-dual fields,

〈baBb
µν〉(p) = 0 , (5.72)

〈caχ̄bµν〉(p) = 0 , (5.73)

and

Γab(bB)µν(p) = 0 , (5.74)

Γab(cχ̄)µν(p) = 0 . (5.75)

1By exact we mean valid to all orders in perturbation theory. In most cases, this means
tree-level exact, i.e., all radiative corrections vanish.
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5.3.1 1PI two-point functions

Since the Ward identities are written for the 1PI generating functional, it is easier

to start with the 1PI two-point functions. All 1PI two-point functions obtained

in this subsection are displayed in Table 5.2.

5.3.1.1 Consequences of the Landau gauge fixings

The ordinary Landau gauge fixing (5.27), in terms of the quantum action, is given

by
δΓ

δba(x)
= ∂xµA

a
µ(x) , (5.76)

where ∂xµ stands for the spacetime derivative with respect to the coordinates of

the point xµ. In the same way, the topological Landau gauge fixing (5.28) can be

written as
δΓ

δη̄a(x)
= ∂xµψ

a
µ(x) . (5.77)

• The bA mixed 1PI function.

To obtain the bA mixed 1PI function, we vary the equation (5.76) with

respect to Abν(y),

δ2Γ

δAbν(y)δba(x)
= δab∂xν δ(x− y) . (5.78)

Hence,

Γab(bA)ν(x, y) = δab∂xν δ(x− y) . (5.79)

Taking the Fourier transform of eq. (5.79) one obtains

∫
d4p

(2π)4
Γab(bA)µ(p)eip(x−y) =

∫
d4p

(2π)4
δabipµe

ip(x−y) . (5.80)
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Thus,

Γab(bA)µ(p) = iδabpµ . (5.81)

The mixed two-point vertex function (5.81) is tree-level exact, as expected

from the relation ZbZA = 1 in (5.70).

• The bb 1PI function.

In the same way, by varying (5.76) with respect to bb(y), one trivially finds

Γab(bb)(p) = 0 . (5.82)

• The η̄ψ mixed 1PI function.

Now, varying the equation (5.77) with respect to ψbν(y) and Fourier trans-

forming the resulting equation, one finds

Γab(η̄ψ)µ(p) = iδabpµ , (5.83)

which is in accordance with the relation Zη̄Zψ = 1 in (5.70).

• The η̄c mixed 1PI function.

And, the variation of (5.77) with respect to ca(y) leads to

Γab(η̄c)(p) = 0 . (5.84)
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5.3.1.2 Consequences of the vector supersymmetry

The vector supersymmetry (5.35), in terms of the 1PI generating functional,

reads1

∫
d4z

[
∂γA

c
κ

δΓ

δψcκ
+ ∂γc

c δΓ

δφc
+ ∂γχ̄

c
σκ

δΓ

δBc
σκ

+ ∂γφ̄
c

(
δΓ

δη̄c
+
δΓ

δc̄c

)
+

+ (∂γ c̄
c − ∂γ η̄c)

δΓ

δbc
+ . . .

]
= 0 .(5.85)

• The BB 1PI function.

Varying (5.85) with respect to Bb
αβ(y) and χ̄aµν(x) we get

∫
d4z

[
δacδµσδνκ∂

z
γδ(z − x)

δ2Γ

δBb
αβ(y)δBc

σκ(z)
+ . . .

]
= 0 . (5.86)

After integration over z, a Fourier transformation of (5.86) yields

pγΓ
ab
(BB)µναβ(p) = 0 , (5.87)

which, by contraction with pγ/p
2, simply reduces to

Γab(BB)µναβ(p) = 0 . (5.88)

• The topological ghost and the BA 1PI functions.

In the same way, by varying with respect to χ̄aαβ(x) and Abµ(y), one finds

−
∫
d4z

[
δ(z − y)∂zκ

δ2

δχ̄aαβ(x)δψbµ(z)
+ δ(z − x)∂zκ

δ2

δAbµ(y)δBa
αβ(z)

+ . . .

]
= 0 .

(5.89)

1For simplicity, only the relevant terms are written in (5.85).
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5.3 Consequences of the Ward identities for the two-point functions

Hence,

−∂yκΓab(χ̄ψ)αβµ(x, y) + ∂xκΓab(BA)αβµ(x, y) = 0 . (5.90)

Fourier transforming this last equation (with attention to the point where

the derivative is taken), one obtains

Γab(χ̄ψ)αβµ(p) = −Γab(BA)αβµ(p) . (5.91)

The relation (5.91) is consistent with the relations (5.70) by means of

ZBZA = Zχ̄Zψ. Moreover, it is easy to infer from the antisymmetry in

α and β indices that they should be transverse,

Γab(χ̄ψ)αβµ(p) = −Γab(BA)αβµ(p) = X1(p2)εαβµνpν + y(p2) (δαµpβ − δβµpα) ,

(5.92)

where X1(p2) and y(p2) are generic form factors.

• The Faddeev-Popov and bosonic ghost 1PI functions.

Another consequence of the vector supersymmetry concerns the Faddeev-

Popov ghost and the bosonic ghost 1PI two-point functions. By varying

(5.85) with respect to ca(y) and φ̄b(x), one gets (the proof is very similar

to the one displayed in the demonstration of (5.91))

Γab(φ̄φ)(p) = Γab(c̄c)(p) . (5.93)

where (5.84) was used. Expression (5.93) is in harmony with the relation

Zc̄Zc = Zφ̄Zφ in (5.70).

• The c̄ψ mixed 1PI function.

In the same lines of (5.91) and (5.93), by varying (5.85) with respect to
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5.3 Consequences of the Ward identities for the two-point functions

φa(x) and ψbµ(x), one can prove that

Γab(c̄ψ)µ(p) = −Γab(η̄ψ)µ(p) = −iδabpµ , (5.94)

where (5.83) must be employed. The tree-level exactness (5.94) is in accor-

dance with the relation Zc̄Zψ = Zη̄Zψ = 1 and the fact that Zψ = Zc and

Zη̄ = Zc̄, all coming from the relations (5.70).

• The topological gluon 1PI function.

Now, we consider the topological gluon vacuum polarization Γab(AA)µν(p).

Remarkably, as can be verified in the App. B, it identically vanishes,

Γab(AA)µν(p) = 0 . (5.95)

We will discuss this result in more details in Sec. 5.4.

↓ ΦA ΦB → Abα ψbα cb φb c̄b bb φ̄b η̄b χ̄bαβ Bb
αβ

Aaµ 0 — — — — — — — — —

ψaµ 0 0 — — — — — — — —

ca 0 0 0 — — — — — — —

φa 0 0 0 0 — — — — — —

c̄a 0 −iδabpα Γab
(φ̄φ)

0 0 — — — — —

ba iδabpα 0 0 0 0 0 — — — —

φ̄a 0 0 0 Γab(c̄c) 0 0 0 — — —

η̄a 0 iδabpα 0 0 0 0 0 0 — —

χ̄aµν 0 −Γab(BA)µνα 0 0 0 0 0 0 0 —

Ba
µν −Γab(χ̄ψ)µνα 0 0 0 0 0 0 0 0 0

Table 5.2: Exact results for the two-point vertex functions ΓAB(ΦΦ)(p). The traces —

are redundancies since the table is (anti-)symmetric by the line-column exchange.
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5.3 Consequences of the Ward identities for the two-point functions

5.3.2 Propagators

Now we focus on the connected two-point functions. With this intent, we have to

employ the Legendre transformation (A.3) in the Ward identities. All propagators

obtained in this subsection are collected in Table 5.3.

5.3.2.1 Consequences of the Landau gauge fixings

The ordinary Landau gauge fixing equation (5.27), in terms of the connected

Green functional, takes the form

−Ja(b)(x) = ∂xµ
δW

δJa(A)µ(x)
, (5.96)

while the topological gauge fixing equation (5.28) turns into

Ja(η̄)(x) = ∂xµ
δW

δJa(ψ)µ(x)
. (5.97)

• The bA mixed propagator.

Variation of equation (5.96) with respect to J b(b)(y) leads to

δabδ(x− y) = ∂xµ〈Aaµ(x)bb(y)〉 . (5.98)

This equation is easily solved in momentum space. Its Fourier transforma-

tion leads to

δab
∫

d4p

(2π)4
eip(x−y) = ∂xµ

∫
d4p

(2π)4
eip(x−y)〈Aaµbb〉(p) , (5.99)

providing

δab = ipµ〈Aaµbb〉(p) , (5.100)
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5.3 Consequences of the Ward identities for the two-point functions

whose solution is

〈baAbµ〉(p) = iδab
pµ
p2

. (5.101)

This is in complete accordance with the relation ZbZA = 1 in (5.70).

• The BA mixed propagator.

The variation of equation (5.96) with respect to J b(B)αβ(y) leads to the the

transversality of 〈Ba
αβA

b
µ〉(p), which is evident from the antisymmetry of its

indices α and β. Hence, the BA propagator must be of the form

〈Ba
αβA

b
µ〉(p) = B1(p2)εαβµνpν +B2(p2) (δαµpβ − δβµpα) , (5.102)

where B1(p2) and B2(p2) are generic form factors.

• The η̄ψ mixed propagator.

Now, varying equation (5.97) with respect to J b(ψ)ν(y) and following the lines

in the obtention of (5.101), we get

〈η̄aψbµ〉(p) = iδab
pµ
p2

. (5.103)

The exact result (5.103) is consistent with Zη̄Zψ = 1 in (6.7).

• The c̄ψ mixed propagator.

At last, by varying equation (5.97) with respect to J b(c̄)(y), a transversality

condition is gained (after Fourier transformation),

pµ〈c̄aψbµ〉(p) = 0 . (5.104)

However, from Lorentz covariance, the only possibility is that 〈c̄aψbµ〉(p) =
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5.3 Consequences of the Ward identities for the two-point functions

δabP (p2)pµ. Thus, inevitably, P (p2) = 0, leading to

〈c̄aψbµ〉(p) = 0 . (5.105)

5.3.2.2 Consequences of the vector supersymmetry

In terms of the connected Green functional the vector supersymmetry (5.35) reads

∫
d4z

[
∂zγ

δW

δJ c(A)κ(z)
J c(ψ)κ(z)− ∂zγ

δW

δJ c(c)(z)
J c(φ)(z)− ∂zγ

δW

δJ c(χ̄)κσ(z)
J c(B)κσ(z)+

+ ∂zγ
δW

δJ c
(φ̄)

(z)

(
J c(η̄)(z) + J c(c̄)(z)

)
− ∂zγ

(
δW

δJ c(c̄)(z)
− δW

δJ c(n̄)(z)

)
J c(b)(z) + . . .

]
= 0 .

(5.106)

• The topological gluon propagator.

The topological gluon propagator is obtained by varying equation (5.106)

with respect to Ja(A)µ(x) and Ja(ψ)ν(y),

∫
d4z

[
∂zγ

δ2W

δJa(A)µ(x)δJ c(A)κ(z)
δbcδνκδ(z − y) + . . .

]
= 0 . (5.107)

Hence, after integration in z and a Fourier transformation, we get

pγ〈AaµAbν〉(p) = 0 . (5.108)

By contraction with pγ/p
2, we obtain

〈AaµAbν〉(p) = 0 . (5.109)

Thus, the topological gluon propagator vanishes just like the associated

vacuum polarization (5.95). See Sec. 5.4 for extra discussions about this
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5.3 Consequences of the Ward identities for the two-point functions

issue.

• The Faddeev-Popov and bosonic ghost propagators.

The relation between the Faddeev-Popov ghost propagator c̄c and the bosonic

ghost propagator φ̄φ is obtained by varying equation (5.106) with respect

to Ja(c̄)(x) and J b(φ)(y),

∫
d4z

[
−∂zγ

δ2W

δJa(c̄)(x)δJ c(c)(z)
δcbδ(z − y) + ∂zγ

δ2W

δJ b(φ)(y)δJ c
(φ̄)

(z)
δcaδ(z − x) + . . .

]
= 0 ,

(5.110)

which reduces to

∂yγ〈c̄a(x)cb(y)〉+ ∂xγ 〈φ̄a(x)φb(y)〉 = 0 . (5.111)

Thus, after a Fourier transformation, we get

〈c̄acb〉(p) = 〈φ̄aφb〉(p) , (5.112)

which confirms, once again, the relation Zc̄Zc = Zφ̄Zφ in (5.70). We refer to

Sec. 5.4 for the proof of the tree-level exactness of the ghost (Faddeev-Popov

and bosonic) propagator.

• The topological ghost and the mixed BA propagators.

The topological ghost propagator 〈χ̄ψ〉 can be computed by varying (5.106)

with respect to Ja
(ψ̄)µ

(x) and J b(B)αβ
(y),

∫
d4z

[
∂zγ

δ2W

δJ b(B)αβ(y)δJa(A)µ(z)
δ(z − x)− ∂zγ

δ2W

δJa(ψ)µ(x)δJ b(χ̄)αβ(z)
δ(z − y) + . . .

]
= 0 ,

(5.113)

110



5.3 Consequences of the Ward identities for the two-point functions

which reduces to

∂yγ〈χ̄bαβ(y)ψaµ(x)〉 − ∂xγ 〈Aaµ(x)Bb
αβ(y)〉 = 0 . (5.114)

After a Fourier transformation, we get

〈χ̄bαβψaµ〉(p) = −〈Bb
αβA

a
µ〉(p) . (5.115)

The result (5.115) agrees with (5.91) and with Zχ̄Zψ = ZBZA in (5.70).

• The η̄c mixed propagator.

Following the same reasoning as before, we vary equation (5.106) with re-

spect to Ja(c)(x) and J b(B)αβ(y) and find that

〈η̄aca〉(p) = 〈c̄aca〉(p) . (5.116)

This relation is consistent with Zη̄ = Zc̄ in (5.70).

↓ ΦA ΦB → Abα ψbα cb φb c̄b bb φ̄b η̄b χ̄bαβ Bb
αβ

Aaµ 0 — — — — — — — — —

ψaµ 0 0 — — — — — — — —

ca 0 0 0 — — — — — — —

φa 0 0 0 0 — — — — — —

c̄a 0 0
〈
φ̄aφb

〉
0 0 — — — — —

ba iδabpα/p
2 0 0 0 0 0 — — — —

φ̄a 0 0 0
〈
c̄acb

〉
0 0 0 — — —

η̄a 0 iδabpα/p
2

〈
c̄acb

〉
0 0 0 0 0 — —

χ̄aµν 0 −
〈
Ba
µνA

b
α

〉
0 0 0 0 0 0 0 —

Ba
µν −

〈
χ̄aµνψ

b
α

〉
0 0 0 0 0 0 0 0 0

Table 5.3: Exact results for the propagators 〈ΦAΦB〉(p). The traces — are re-
dundancies since the table is (anti-)symmetric by the line-column exchange.
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5.4 Two-point function tree-level exactness

5.4 Two-point function tree-level exactness

5.4.1 Few words about the topological gluon propagator

In the previous section, an exact proof of the vanishing of the gluon connected

two-point function was worked out. In the present subsection, we compute the

tree-level gluon propagator and show that its vanishing is very much related

to the particular choice of (Landau-type) gauge we have employed. For this

computation, we introduce two gauge parameters α and β through the following

quadratic terms:

−α
2

∫
d4z baba and − β

2

∫
d4z Ba

µνB
a
µν , (5.117)

where the choice of signs was done in such a way that these gauge parameters are

strictly non-negative. Hence, the terms that contribute to the tree-level topolog-

ical gluon propagator are given by

S̃ =

∫
d4z

[
ba
(
∂µA

a
µ −

α

2
ba
)

+Ba
µν

(
F a
µν ± F̃ a

µν −
β

2
Ba
µν

)]
. (5.118)

By integrating out the auxiliary fields (b, B), one obtains

S̃ =

∫
d4z

[
(∂µA

a
µ)2

2α
+

(F a
µν ± F̃ a

µν)
2

2β

]
. (5.119)

Keeping just quadratic terms on Aaµ leads to

S̃quad = − 1

2α

∫
d4z Aaµ∂µ∂νA

a
ν −

2

β

∫
d4z
(
Aaµ∂

2Aaµ − Aaµ∂µ∂νAaν
)
, (5.120)
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5.4 Two-point function tree-level exactness

which is expressed in momentum space as

S̃quad =
1

2

∫
d4p

(2π)4
Aaµ(p)∆ab

µνA
b
ν(−p) , (5.121)

with

∆ab
µν = δab

[
4

β
p2δµν −

(
4

β
− 1

α

)
pµpν

]
. (5.122)

Consequently, the tree-level gluon propagator is

〈AaµAbν〉0(p) = δab
[
β

4p2

(
δµν −

pµpν
p2

)
+
α

p2

pµpν
p2

]
. (5.123)

The gauge condition we have considered throughout this work corresponds to

setting α = β = 0. From eq. (5.123) it is clear that, for such a choice, the

gluon propagator vanishes at the tree-level (and this property holds to all orders

as proved in the last section). Therefore, this choice is extremely peculiar, since

when writing the Feynman rules for this theory, every diagram with gluon lines

vanishes. Nonetheless, one can easily see that with the appropriate choice of

β = 4, the Yang-Mills term is recovered (see (5.118)). As it is well known,

the presence of such term leads to deep relations between topological Yang-Mills

theories quantized in a certain class of gauges and supersymmetric gauge theories,

see [117].

5.4.2 Exactness of the Faddeev-Popov ghost two-point func-

tions

In this subsection, we give a proof using Wick theorem that the Faddeev-Popov

ghosts two-point function is tree-level exact. For this, we use the property defined

by eq. (5.112). Hence, let us have a closer look at the 〈φ̄a(x)φb(y)〉. By definition,

113



5.4 Two-point function tree-level exactness

〈φ̄a(x)φb(y)〉 =

∫
[DΦ] φ̄a(x)φb(y)e−Sgf =

∫
[DΦ] φ̄a(x)φb(y)e−Sinte−Squad ,

(5.124)

with Φ a shorthand notation for the complete set of fields of the theory (see

App. A). The actions Squad and Sint stand for the quadratic and interacting parts

of Sgf , respectively. The interacting part of Sgf is schematically expressed as

Sint =

∫
d4z
[
BAA+ c̄Ac+ χ̄cA+ χ̄cAA+ χ̄Aψ + φ̄Aφ+ φ̄cψ

]
. (5.125)

Therefore, eq. (5.124) is rewritten as

〈φ̄a(x)φb(y)〉 =

∫
[DΦ] φ̄a(x)φb(y) exp

(
−
∫
d4z [BAA+ c̄Ac+ χ̄cA+ χ̄cAA+

+ χ̄Aψ + φ̄Aφ+ φ̄cψ
])

e−Squad . (5.126)

As usual, one can expand the exponential for the interacting part, leading to

〈φ̄a(x)φb(y)〉 = 〈φ̄a(x)φb(y)〉0 −
∫
d4z〈φ̄a(x)φb(y) [BAA+ c̄Ac+ χ̄cA+ χ̄cAA +

+ χ̄Aψ + φ̄Aφ+ φ̄cψ
]
z
〉0 + . . . . (5.127)

where 〈. . .〉0 means that the expectation value is taken with respect to the quadratic

action. As it is apparent from Table 5.3, the only non-vanishing two-point func-

tion involving (φ̄, φ) is 〈φ̄φ〉. Therefore, we have to single out Wick contractions

of φ with φ̄. Consequently, the first order correction to (5.124) is

∫
d4z〈φ̄a(x)φb(y)

[
BAA+ c̄Ac+ χ̄cA+ χ̄cAA+ χ̄Aψ + φ̄Aφ+ φ̄cψ

]
z
〉0 =

=

∫
d4z〈φ̄a(x)φb(y)

[
φ̄Aφ+ φ̄cψ

]
z
〉0 = 0 , (5.128)
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where we have kept just terms containing φ and φ̄ since the contraction with

any other fields but those vanishes. Going to higher orders renders the insertion

of φ̄Aφ and φ̄cψ on integrated spacetime points. The analysis is divided in the

following possibilities:

• We consider just φ̄Aφ insertions. In this case, the number of (φ̄, φ) fields

is even and is always possible to contract (φ̄, φ) in pairs. Nevertheless, for

each factor φ̄Aφ introduced, one also introduces an A field which must be

contracted with some other field. In the interacting part, the only non-

vanishing correlation function involving A is 〈BA〉. However, this intro-

duces the term BAA containing two A fields and, at the end, one will have

to contract A with some field different from B, which vanishes.

• We consider just φ̄cψ insertions. This leads to a mismatch on the pairing

of (φ̄, φ) fields and gives zero automatically.

• We consider mixed insertions of φ̄Aφ and φ̄cψ. If the insertions are such

that there is an odd number of (φ̄, φ) fields, then it gives zero. If not, one

comes back to the first bullet.

The conclusion is that one ends up with the exact tree-level relation,

〈c̄a(x)cb(y)〉 = 〈φ̄a(x)φb(y)〉 = 〈φ̄a(x)φb(y)〉0 . (5.129)

Such an argument can be understood by computing the Feynman rules of the

theory and noticing that there is no non-vanishing diagram except for the tree-

level one for 〈φ̄a(x)φb(y)〉. It is important to emphasize that this is a consequence

of the vanishing of the gluon propagator, a feature of the particular gauge choice

used in this paper, as discussed in the previous subsection.

The explicit form of the tree-level Faddeev-Popov ghost propagator is easily
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computed from the gauge fixing action (6.2), providing

〈c̄acb〉(p) = 〈φ̄aφb〉(p) = δab
1

p2
. (5.130)

For completeness, one can compute the 1PI two-point functions Γab(c̄c)(p) and

Γab
(φ̄φ)

(p) from the identity

∑
C

Γ(ΦAΦC)(p)〈ΦCΦB〉(p) = −δAB . (5.131)

Choosing ΦA = c̄a and ΦB = c̄b, one can straightforwardly find

Γab(c̄c)(p) = Γab(φ̄φ)(p) = δabp2 , (5.132)

where (5.93) was employed.

5.4.3 Exactness of the topological ghost two-point func-

tions

As for the Faddeev-Popov ghosts, it is possible to prove that the topological

ghosts (χ̄, ψ) two-point function is tree-level exact. The proof goes in very strict

analogy with the Faddeev-Popov ghosts case and, due to this, we will just mention

the main points. To do it, we benefit from the relation (5.92) and compute

〈Bb
αβ(x)Aaµ(y)〉 instead. The only non-vanishing contracting involving the B field

is with the gauge field A and vice-versa. Hence, looking at the form of the

interaction action (5.125), one sees that the only insertions allowed are those
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with BAA. Therefore,

〈Bb
αβ(x)Aaµ(y)〉 = 〈Bb

αβ(x)Aaµ(y)〉0 −
∫
d4z〈Bb

αβ(x)Aaµ(y)(BAA)z〉0 +

+
1

2!

∫
d4zd4w〈Bb

αβ(x)Aaµ(y)(BAA)z(BAA)w〉0 + . . . .(5.133)

As is easily seen in eq. (5.133), the number of A fields due to the insertions

is always bigger than the number of B fields. Therefore, the gauge fields will

have to be contracted with some other field rather than B, resulting in vanishing

contributions. Again, this is a consequence of the simplifying properties of the

gauge condition we have chosen. For the explicit form of the topological ghost

tree-level propagator, we refer to [49].

In the same lines of the previous subsection, it is easy to show that the 1PI two-

point functions Γab(χ̄ψ)αβµ and Γab(BA)αβµ are also tree-level exact. The proof follows

by setting ΦA = χ̄aαβ and ΦA = χ̄bµν in (5.131) and employing the propagators

derived in [49].

Henceforth, together with the results of the consequences of the Ward identi-

ties for the two-point functions, we conclude that all two-point functions of the

present model are tree-level exact. Such a behavior suggests a general property

of topological gauge theories. In particular, the vacuum polarization and the

gauge field propagator vanish to all orders in perturbation theory, as a conse-

quence of the vector supersymmetry in ASDL gauges. This fact will be pivotal to

prove that, not only the two-point functions are tree-level exact, but any n-point

Green function of the model in ASDL gauges also does not receive radiative cor-

rections at the quantum level, thus explained by the topological off-shell BRST

cohomology.
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Chapter 6

Quantum properties of

topological Yang-Mills theories

II: Renormalization ambiguity

and tree-level exactness

In this section we generalize the (A)SDL gauges by introducing two gauge pa-

rameters. The modification relies in altering the Landau gauge condition on the

gauge field to the linear covariant gauges and the (anti-)self-duality condition

of the field strength to a non-(anti-)self-dual one, see (6.1) below. The gauge

condition for the topological ghost remains the Landau transverse condition. It

turns out that this gauge is not generally renormalizable. Nevertheless, we show

that if we consider the linear covariant gauges and the non-(anti-)self-dual gauge

separately, these gauges are indeed renormalizable to all orders in perturbation

theory. In both classes of gauges, the (A)SDL gauges is recovered by continu-

ously setting the gauge parameters to zero. It is worth mentioning that the vector

supersymmetry [53; 54] is not present in these new classes of gauges.

118



6.1 Generalized classes of renormalizable gauges

Beyond the renormalizability proof, we discuss the fact that the renormaliza-

tion factors (the Z factors) display a kind of freedom in their solution. It seems

to be that, in these classes of gauges, there is a universal property allowing two

free Z factors. Such an ambiguity is not present in ordinary Yang-Mills theo-

ries. The origin of this freedom is also discussed and linked to the triviality of

the BRST cohomology of topological Yang-Mills theories. Moreover, we use the

gauge propagator as an example to show how some of the Z factors are irrelevant

in the renormalization of such objects. Such an analysis will be useful to discuss

later the β-function in topological gauge theories, and its relation with the gauge

choices. In particular, the connection between the absence of radiative correction

in the (A)SDL gauges and the vanishing of the β-function in the off-shell BS

theory, accordingly to the Feynman diagrams structure in presence of the vector

supersymmetry.

6.1 Generalized classes of renormalizable gauges

In order to generalize the (A)SDL gauges, for the gauge field we employ the lin-

ear covariant gauge condition; for the field strength, a non-(anti-)self-dual gauge

condition is chosen and, for the topological ghost, we set the Landau gauge con-

straint, namely1,

∂µA
a
µ = −αba ,

F a
µν ± F̃ a

µν = −βBa
µν ,

∂µψ
a
µ = 0 , (6.1)

1It should be noted that α and β must be necessarily negative quantities. Otherwise, the
Boltzmann factor would be with the wrong sign in the path integral.
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6.1 Generalized classes of renormalizable gauges

where α and β are gauge parameters. We did not consider a similar modification

of the transverse condition of the topological ghost ψaµ, as it would not alter the

classical behavior of the gauge propagator we are interested in. In this suitable

generalization, the vector supersymmetry is recovered by setting α and β to zero.

The complete gauge-fixing action in the gauge choices (5.4) takes the form

Sgf (α, β) = s

∫
d4z

[
c̄a
(
∂µA

a
µ +

α

2
ba
)

+
1

2
χ̄aµν

(
F a
µν ± F̃ a

µν +
β

2
Ba
µν

)
+ φ̄a∂µψ

a
µ

]
=

∫
d4z

[
ba(∂µA

a
µ +

α

2
ba) +

1

2
Ba
µν

(
F a
µν ± F̃ a

µν +
β

2
Ba
µν

)
+ (η̄a − c̄a) ∂µψaµ

+ c̄a∂µD
ab
µ c

b − 1

2
gfabcχ̄aµνc

b
(
F c
µν ± F̃ c

µν

)
− χ̄aµν

(
δµαδνβ ±

1

2
εµναβ

)
Dab
α ψ

b
β

+ φ̄a∂µD
ab
µ φ

b + gfabcφ̄a∂µ
(
cbψcµ

)]
. (6.2)

The full action is then

Σ(α, β) = So[A] + Sgf (α, β) + Sext , (6.3)

being Sext the same external action as in eq. (5.14).

By integrating out the auxiliary field Ba
µν , a Yang-Mills term is produced. It

is worth noting that this is not a genuine Yang-Mills term because it is multiplied

by a gauge parameter and is originated from a BRST variation, i.e., it belongs to

the trivial sector of the cohomology of s [48; 98]. The tree-level gauge propagator

is easily computed,

〈AaµAbν〉0(p) = δab
[
β

4p2

(
δµν −

pµpν
p2

)
+
α

p2

pµpν
p2

]
, (6.4)

which is a pure gauge propagator, cf. (5.123). This is consistent with the fact that

topological gauge theories carry only global physical degrees of freedom. In fact,

the unphysical nature of the gauge field as a local object is even more appealing
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6.2 Renormalization ambiguity

at the (A)SDL gauges, where α = β = 0 and the gauge propagator (6.4) vanishes

[53; 54]. This property, being a very peculiar result for this gauge choice, has a

strong consequence: all connected n-point Green functions are tree-level exact,

as we shall discuss in the next section.

The action (5.15) is not renormalizable in general. A long but straightforward

computation leads to a counterterm that can not be absorbed by the classical

action (5.15). For instance, a term of the form

gfabc
δΣ

δφa
cbcc (6.5)

appears at the quantum level, which is not present in the original action Σ(α, β)

— see the last paragraph in Appendix D. Nevertheless, there are three special

cases of (6.3) in which all divergences can be absorbed: the case α = β = 0

which is the (A)SDL gauges; the case α 6= 0 and β = 0, called α-gauges, and

the case α = 0 and β 6= 0, called β-gauges. Let us start our discussion with the

special case of the (A)SDL gauges (α = β = 0), whose quantum properties were

previously studied.

6.2 Renormalization ambiguity

In the case of the (A)SDL gauges, the action (6.3) reduces to Σ(A)SDL = Σ(α =

β = 0) given by (5.15). Due to the set of Ward identities in these gauges, the

most general counterterm (5.66) can indeed be reabsorbed in the classical action

Σ(α = β = 0) by means of multiplicative redefinition of the fields, sources and

parameters according to (5.67) and (5.68), and the resulting Z factors obey the

system of equations displayed in (5.70), with only one independent renormaliza-

tion parameter. As carried out in previous sections, this system is self-consistent.

However it is clearly undetermined because there are fifteen equations and sev-
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6.2 Renormalization ambiguity

enteen fields, sources and parameters. It means that there are two free Z factors,

characterizing an ambiguity in the renormalization of the theory. For instance,

the system (5.70) in the way we have written it, can be completely fixed by suit-

ably choosing Zg and Zc. We will return to this issue later on, and analyse the

origin of such an ambiguity.

6.2.1 Quantum stability of α-gauges

Now, let us consider the case where β = 0 while keeping α arbitrary in the action

(5.15), the α-gauges. The full action is now

Σα = Σ|β=0 . (6.6)

The proof of renormalizability is established in the Appendix C. It turns out that

the most general counterterm is also given by (5.66). The α-gauges also show

themselves to be stable by means of (5.70) supplemented by the renormalization

factor of the gauge parameter α,

Z1/2
α = Z−1

g . (6.7)

In practice, this equation reveals the nature of the coupling constant. Its renor-

malization is directly associated to the renormalization of the gauge parameter

α. We must keep in mind that both parameters were introduced at the same

time by the gauge-fixing action, i.e., in the trivial part of the BRST cohomology,

which means that the coupling constant is also a non-physical gauge parameter

of the model. In the end, we gain one more equation for the system of equation

determining the Z factors but we also gain an extra Z factor, Zα. Hence, the

ambiguity remains.
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6.2.2 Quantum stability of β-gauges

The third case we study is characterized by setting α = 0 and maintaining an

arbitrary β in the original action (5.15), the β-gauges. The full action is then

Σβ = Σ|α=0 . (6.8)

This action is also renormalizable, as discussed in Appendix D, and the most gen-

eral counterterm assumes the form (D.26). An interesting feature to be observed

at this point (which also occurs at the (A)SDL and the α-gauges) is that the

Faddeev-Popov term does not appear in the counterterm (D.26). This implies

that ZgZ
1/2
A = 1. Using this information in the terms a1B∂A and a2gBAA of

(D.26), one finds a2 = a1/2. Then, the counterterm (D.26) is simplified to

Σc
β = SΣ

∫
d4x

(
a χ̄aµνF

a
µν + ãβχ̄aµνB

a
µν

)
=

∫
d4x

[
a
(
Ba
µνF

a
µν − 2χ̄aµνD

ab
µ ψ

b
ν − gfabcχ̄aµνcbF c

µν

)
+
ã

2
βBa

µνB
a
µν

]
,(6.9)

where we have renamed the renormalization constants as a = a1/2 and ã/2 = a4.

All relations between the Z factors can be straightforwardly found from (5.67),

(5.68) and (6.9). The result preserves the system formed by (5.70), with the

additional equation

ZβZB = 1 + εã . (6.10)

Again, an extra equation is gained together with an extra Z factor, Zβ. For this

reason the ambiguity persists.
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6.2.3 Discussing the Z factors system

In the previous section, we have discussed the algebraic renormalization properties

in three classes of gauges, namely, the (A)SDL gauges, and the α- and β-gauges,

respectively. In particular, the (A)SDL gauges can be obtained from the latter

classes by continuous deformations, i.e., α→ 0 or β → 0. In all cases the action

is renormalizable to all orders in perturbation theory. However, the system of Z

factors is, in all cases, undetermined. The number of equations n and the number

of variables z (the Z factors) are related by z = n+ 2 in all three cases. It seems

that there is a kind of freedom in the choice of two of the Z factors. We will now

discuss this ambiguity in more details.

6.2.3.1 Comparison with Yang-Mills theories

To understand more closely the origin of such ambiguities, we must observe that

the set of symmetries in the gauges analyzed eliminates the kinetic term of the

Faddeev-Popov ghost at the counterterms. Because of this, we get

ZcZc̄ = 1 . (6.11)

From the gauge-ghost vertex (c̄Ac), which is also absent in the counterterm1, and

the relation (6.11), we achieve

ZgZ
1/2
A = 1 . (6.12)

The two relations (6.11) and (6.12) are decoupled, in other words, only by deter-

mining Zc or Zc̄ we do not get any information about Zg or ZA. Nevertheless, the

1In Yang-Mills theories quantized at the Landau gauge this property is known as the non-
renormalization of the gluon-ghost vertex [98]. The same result is obtained here for a more
general class of gauges.
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factor ZA could be individually determined if the classical action had a kinetic

term for the gauge field. In the usual Yang-Mills theory, where the term F a
µνF

a
µν

is present, ZA can be directly determined from the gauge field kinetic term. But

in topological Yang-Mills theories there are no kinetic terms for the gauge field.

By this fact, the determination of ZA becomes impossible.

The same analysis we did for the Faddeev-Popov ghost terms can be performed

for the bosonic ghost term, leading to

Zφ̄Zφ = 1 . (6.13)

From the φ̄Aφ vertex we also obtain (6.12).

For any other interacting term including A, g also appears, making the combi-

nation gA or g2A2 to be irrelevant due to (6.12). Moreover, the mixed propagators

encoding A also do not give any extra information. The analysis for the source

terms also does not help (these terms always include an extra variable for each

new relation between Zs.). Ultimately, one can infer that (6.11) and (6.12) are

the main basic relations that could solve the puzzle. Essentially, we need two ex-

tra informations about the Z-factors which are not encoded in the system (5.70).

It is not difficult to conclude that the absence of a Yang-Mills term in the original

action is the origin of the ambiguity of the ZA factor.

Another feature in the ordinary Yang-Mills theories (quantized in the Landau

gauge) is that Zc = Zc̄ which relies on the discrete symmetry

ca −→ c̄a ,

c̄a −→ −ca . (6.14)

This condition, together with the Faddeev-Popov ghost kinetic term, are sufficient

to determine Zc and Zc̄. It is easy to see that the action (5.15) does not obey such
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a symmetry1, which explains the second ambiguity. (In Witten quantization, such

an ambiguity will not appear by this reasoning as the the Witten action contains

discrete symmetries ensured by the time-reversal symmetry (6.14) in Landau

gauge, together with

φ → φ̄ , φ̄→ φ ,

ψµ → χµ , χµ → ψµ , (6.15)

whereby the components of χµ is defined as follows

χ0 ≡ η , χi ≡ χ0i =
1

2
εijkχjk , (6.16)

implying a “particle-antiparticle” relationship between c̄ and c, φ̄ and φ, and ψµ

and χµ, as demonstrated in [49].)

In essence we can infer that the difference between YM theories and on-shell

topological YM theories relies in their cohomology properties. The non-trivial

character of YM cohomology enables extra equations to determine ZA and Zc.

Moreover, a non-trivial cohomology implies on local physical degrees of freedom

whose renormalization affect physical observables. Thus, a freedom in the choice

of some renormalization factors could affect physical observables in catastrophic

ways. On the other hand, the trivial nature of topological YM cohomology is

associated with the fact that all local degrees of freedom are non-physical (see

(6.4) for instance — the gauge field propagator is totally gauge dependent) and

such kind of freedom in how some objects renormalize can be interpreted as a

reflex of the cohomology triviality.

1It is instructive to observe that discrete symmetries between the other ghosts of topological
Yang-Mills theories (φa and φ̄a and; ψaµ and χ̄aµν) are also not present in (5.15).
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6.2.3.2 Non-physical gauge field propagators

The ambiguity can also be understood by looking at the gauge field propagators.

For instance, at the (A)SDL gauges, the gauge field propagator vanishes to all

orders in perturbation theory [54]. We immediately find that we have a liberty

to choose any ZA we want: take 〈AaµAbν〉R as the dressed propagator and 〈AaµAbν〉0
the bare one, thus,

〈Aaµ(x)Abν(y)〉R = ZA〈Aaµ(x)Abν(y)〉0 = 0 ⇒ 〈Aaµ(x)Abν(y)〉0 = 0, (6.17)

independently of ZA.

In the α-gauges we found that Zα = ZA, see (5.70) and (6.7). The expression

of the tree-level gluon propagator at the α-gauges is easily computed,

〈AaµAbν〉0(p) = δab
α

p2

pµpν
p2

. (6.18)

Therefore, after the redefinitions of the fields and parameters and using (5.70)

and (6.7), ZA is canceled at both sides of (6.18). Again, we conclude that we

have the liberty to choose any renormalization factor for the gauge field.

The β-gauges is no different from the previous cases. From (5.70) and (6.10)

one obtains

Zβ = ZA [1 + 2ε (ã− 2a)] . (6.19)

Now, the tree-level gluon propagator takes the form

〈AaµAbν〉0(p) = δab
β

4p2

(
δµν −

pµpν
p2

)
. (6.20)

Once again, after the renormalizations, the factor ZA is canceled at both sides of
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(6.20).

From the gauge field propagator, the freedom in the choice of ZA is clearly

illustrated. As a consequence of the first equation in (5.70), i.e., ZA = Z
− 1

2
g , this

freedom is transmitted to the renormalization of the coupling parameter.

We may wonder if this renormalization ambiguity is not intrinsic to the topo-

logical YM theory, in other words, if there is an undiscovered Ward identity ca-

pable of defining the Z factors system1, or an operation capable of recovering the

Yang-Mills discrete symmetries without destroying the Ward identities, but this

is not necessary in (A)SDL gauges. Despite the absence of discrete symmetries

of the type (6.14), we will prove that the impositions

Zc = Zc̄ = 1 and Zφ = Zφ̄ = 1 (6.21)

are consistent with the model in this particular case — and therefore, with a

vanishing β-function, see (5.70) — due to the impossibility of closing loops in the

Feynman diagrams. In any case, we could question if the assumption (6.21) being

consistent with a model with a vanishing β-function is, in fact, a consequence of

taking ZA = 1 as a freedom of the theory; automatically, from (5.70), Zg = 1 as

well, and (6.21) is also obtained. But this specific choice, at a first moment, seems

to be artificial for a generic gauge, as it would impose the tree-level exactness

of the gauge propagator (and, consequently, of the FP and bosonic ghost ones),

which is a particular consequence of the vector supersymmetry in (A)SDL gauges.

1We point out the difficult of finding such a Ward identity that could relate some Z factors.
In fact, even if a new Ward identity eliminates the last renormalization parameter, a, see (5.66),
the ambiguity will remain. It strongly suggests that the absence of discrete symmetries lie in
the origin of the renormalization ambiguity.
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6.3 Absence of radiative corrections

6.3 Absence of radiative corrections

We will prove that all connected n-point Green functions of four-dimensional

topological Yang-Mills theories in the Baulieu-Singer approach, quantized in the

(anti-)self-dual Landau gauges are tree-level exact, i.e., that the theory does not

possess radiative corrections in this gauge choice, see [56], as a consequence of

the topological off-shell BRST cohomology, and the Ward identities of the model,

in particular, of the vector supersymmetry which ensures that the gauge field

propagator vanishes to all orders in perturbation theory.

6.3.1 Feynman rules

In the following, we collect the Feynman rules derived from the full action in

(A)SDL gauges (5.15). The relevant propagators are represented by1

Figure 6.1: Propagators in (A)SDL gauges.

The relevant vertices are represented by:

In principle we do not have to include the gauge propagator in Fig. 6.1 —

which is null — but this will be necessary to visualize the tree-level exactness

of the theory, since such a propagator, as discussed later on, is required to close

loops, leading to vanishing diagrams at the quantum level.

1From (6.2), a c̄ψ mixed propagator also seems to be relevant. However, this term can
easily be eliminated by a trivial-Jacobian redefinition of the η̄ field given by η̄ → η̄ + c̄.
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Figure 6.2: Vertices in (A)SDL gauges.

6.3.2 Feynman diagram structures and tree-level exact-

ness

To show that the action (5.15) defines a theory free of radiative corrections, it is

convenient to split the argumentation into propositions.

Proposition 1 Any connected loop diagram containing an internal A-leg van-

ishes unless the branch generated by the A-leg ends up in external B- or b-legs.

Proof. To prove this proposition, we must consider a combination of two

facts: 1) 〈AA〉 = 0 to all orders and 2) the gauge field only propagates through

the non-vanishing mixed propagators 〈BA〉 and 〈bA〉. Hence, from an internal

A-leg arising from an arbitrary vertex, denoted by a black dot, we only have two

possibilities:

Figure 6.3: Internal gauge field propagation.

In the same way, the fields B and b only propagate through A. Graphically,

we now have
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Figure 6.4: Internal propagation of the B and b fields.

Nonetheless, the former is not at our disposal since there is no vertex contain-

ing b, vide Fig. 6.2. The latter, on the other hand, must be a BAA vertex since

it is the only one containing B. Thus, an internal A-leg in any loop diagram will

propagate to B and the latter will end up in a BAA vertex,

Figure 6.5: Propagation of the gauge field to the BAA vertex.

Applying the above reasoning for the two newly created A-legs, we end up

with two more BAA vertices and four A-legs. Since the number of A-legs only

increases, we can continue this process ad infinitum leading to a cascade effect of

exponential proliferation of A-legs:

Figure 6.6: Cascade effect.
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There are three possibilities here: 1) trying to close a loop in the diagram in

Fig. 6.6 requires an 〈AA〉 internal propagator, which would result in a vanishing

diagram; 2) to consider external A-legs, which also requires a 〈AA〉 propagator,

resulting in a vanishing diagram and; 3) one could consider that all remaining

A-legs end up in external B- or b-legs. QED.

We should note that all vertices, except one, present in (5.15) contain at least

one A-leg, therefore the cascade effect always occur for these cases. The only

exception is the vertex φ̄cψ.

Corollary 1.1 In a connected loop diagram, any branch arising from the vertex

φ̄cψ results in a vanishing diagram unless this branch ends up in external B- or

b-legs.

Proof. Let us start with the vertex of interest, i.e., φ̄cψ. To construct a loop

diagram from this three-vertex we have to propagate it to another vertex. The

φ̄-leg could only propagate to the vertex φ̄Aφ through 〈φ̄φ〉; the c-leg only to c̄Ac

through 〈c̄c〉 and; the ψ-leg to the vertexes χ̄Aψ, χ̄cA or χ̄cAA through 〈ψχ̄〉

(〈η̄ψ〉 is not considered because there is no vertex containing η̄). Graphically, the

possibilities of completing the legs arising from this vertex are

Figure 6.7: Propagation from the vertex φ̄cψ.
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But all possible branches contain at least one remaining A-leg. By evoking

Proposition 1, the proof is completed. QED.

Corollary 1.2 Any connected loop diagram containing a (Φi 6= {B, b})-external

leg vanishes.

Proof. There are two steps toward this proof: 1) consider the external leg

joined to a vertex containing an A field. In this case, A is an internal leg. Thus,

Proposition 1 takes place and the graph either vanishes or generates a branch

with external B- or b-legs and no loop can be constructed; 2) now, consider the

external leg joined to a vertex not containing A, i.e. the vertex φ̄cψ. The field φ̄

only propagates through 〈φ̄φ〉, c through 〈c̄c〉, and ψ only through 〈χ̄ψ〉 or 〈η̄ψ〉.

For this reason, it is impossible to propagate the vertex φ̄cψ to another vertex

φ̄cψ. In other words, from the vertex φ̄cψ, we should necessarily propagate it to

the vertexes containing an A field. Now, Corollary 1.1 takes place and the graph,

again, either vanishes or generates a branch with external B- or b-legs and no

loop can be constructed. QED.

Proposition 2 Any connected n-point Green function composed of B and b fields

of the form 〈B(x1)B(x2)...b(xn−1)b(xn)〉 vanishes.

Proof. Due to (4.28), and the fact that expectation values of any BRST-exact

terms vanish. One can write these n-functions as BRST-exact correlators, namely

〈BBB . . . bb〉 = 〈sχ̄BB . . . bb〉 = 〈s(χ̄BB . . . bb)〉 = 0 , (6.22)

and

〈BBB . . . bb〉 = 〈BB . . . sc̄b〉 = 〈s(BBB . . . c̄bb)〉 = 0 , (6.23)

which vanish due to BRST-invariance. QED.
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Proposition 3 All connected n-point Green functions are tree-level exact.

Proof. Let us take a connected loop diagram with n external legs with arbi-

trary fields Φi. From Corollary 1.2, if there is at least one field different from B

or b, the graph either vanishes or is a tree-level graph. Then, there remains the

possibility of a graph with n external legs formed by B or b fields. In this case

Proposition 8.65 takes over and the Green function 〈BB . . . bb〉 vanishes, meaning

that this Green function is zero and receive no radiative corrections. Hence, all

connected n-point Green functions are tree-level exact. QED.

In a few words, we conclude that all connected n-point Green functions of four-

dimensional topological gauge theories quantized in the (anti-)self-dual Landau

gauges are tree-level exact. This means that, in this gauge, the theory remains

“classical” because there are no radiative corrections to be considered. This is a

very interesting, yet subtle, result. The subtlety lives on the fact that the theory

is not finite (so far, there is a non-trivial counterterm to be included in order

to absorb the divergences of the theory, cf. eq. (5.66)) but the divergences are

canceled out due to the vanishing of the gauge propagator which is always needed

in order to close a loop diagram or due to the BRST symmetry.

6.4 β-functions in topological gauge theories

As the the topological Baulieu-Singer theory does not receive quantum corrections

in (A)SDL gauges, we conclude that there is no running of the coupling constant,

i.e., that the β-function vanishes in this gauge,

Zg = 1 or β(A)SDL
g = 0 , (6.24)
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in absolute agreement with the system of Z-factors displayed in (5.70). The

vanishing of the β-function in this case implies that ZA = 1, and that Zc = Zc̄ = 1

and Zφ = Zφ̄ = 1, despite the absence of discrete symmetries between c and c̄,

and φ̄ and φ, which could enforce such relations from the beginning.

This result is completely different of the twisted N = 2 SYM one, which

possesses a non-vanishing β-function proportional to g3, see (3.77), as computed

in [49] at one-loop, and proved to all orders in [47]. . We conclude that the off-

shell Baulieu-Singer approach and twisted N = 2 SYM only possess equivalent

β-functions if we take g → 0 in the N = 2 side. This is in complete agreement

with the fact that the observables of the off-shell Baulieu-Singer theory are only

identical to the on-shell Witten ones in the weak coupling limit of the twisted N =

2, given by the Donaldson polynomials. The BS theory does not have the power

to reproduce the N = 2 observables in the strong limit. The difference between

the BS and Witten actions does not belong to the trivial part of the BRST

cohomology. It proves that Brooks et al. BRST construction [49], which exactly

recovers the Witten action, represents a distinct quantization scheme, where the

complete BRST transformation cannot be reduced to a doublet subspace with

trivial cohomology like in the BS approach (in the beginning of Sec. 4.2 we have

discussed this point. We have shown, for instance, that in Witten quantization

(φ̄, η) is not a BRST doublet). This serves to elucidate the different behavior of

the β-function of each theory, unless we go to the regime g → 0 in the N = 2

side, where the observables of each theory are identical.

The most intriguing result is the one obtained by Birmingham et al. in [128],

where the Batalin-Vilkovisky algorithm [130] had been employed. It configures

a similar quantization to BS approach. As mentioned before, for a particular

configuration of Batalin-Vilkovisky auxiliary fields, this scheme is identical to the

one worked out in [127], i.e., for the BS approach in the gauge Dab
µ ψ

b
µ = 0 (the
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other gauges are the same as the (A)SDL ones). The cohomological properties

of both approaches are identical. This gauge choice for the topological ghost,

i.e., with the covariant derivative instead of the ordinary one, breaks the vector

supersymmetry, and consequently the gauge propagator does not vanishes to all

orders anymore. This allows for quantum corrections, and for the possibility of

a non-vanishing β-function. In fact, Birmingham et al. computed the one-loop

correction for Tr (F ± F̃ )2, and proved that the correction possesses the same

value of the ordinary Yang-Mills one, corresponding then to a non-vanishing β-

function. Accordingly to the cohomology of the model, that protects the original

topological structure of the classical action, they found that it is Tr (F±F̃ )2 rather

than TrF 2 which is renormalized. In this way, the minima of the effective action

preserves the instanton configuration at the quantum level, (the same occurs for

the BS approach in the β-gauges, as demonstrated by the counterterm (6.9).)

On the other hand, Brooks et al. [49] claimed that only a counterterm for

TrF 2 was required. We must discard from the beginning the existence of a gauge

anomaly in the BV (or BS) approaches in order to explain such a discrepancy,

since it is forbidden in these models due to the trivial BRST cohomology, that

makes it impossible to build an appropriate term that satisfies the Weiss-Zumino

consistency conditions [128], cf. equation (4.39). The correct explanation must

be based on the fact that BV (or BS) theory are quantically distinct of Brooks

et al. construction (or Witten theory), as their methods are based on different

BRST quantization schemes, with different cohomological properties.

The discrepancy between the β-functions of Birmingham et al. and the BS ap-

proach in (A)SDL gauges follows the same argumentation. It cannot be attributed

to a gauge anomaly. However, the cohomological nature of both are similar, and

we face the apparently contradictory explanation of attributing the discrepancy

to gauge artefacts. In non-topological Yang-Mills theories, the β-function is an
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on-shell gauge-invariant physical quantity. Nonetheless, in gauge-fixed BRST

topological theories of BS type, the coupling constant is a non-physical gauge

parameter, introduced in the trivial part of the cohomology, together with the

gauge-fixing action. In these terms, it is not contradictory that the β-function

is gauge dependent as it computes the running of a non-physical gauge parame-

ter. We must observe that the physical observables of the theory, the Donaldson

invariants, naturally do not depend on the gauge coupling. There is no n-point

local Green function that depends on g, but only global observables which are

characterized in function of the target manifold, and that only depend on the

spacetime global structure. So that there is no inconsistency that the observables

of this kind of theory, described by topological invariants, i.e., exact numbers, do

not depend on the coupling constant, and consequently on its running, being g

only a gauge parameter, and βg, an unobservable gauge-dependent quantity.
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Chapter 7

Gribov problem in Yang-Mills

theories: Overview

The Gribov copies are ambiguities present in the Yang-Mills theories in which

double counts of equivalent field configurations are not eliminated by the usual

Faddeev-Popov gauge-fixing procedure. Such ambiguities, originally proposed by

Vladimir Gribov in 1978 [42], brought light to the problem of color confinement

in non-Abelian theories. The method for eliminating these ambiguities modifies

the infrared (IR) behavior of the theory from the introduction of a restriction

on the Feynman path integral whose integration over the fields configurations is

now limited to a given region — the first Gribov region [137; 138], for which the

Faddeev-Popov determinants are positive — where the copies are avoided. In

the Abelian theories, like Quantum Electrodynamics, these copies or ambigui-

ties are not relevant, as the copy equation only possesses trivial solutions in the

thermodynamic limit.

The usual method for introducing the condition that promotes the elimination

of gauge copies is accomplished by the Gribov-Zwanziger action [58; 139; 140].

It is a non-perturbative method imposed to all orders of perturbation theory.
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In any case the imposition of this condition is only capable of eliminating the

infinitesimal copies contained in the region of low energies. Moreover, the copies

do not affect the ultraviolet region, preserving the asymptotic freedom. As a

result this imposition generates non-local interacting terms beyond a quadratic

term for the gluon in the IR which originates a mass parameter in the gluon

propagator — related to the mass gap problem. In the presence of scalar and

gluon condensates, the so-called Refined Gribov-Zwanziger (RGZ) action provides

a gluon propagator in harmony with lattice simulations [59].

7.1 Faddeev-Popov gauge-fixing procedure

The starting point of Faddeev-Popov quantization is the functional generalization

of the ordinary delta function of a real-valued and continuously differentiable

function, f(x), which is given by the expression

δ(f(x)) =
∑
i

δ(x− xi)
|f ′(xi)|

, (7.1)

being xi the roots of f(x), f(xi) = 0, and |f ′(x)| the Jacobian, where we have

assumed that f ′ 6= 0 everywhere. By integrating (7.1), one obtain the following

expression for the unit:

1∑
i

1
|f ′(xi)|

∫
dx δ(f(x)) = 1 . (7.2)

In order to obtain a similar structure of the one used in the Yang-Mills case, it is

useful to construct a two-dimensional toy model in polar coordinates (~r, θ), see

[141], from which we can rewrite (7.2) in a gauge orbit, assuming that the system
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7.1 Faddeev-Popov gauge-fixing procedure

in invariant under a rotation φ, in the form

|∂F(~r, θ, φ)

∂φ
|F(~r,θ,φ)=0

∫
dφ δ(F(~r, θ, φ)) = 1 , (7.3)

where in F(~r, θ, φ) denotes the function that intersects each orbit, characterized

by a gauge transformation θ → θ(φ), being the angle φ the gauge parameter of

the symmetry. To obtain the expression above, we also consider that F intersects

each orbit only once (for this reason we eliminated the sum over the roots, as we

assumed only one root φi = φ).

The trick to perform the path integral over only one representative of each

gauge orbit consists of introducing the unit (7.3) in the partition function

Z = N

∫ 2π

0

dθ

∫ ∞
0

rdr e−S(r) , (7.4)

where N is the normalization factor, and S(r) the action invariant under rota-

tions, resulting in

Z = N

∫ 2π

0

dθ

∫ 2π

0

dφ

∫ ∞
0

rdr4F (r)δ(F(~r, θ, φ)) e−S(r) , (7.5)

where we call

4F(r) ≡ |∂F(~r, θ, φ)

∂φ
|F(~r,θ,φ)=0 , (7.6)

as the Jacobian is taken with respect to the gauge parameter φ, and only depends

on r. Now we can take the inverse transformation θ(φ) → θ to eliminate the

φ dependence in δ(F(~r, θ, φ)). As the action is invariant under φ-rotations, it

remains with the same argument, and we get

Z = N

∫ 2π

0

dφ

∫ 2π

0

dθ

∫ ∞
0

rdr4F (r)δ(F(~r, θ)) e−S(r) . (7.7)
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As we can see, the dependence on φ was completely eliminated, so that we are

able to perform the integration over φ, which only gives a volume factor 2π that

can be absorbed in the normalization factor. In the end,

Z = N ′
∫ 2π

0

dθ

∫ ∞
0

rdr4F (r)δ(F(~r, θ)) e−S(r) , (7.8)

with N ′ = 2πN . We conclude that the insertion of the unit yields a partition

function whose integration is evaluated over only one representative of each gauge

orbit, independently of the gauge parameter, up to a volume factor that can be

absorbed in the normalization factor.

Yang-Mills case. The functional generalization of the unit (7.3) for a system

with N2 − 1 colors and infinite spacetime coordinates is given by

4F

∫
DU δ(F(AU)) = 1 , (7.9)

wherein we are using the notation

δ(F(AU)) ≡
∏
x

∏
a

δ(Fa(AUµ (x))) , and DU ≡
∏
x

∏
a

dθa(x) , (7.10)

being θa(x) the local gauge parameters of the non-Abelian symmetry U = e−igT
aθa(x),

U ∈ SU(N), and AUµ the gauge transformed field, cf. eq. (2.6),

AUµ = UAµU
† − i

g
(∂µU)U † , (7.11)

which defines a gauge orbit of fields, i.e., a class of gauge field configurations that

only differ by a gauge transformation, that represents the same physics according

to the gauge invariance of the Yang-Mills action under SU(N) transformations.

Moreover, as it is a multivariable system, the Jacobian is given by the absolute
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7.1 Faddeev-Popov gauge-fixing procedure

value of the Faddeev-Popov determinant,

4F(A) = | detMab(x, y)| , (7.12)

where

Mab(x, y) ≡
δFa(AUµ (x))

δθb(y)
|F(AU )=0 . (7.13)

Therefore, inserting the unit (7.9) in the Yang-Mills partition function, we get

ZYM = N

∫
DU

∫
DA4F (A)δ(F(AU))e−SYM . (7.14)

Similar to the two-dimensional toy model, we perform an inverse gauge transfor-

mation to relate AUµ to Aµ, which can be done by taking the complex conjugate

of (7.11) and isolating Aµ, in such a way that AUµ back to Aµ via

UAUµU
† − i

g
(∂µU)U † = Aµ . (7.15)

As SYM and the determinant 4F are invariant under the gauge transformation

(7.11), one obtains

ZYM =

∫
DU

∫
DA4F (A)δ(F(A))e−SYM . (7.16)

Then we can separately integrate over the gauge group U , as it was factored,

ZYM = NV

∫
DA4F (A)δ(F(A))e−SYM , (7.17)

where we denote the gauge group volume (the Haar measure of U) by V ≡∫
DU , that can be absorbed by the normalization factor, as it is only a number

independent of the gauge field.
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7.1 Faddeev-Popov gauge-fixing procedure

For small θa(x), and the gauge condition

F a(Aµ(x)) = ∂µA
a
µ(x)−Ba

µ(x) , (7.18)

being Bµ(x) an auxiliary field, we automatically get the Faddeev-Popov determi-

nant

Mab(x, y) =
δFa(Aµ(x))

δAUcµ(z)

δAU
c
µ(z)

δθb(y)
|F(AU )=0 = −∂µDab

µ δ(x− y)|F(Aµ)=0 . (7.19)

The condition F(Aµ) = 0 is naturally implemented by the δ(∂µAµ − Bµ) that

appear together with the determinant. Finally, the Yang-Mills partition function

becomes

ZYM = N

∫
DA| det[−∂µDab

µ δ(x− y)]|δ(∂µAµ −Bµ)e−SYM , (7.20)

where we absorbed V into N. Using then the determinant identity for Grasmann

variables (c̄a, ca),

detMab(x, y) =

∫
Dc̄Dc exp{c̄a(x)Mab(x, y)cb(y)} , (7.21)

and multiplying Z by the Gaussian factor

∫
DB exp{ 1

2α

∫
d4xB2} , (7.22)

where α is the width of the Gaussian distribution, one finally obtains

ZYM = N

∫
DAe−(SYM+Sgf ) , (7.23)
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7.1 Faddeev-Popov gauge-fixing procedure

where by Sgf is the well-known gauge-fixing action given by

Sgf =

∫
d4x

(
c̄a∂µD

ab
µ c

b − 1

2α
(∂µA

a
µ)2

)
. (7.24)

The Grasmann fields c̄a and ca are the famous Faddeev-Popov ghosts [57],

which are anti-commuting scalar fields. Such fields violate the spin-statistics the-

orem, meaning that they are non-physical, i.e., they never appear in the physical

spectrum of the theory as they possess negative norm and never attain a proba-

bilistic interpretation. In other words, they are never observed in Nature. Their

influence, however, are felt in virtual processes at the quantum level, in which

c̄ and c appear in loop diagrams, without being scattered in the end of the in-

teraction. These ghost fields are exactly the ones predicted by R. Feynman to

recover the unitarity of Yang-Mills theories [142]. In practice, the Faddeev-Popov

quantization is a proof that the introduction of ghost fields is intimately related

to the evaluation of the Feynman path integral by taking only one representative

of each gauge orbit (regardless the Gribov copies).

The quantization of a field theory via Feynman path integral is based on

the presupposition that we must sum over all field configurations according to

all paths (in the field space) that can be constructed between the final and ini-

tial states, after a scattering process. Before studying the Gribov problem, we

must remark that we made fragile assumptions in order to reproduce the ghosts

predicted by Feynman. Firstly, we have used the Grasmannian identity (7.21)

to generate the exponential of the FP determinant, but such an identity is not

exactly the one that appears in the Feynman path integral after inserting the

unit, since is not detMab that showed up, but its absolute value | detMab|, see

(7.12) and (7.20). In fact we have assumed that the FP determinant is positive.

Secondly, we considered the wrong assumption that Fa(A) intersects each gauge

orbit only once. These issues are intimately related to the Gribov problem, which
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consists in how to eliminate a residual gauge ambiguity that is not fixed by the

Faddeev-Popov gauge-fixing procedure (as we shall discuss, this ambiguity indeed

exists in non-Abelian theories, and is known as Gribov copies), without destroying

the Feynman presupposition, i.e., without losing any physical information con-

cerning the Feynman quantization via path integral, that should be performed

over all possible paths, in other words, over all physical field configurations.

7.2 Definition of the Gribov region: Elimination

of infinitesimal copies

As we know, for a Yang-Mills theory with SU(N) symmetry, the gauge trans-

formation on the gauge field Aµ which preserves the theory invariance under an

element U ∈ SU(N) is defined by Aµ −→ AUµ , where AUµ is given by (7.11).

When we try to fix the ambiguity using, for example, the Landau gauge (which

is obtained by taking α→ 0 in the gauge-fixing action (7.24)),

∂µA
a
µ = 0 , (7.25)

one can prove that the imposition (7.25) is not enough to avoid double counting

of equivalent field configurations in the Feynman path integral. Summarizing, in

non-Abelian theories the FP quantization does not select only one representative

of each gauge orbit in the Feynman path integral.

The so-called Gribov copies, first introduced by V. Gribov in [42], result from

the fact that the copy equation

∂µAµ = ∂µA
U
µ (7.26)

has nontrivial solutions in the Yang-Mills theory. In this case, Aµ and AUµ are
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called copies. For infinitesimal transformations U = 1 − α (U † = 1 + α) with

α = αaT a, in first order eq. (7.26) yields

−∂µ(∂µα + ig[α,Aµ]) = 0 , (7.27)

or, by recognizing the covariant derivative in adjoint representation,

−∂µDµα = 0 . (7.28)

This equation could be seen as an eigenvalue equation for the operator −∂µDµ ≡

−∂D, where α is the zero mode of the operator. We must note that this operator

is exactly the Faddeev-Popov ghost one. As −∂µDµ is Hermitian, its eigenvalues

are real. Form eq. (7.27) one observes that the copy equation can be seen as a

Schrodinger equation with Aµ playing the role of the potential. For values of Aµ

sufficiently small, the eigenvalues of the FP operator will be positive, as −∂2 only

has positive eigenvalues1. As Aµ increases, it will attains a zero mode (7.28).

Then, as Aµ increases further, it will become negative. This signal changing

behavior will repeat over and over again every time the FP operator reaches a

zero mode. The boundaries in which the FP operator has zero eigenvalues are

called Gribov horizons. (See Figure 7.1 below, cf. [143].)

One of the famous Gribov solutions in his original paper is called the Gribov

pendulum — a didactic explanation of these formal solutions can be found in

[143]. Besides the formal solutions of (7.28), Gribov also proved that, in the

infinitesimal case, for every eigenvalue of the operator ∂D, denoted by ωa(A)

below,

−∂µDab
µ (A)αb = ωa(A)αa , (7.29)

1In Abelian theories, such as QED, −∂2 is the “FP operator”, and the copy equation only
possesses trivial solutions in the thermodynamic limit, meaning that the Gribov copies are
inoffensive in this case.
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7.2 Definition of the Gribov region: Elimination of infinitesimal copies

Figure 7.1: Functional field space divided into regions. Inside regions C0, C2,
· · · , C2N , the eigenvalues of the FP ghost operator are positive. Inside C1, · · · ,
C2N+1, negative. The regions are separated by lines hn, which represents the
Gribov horizons in which the FP operator has a renormalizable zero mode.

if ωa is a solution, then −ωa is also an eigenvalue of −∂D. In order to avoid the

infinitesimal copies, Gribov proposed to restrict the path integral domain to the

region Ω defined by

Ω = {Aaµ; ∂µAµ = 0, Mab > 0} , (7.30)

wherein Mab is the FP operator −∂D, so that the condition Mab > 0 implies

∫
dDx

∫
dDy ϕa(x)Mab(x, y)ϕb(y) > 0 , (7.31)

for all well-behaved function ϕa(x). This condition restricts the theory to the
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7.3 No-pole condition via Gribov semi-classical method

region inside the first Gribov horizon, denoted by C0 in Fig. 7.1 above, in which

all eigenvalues are positive. As for every positive eigenvalues there is a correspon-

dent negative copy, this restriction does destroy the Feynman presupposition. In

this region, the path integral is still performed over all physical field configu-

rations (all possible paths), where only residual infinitesimal gauge ambiguities

were eliminated. Moreover, as all eigenvalues of Mab are positive in this region,

the Grasmannian identity for the Faddeev-Popov determinant is well defined for

its absolute value. This region inside the first Gribov horizon h1 (see Fig. 7.1),

known simply by Gribov horizon, is called Gribov region, and the implementation

of the restriction to the Gribov region Ω is accomplished by the introduction of

a step-function Θ(−∂D) in the Feynman path integral, that leads to the well-

known no-pole condition, as in this region the FP operator never reaches a zero

mode, whose exponentiation will originate the Gribov horizon function. In 1991,

Dell’Antonio and Zwanziger showed that all gauge orbit passes inside the Gribov

region at least once [144]. As we shall see, the no-pole condition only affects

the infrared regime of the theory, in which the coupling constant could not be

treated as a perturbative parameter, proving that the asymptotic freedom in the

high energy limit is preserved after introducing the Gribov horizon.

7.3 No-pole condition via Gribov semi-classical

method

The main result of introducing the restriction of the Feynamn path integral do-

main to the Gribov region is a modified gluon propagator, due to the emergence

of a massive parameter for the gauge field. In his seminal paper, Gribov im-

plemented the no-pole condition for the Faddeev-Popov ghost propagator, i.e.,

−∂D > 0, by applying a semi-classical method in the limit of small Aµ. Pertur-
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batively, in ordinary Yang-Mills theory, one obtains the one-loop improved FP

ghost propagator

〈c̄a(p)cb(k)〉 = δ(p+ k)δabG(k2) (7.32)

with

G(k2) =
1

k2

1

(1− 11g2N
48π2 ln Λ2

k2 )
9
44

, (7.33)

being Λ the UV cutoff. The expression above shows that the one-loop FP prop-

agator has two poles, at

k2 = 0 and k2 = Λ2 exp

(
− 1

g2

48π2

11N

)
. (7.34)

As we can immediately observe, for large k2 the theory belongs to the Gribov

region Ω, as the denominator of 〈c̄c〉 ≡ 1
−∂D is positive in this region. However,

for small k2 in the order of k2 < Λ2 exp
(
− 1
g2

48π2

11N

)
we left the Gribov region,

as the eigenvalues of the FP operator are not positive anymore. This analysis

indicates that the only compatible poles to the Gribov region are the ones of the

type k2 = 0, as k2 is always positive and for k2 → 0, it reaches the first Gribov

horizon, where the FP operator finds a zero mode.

A correct implementation of a restriction to the Gribov region must eliminate

the second pole of the FP propagator displayed in (7.34). The no-pole condition

−∂D(A) > 0 represents a constraint to the gauge field Aµ. Following the semi-

classical Gribov method, in order to find this constraint at one-loop order, we

treat Aµ as an external field, and then compute the Feynman diagrams for

Gab(k2, A) = δabG(k2, A) , (7.35)

see (7.32), up to the second order in Aµ, leaving the integration over Aµ in the path

integral to be done in a second moment. The corresponding Feynman diagrams
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for Gab(k2) with external gauge fields are

Figure 7.2: Ghost propagator with external gauge fields up to one-loop order.

The Feynman rule for the vertex c̄a∂µA
k
µc
b is given by ikµf

akb, where the

incoming momentum kµ stems from c̄. These diagrams represent, in d dimensions,

the three integrals below

I1 = δab(2π)dδ(k − q) 1

k2
, (7.36)

I2 = g
1

k2

1

p2
fakbipµA

k
µ(k − p) , (7.37)

I3 = g2

∫
ddp′

(2π)d
1

k2

1

(p′ + k)2

1

p2
fakci (p′ + kµ)Akµ(−p′)f c`biqνA`ν(p′ + k − q) .(7.38)

As it is known [42; 143], we must disregard I2. Due to the vertex and propagator

structure of the gauge-fixed Yang-Mills action, there is no way to close loops from

the second diagram after integrating over the gauge field. Replacing (7.36) and

(7.38) into G(k2, A) (8.44) yields

G(k2, A) =
1

k2
+

Ng2

k4 (N2 − 1)V

∫
ddq

(2π)d
Aaµ(−q)Aaν

(k − q)µqν
(k − q)2

, (7.39)

therefore, from the definition

G(k2, A) =
1

k2
(1 + σ(k,A)) (7.40)
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being σ(k,A) the quantum corrections for the ghost propagator, one gets

σ(k,A) =
Ng2

k2 (N2 − 1)V

∫
ddq

(2π)d
Aaµ(−q)Aaν(q)

(k − q)µqν
(k − q)2

, (7.41)

wherein V is the infinite volume factor. As we are working in the Landau gauge,

qµAµ(q) =, and AlµA
l
ν is transverse, i.e.,

Alµ(q)Alν(−q) =
1

d− 1
Aaλ(q)A

a
λ(−q)Pµν with Pµν(q) = δµν −

qµqν
q2

, (7.42)

and σ(k,A) can be rewritten in the form

σ(k,A) =
Ng2

(d− 1)(N2 − 1)V

kµkν
k2

∫
ddq

(2π)d
Aaλ(−q)Aaλ(q)

1

(k − q)2
Pµν . (7.43)

For small σ(k2, A), the Born approximation may be employed,

G(k2, A) ∼ 1

k2

1

1− σ(k,A)
, (7.44)

whereby the no-pole condition that corresponds to the restriction of the domain

to the Gribov region reads

σ(k,A) < 1 . (7.45)

As σ(k,A) decreases for increasing k2, assuming that Aaλ(k)Aaλ(−k) is positive

(see [143]), the condition above is equivalent to imposing

σ(0, A) < 1 , (7.46)

where, taking the limit k2 → 0 in (7.43),

σ(0, A) =
g2N

4V (N2 − 1)

∫
d4q

(2π)4

Aaλ(q)A
a
λ(−q)

q2
, (7.47)
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which defines the form factor V (Ω) as the theta function1

V (Ω) = Θ (1− σ(0, A)) , (7.48)

or, using the Heaviside expression,

V (Ω) =

∫ +i∞+ε

−i∞+ε

dξ2

2πiξ2
eξ

2(1−σ(0,A)) . (7.49)

We should then introduce this factor into the path integral in order to implement

the elimination of infinitesimal gauge copies, thus restricting the Feynman path

integral domain to the Gribov region.

7.3.1 Modified gluon propagator in the presence of Gri-

bov horizon

By restricting the Feynamn path integral domain to the Gribov region, we in-

troduce the form factor (7.49) into the Yang-Mills partition function, so that

Z[J ] = N

∫
dξ2

2πiξ2

∫
DADc̄Dc eξ

2[1−σ(0,A)] exp{−(SYM + Sgf +

∫
ddx JiΦi)} ,

(7.50)

wherein Φi ≡ {A, c̄, c}, being Ji ≡ {J (c̄), J (c), Jµ} their respective external sources.

As we are interested in the free gluon propagator, we will take only the gluon

quadratic part of the action and disregard the integration over c̄ and c, thus

Zquad
A [J ] = N

∫
dξ2

2πiξ2

∫
DAeξ

2[1−σ(0,A)] exp{−(SquadYM +
1

2α
(∂µAµ)2+

∫
ddx JµAµ)} .

(7.51)

1Θ(x) = 1 if x > 0, Θ(x) = 0 if x < 0.
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Applying the Fourier transform and using the expression (7.47) for (0, A), the

gluon propagator in momenta space reads

〈Aaµ(k)Abν(p)〉 = Nδ(k + p)

∫
dξ2

2πiξ2
eξ

2

(detKab
µν)
− 1

2 (Kab
µν)
−1 , (7.52)

wherein

Kab
µν(k, ξ

2) = δab
[
ξ2 2Ng2

V d(N2 − 1)
δµν

1

k2
+ δµνk

2 +

(
1

α
− 1

)
kµkν

]
. (7.53)

A standard calculation of the determinant of Kab
µν yields

(detKab
µν)
− 1

2 = exp

[
−d− 1

2
(N2 − 1)V

∫
ddq

(2π)d
ln

(
q2 +

2ξ2Ng2

dV (N2 − 1)

1

q2

)]
,

(7.54)

then, replacing (7.53) and (7.54) into (7.52), one obtains

〈Aaµ(k)Abν(p)〉 = Nδ(k + p)

∫
dξ2

2πi
ef(ξ2)(Kab

µν)
−1 , (7.55)

with

f(ξ2) = ξ2 − ln ξ2 − d− 1

2
(N2 − 1)V

∫
ddq

(2π)d
ln

(
q2 +

2ξ2Ng2

dV (N2 − 1)

1

q2

)
(7.56)

Assuming that Kab
µν(k, ξ

2) does not oscillate too much, we are able to apply the

method of steepest descent method in order to compute the integral over ξ2,

〈Aaµ(k)Abν(p)〉 =
N

2πi
δ(k + p)ef(ξ2

0)(Kab
µν)
−1(k, ξ2

0) , (7.57)

whereby ξ2
0 is the minimum of f(ξ2),

f ′(ξ2)|ξ2=ξ2
0

= 0 , (7.58)
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7.3 No-pole condition via Gribov semi-classical method

which gives

1 =
1

ξ2
0

+
d− 1

d
Ng2

∫
ddq

(2π)d
1

q4 + γ4
, (7.59)

where one defines the Gribov massive parameter γ by

γ4 =
2ξ2Ng2

dV (N2 − 1)
. (7.60)

As ξ2
0 ∼ V , for a finite γ, we can neglect 1

ξ2
0

in (7.59) to obtain the so-called gap

equation

1 =
d− 1

d
Ng2

∫
ddq

(2π)d
1

q4 + γ4
, (7.61)

which fixes the infrared parameter γ2 ∼ Λ2, Λ ∼ µe
− 1

ξ20g
2(µ) , being µ the energy

scale. With this result, to compute the tree-level gluon propagator in the presence

of Gribov horizon, our task is reduced to the calculation of the inverse of Kab
µν ,

see (7.57), by setting ξ2 = ξ2
0 accordingly to the relation (7.60). Hence, by taking

α = 0 in the end, and absorbing ef(ξ20)

2πi
in the normalization factor, one gets the

modified transverse gluon propagator in the presence of a massive parameter,

〈Aaµ(k)Abν(p)〉 = δabδ(p+ k)
k2

k4 + γ4
Pµν(k) . (7.62)

In the UV limit γ4 → 0, for small g2, we recover the ordinary gluon propaga-

tor. The Gribov correction is strong in the infrared limit, which shows that the

Gribov horizon computes non-perturbative effects. From (7.62), we immediately

note that the Gribov horizon originates a mass gap. Differently of standard per-

turbation theory, in which the gluon propagator diverges at the origin, the gluon

propagator goes to zero at zero momentum — see figure below, extracted from

[145]. Moreover, as the Gribov parameter originates two complex non-physical

poles, p2 = ±iγ2, it allows for a interpretation concerning confinement phases,

where the gluon excitations disappear of the physical spectrum of the theory. In
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7.3 No-pole condition via Gribov semi-classical method

Figure 7.3: Form factor of gluon propagator. 〈AµAν〉(p) = D(p)Pµν , where

D(p) = 1
p2 in standard perturbation theory, and D(p) = p2

p4+γ4 in the presence of
Gribov horizon.

the paper [146], the authors analyze the correspondence between the dynamical

mass scale introduced by the Gribov horizon and the Polyakov loop.

7.3.2 Enhanced Faddeev-Popov ghost propagator

After calculating the gluon propagator, we are able to determine the one-loop

ghost propagator by integrating the gauge field,

〈c̄a(p)cb(k)〉 = δabδ(p+ k)
1

k2

1

1− 〈σ(k,A)〉1PI
, (7.63)

whereby 〈σ(k,A)〉1PI ≡ σ(k) represents the expression (7.43) after connecting

the gluon legs of the one-loop 1PI diagrams, see Fig. 7.2,

σ(k) =
Ng2

(d− 1)(N2 − 1)V

kµkν
k2

∫
ddq

(2π)d
〈Aaλ(−q)Aaλ(q)〉

1

(k − q)2
Pµν , (7.64)
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7.3 No-pole condition via Gribov semi-classical method

therefore, replacing (7.62) for a = b and µ = ν in expression above,

σ(k) = Ng2kµkν
k2

∫
ddq

(2π)d
q2

q4 + γ4

1

(k − q)2
Pµν . (7.65)

As the detailed computation of (7.65) can be found in [141; 145], we will not

reproduce it. The idea is to insert the gap equation identity (7.61) into the

equation above, and provide a perturbative expansion for small momentum. The

final expression of the ghost propagator for k2 ≈ 0 in the infrared regime is

Gab(k2) = δab
1

k4

d2 + 2d

d2 − 3d+ 2

1

Ng2Iγ
, (7.66)

wherein

Iγ =

∫
ddq

(2π)d
1

q2(q4 + γ4)
. (7.67)

In the four-dimensional case, d = 4, and we get

Id=4
γ = δab

1

k4

128π2γ2

Ng2
. (7.68)

This result is known as the enhancement of FP ghost propagator, with the

absence of the second pole described in (7.34), as it was expected due to the

implementation of the no-pole condition. The Gribov form factor for the gluon

propagator, with the vanishing of 〈AA〉 at the origin, and the ghost enhancement

predicted by Gribov copies is in agreement with old1 lattice data [147; 148; 149;

150; 151], serving as an evidence of existence of the Gribov horizon in Yang-Mills

theories.

1In order to obtain the recent data, we must introduce two-dimensional condensates. See
the topic “RGZ theory” on page 160.
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7.4 Gribov-Zwanziger theory: A generalization

to all orders

In his original paper, Gribov developed a semi-classical method to implement

the no-pole condition at one-loop order, in the limit of small Aµ — as described

in previous section. In [58], D. Zwanziger generalized the restriction to Gribov

region to all orders, i.e., not only to small gluon field oscillations. The task

is to find the lowest eigenvalue of the Faddeev-Popov operator, ωlowest(A), and

then introduce the theta function Θ(ωlowest(A)) in the Feynman path integral,

imposing

ωlowest(A) ≥ 0 . (7.69)

If we impose a restriction in which the lowest eigenvalue of the FP operator has

to be positive, then all FP eigenvalues will be positive, and the theory will be

restricted to the Gribov region.

Working out the eigenvalue equation for the Faddeev-Popov operator, see

(7.29), by applying a degenerate perturbation theory following the decomposition

Mab = Mab
0 + Mab

1 = −∂2δab + gfabcAcµ∂µ , (7.70)

whereby Mab
0 ≡ −∂2δab is taken as the unperturbed operator, and Mab

1 ≡ fabcAcµ∂µ,

the perturbation one, D. Zwanziger found that the condition

dV (N2− 1)− g2

∫
ddx

∫
ddyfbalA

a
µ(x)[M−1(A)]lmδ(x− y)fbkmA

k
µ(y) > 0 (7.71)

in Landau gauge, is sufficient to impose (7.69). (For a pedagogical demonstration

of (7.71), see [141].) The function

h(A) = g2

∫
ddx

∫
ddyfbalA

a
µ(x)[M−1(A)]lmδ(x− y)fbkmA

k
µ(y) (7.72)
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is the so-called Gribov-Zwanziger horizon function. As the positivity of ωlowest(A)

is implemented by the condition above, the restriction to the Gribov region is

implemented by introducing the theta function Θ(dV (N2)−h(A)) in the Feynamn

path integral, which yields, using the Heaviside expression,

ZGZ =

∫
DADc̄Dc

∫
dγ∗

2πiγ∗
eγ
∗(d(N2−1)−h(A))e−SYM−Sgf . (7.73)

In the thermodynamic limit, V → ∞, and the Gribov region is concentrated

in its boundary1 (we will discuss the geometric interpretation of this statement

in details in Section ??). In this case, the Θ-function can be replaced by the

δ-function, which means that we can eliminate the factor γ∗ in the denominator

above. Then we apply the saddle point approximation for the integration over

γ∗,

Z =

∫
dγ∗

2πi
e−v(γ∗) ≈ e−v(γ∗0 ) , (7.74)

wherein

v(γ∗) = − ln

∫
DADc̄Dceγ

∗(dV (N2−1)−h(A))−SYM−Sgf , (7.75)

being γ∗ determined by v′(γ∗0) = 0, which yields

dV (N2 − 1) =

∫
DADc̄Dc h(A)e−γ

∗h(A)−SYM−Sgf∫
DADc̄Dc e−γ

∗h(A)−SYM−Sgf
≡ 〈h(A)〉γ∗ . (7.76)

From equations (7.74) and (7.75) we conclude that

ZGZ =

∫
DADc̄Dc e−SGZ , (7.77)

1The same operation was done in eq. (7.59) when we neglected the term 1
ξ20

in order to

obtain a finite massive parameter γ4.
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7.4 Gribov-Zwanziger theory: A generalization to all orders

where SGZ is the Gribov-Zwanziger action given by

SGZ = SYM + Sgf + γ4h(A)− γ4V d(N2 − 1) , (7.78)

where we call γ∗0 = γ4 — the parameter fixed by the Zwanziger’s gap equation

(7.76) — which is exactly the massive parameter obtained in the semi-classical

Gribov method. It is easy to see that, in the lowest order, M−1 = 1

−∂2(1− gfA∂
∂2 )

=

1
−∂2 +O(gA), and then, using the relation fabcfdbc = Nδcd, up to the order g2 one

gets

h(A) = g2N

∫
ddxAaµ(x)

1

∂2
Aa(x) = g2N

∫
ddp

(2π)4
Aaµ(p)

1

p2
Aa(−p) , (7.79)

proving that the Zwanziger generalization recovers the Gribov horizon in the

lowest order. The equivalence between both methods to all orders, according to

their respective gap equations that fix the value of γ4 via distinct ways, is not a

trivial issue, however it has been worked out in literature, and therefore proved

that Zwanziger and Gribov procedures are indeed equivalent to all orders, cf.

[152; 153].

7.4.1 Local Gribov-Zwanziger action

The horizon function is well defined. As the eigenvalues of Mab are restricted to

be positive, the determinant of Mab is always positive and (M−1)
ab

do exist, since

it never changes the sign, i.e., never finds a zero mode inside the Gribov region.

But the inverse of the Faddeev-Popov operator is non-local, and we will encounter

serious difficulties in applying the standard Feynman rules to construct the loop

diagrams for a non-local action. The localization of GZ action is achieved by the

introduction of two pairs of auxiliary fields: one bosonic, (ϕ̄ab, ϕab), and other

159



7.4 Gribov-Zwanziger theory: A generalization to all orders

fermionic, (ω̄ab, ωab). The local GZ action has the form

SLGZ = SYM + Sgf −
∫
ddx

(
ϕ̄acMabϕbc − ω̄acMabωbc

)
+ γ2

∫
ddxgfabcAaµ(ϕbcµ + ϕ̄bc)−

∫
ddxγ4d(N2 − 1) , (7.80)

with the corresponding partition function

ZL
GZ =

∫
DADc̄DcDϕ̄DϕDω̄Dω e−S

L
GZ , (7.81)

so that, when the auxiliary fields (ϕ̄, ϕ, ω̄, ω) are integrated out, we recover the

original non-local GZ action. (For the integration over ϕ̄abµ and ϕabµ , γ2gfabcAcµ ≡

Jabµ works as a common external source for both fields.)

It should be a bosonic pair and a fermionic one, in order to absorb the internal

determinant produced by the integration over the bosonic pair. With this, we

can define the BRST transformations of the auxiliary fields as doublets pairs,

sϕabµ = ωabµ , sωabµ = 0 , (7.82)

sϕ̄abµ = ω̄abµ , sω̄abµ = 0 , (7.83)

which ensures that the physical content of the theory is preserved. With respect

to the quantum numbers, all auxiliary fields has mass dimension 1, and ghost

numbers {ϕ̄, ϕ, ω̄, ω} = {0, 0,−1, 1}, respectively.

In this local formalism, the gap equation that fixes the massive parameter is

given by
∂Γ0

∂γ2
= 0 , (7.84)

which yields

〈gfabcAaµ(ϕbcµ + ϕ̄bc)〉 = 2γ2d(N2 − 1) , (7.85)
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where

e−V Γ0 =

∫
DADc̄DcDϕ̄DϕDω̄Dω e−S

L
GZ . (7.86)

By computing (7.85) to leading order, we recover the Gribov gap equation ob-

tained via semi-classical method (7.61). This is basically the proof of the leading

order equivalence between the Gribov semi-classical method and the Zwanziger

one in the local formalism. The all order proof was worked out in [153], as

mentioned in previous section.

RGZ theory. In order to obtain a Gribov-Zwanziger theory harmony with

lattice results, we must introduce two-dimensional condensates of the type 〈A2
µ〉,

giving rise to the so-called Refined Gribov-Zwanziger (RGZ) theory. In the pres-

ence of condensates, the enhanced ghost propagator possesses only one pole in

k2, being proportional to 1
k2 , instead of 1

k4 . Besides that, the RGZ infrared gluon

propagator has the form

〈Aaµ(p)Abν(−p)〉 = δab
p2 +M2

p4 + (m2 +M2)p2 +M2m2 + 2g2Nγ4
Pµν (7.87)

whose internal structure

p2 + a

p4 + bp2 + c
with {a, b, c} ≡ constants (7.88)

is in complete harmony with lattice QCD simulations, as pointed out by the au-

thors of [59]. In eq. (7.87), M are the mass of A2, and m, the mass of 〈ω̄ω〉 and

〈ϕ̄ϕ〉. As theses masses are dynamically generated in GZ theory, the idea is to

construct an effective theory by introducing quadratic terms for these fields, with-

out breaking the BRST symmetry. For the GZ theory in Landau gauge, 〈A2
µ〉 is

on-shell BRST invariant. With respect to the topological BRST transformations,

〈A2
µ〉 is not BRST invariant, even on-shell, and we have no physical motivation
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to introduce such a condensate. In general, these masses are not dynamically

generated in the topological case. As we shall demonstrate later on, the topo-

logical Yang-Mills theory restricted to the Gribov region via introduction of the

GZ horizon function in the local formalism does not receive radiative corrections

in the same way. Moreover, the introduction of the condensates does not modify

the gap equation, which will be used to prove that the Gribov copies are inof-

fensive in topological YM theory. For all these reasons, we will not consider the

introduction of two-dimensional condensates.

7.4.2 Soft breaking of BRST symmetry and the physical

meaning of Gribov massive parameter

The introduction of the Gribov-Zwanziger horizon in the action explicitly breaks

the BRST symmetry. This a very unwanted result, as the BRST symmetry is

necessary to prove the unitarity, to ensure the renormalizability to all orders, and

to define the physical gauge-invariant observables of the theory [154; 155; 156].

This breaking however brought to light the physical meaning of the infrared γ

parameter, and its intrinsic non-perturbative character. After performing a trans-

formation with trivial Jacobian on one of the auxiliary fields, one can prove that

the BRST breaking is proportional to γ2, in other words, the BRST symmetry is

restored in the perturbative regime. One says that the BRST symmetry is only

broken in a soft way, cf. [156; 157; 158; 159].

In order to prove such a statement, we must note that the Local GZ partition

function allows for the redefinition of the auxiliary field ab
µ according to the non-

local shift

ωabµ → ωabµ + gfdlm
∫
ddy[M−1]ad∂ν(ϕ

mb
µ Dle

ν c
e) . (7.89)

Again, as the eigenvalues of Mab are positive, this shift is well defined. This

162



7.4 Gribov-Zwanziger theory: A generalization to all orders

transformation is admitted as it possesses trivial Jacobian, which means that the

perturbative quantum results are preserved. From the shift (7.89), one gets

SLGZ |shifted = SLGZ −
∫
d4xgfadlω̄acµ ∂ν(ϕ

lc
µD

de
ν c

e) , (7.90)

which, under an ordinary Yang-Mills BRST transformation,

sSLGZ |shifted = γ2gfabc
∫
ddx

(
Aaµω

bc
µ −Dad

µ c
d(ϕ+ ϕ̄)bcµ

)
≡ 4γ2 . (7.91)

Henceforth, in the perturbative UV regime42
γ ∝ γ2 → 0, and SLGZ |shifted is BRST

invariant. This result is an evidence that the Gibov copies is a non-perturbative

method, whose effects due to the Gribov horizon only appear in the infrared

regime. In the UV limit, the BRST structure of the standard Faddeev-Popov

quantization is protected.

The consequence of the soft BRST breaking (7.91) is that the γ parameter

cannot be interpreted as a gauge parameter, but it is a physical parameter that

does belong to the trivial part of BRST cohomology. We conclude that, by

eliminating the infinitesimal copies, a physical element of Yang-Mills theory in

the infrared regime is brought to light. The algebraic proof of such a statement

was first described in [59], and is, in fact, very simple. Taking the derivative of

SLGZ |shifted with respect to γ2, and then acting with the BRST operator, one gets

s
∂SLGZ |shifted

∂γ2
=
4γ2

γ2
6= 0 , (7.92)

which implies
∂SLGZ |shifted

∂γ2
6= s(something) , (7.93)

since s2 = 0, proving that the γ-dependent term of the local GZ action cannot be

written as a BRST-exact term, i.e., γ2 cannot be introduced as a gauge parameter.
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Moreover, the local Gribov-Zwanziger action is renormalizable [160]. The al-

gebraic proof of its renormalizability to all orders was worked out in [161; 162]. In

few words, the Gribov-Zwanziger action allows for the introduction of a physical

infrared mass parameter in a renormalizable way, only by eliminating infinitesi-

mal gauge copies in the Feynman path integral that are not fixed by the usual

Faddeev-Popov gauge-fixing procedure.

7.5 Fundamental Modular Region

The Gribov region can be alternatively defined as the relative minima of the

functional

||AU ||2 = Tr

∫
ddxAUµA

U
µ . (7.94)

in other words, for each gauge orbit, to remain inside the Gribov region we

must select the path that minimizes A2. To prove this statement, if ||AU ||2 is

an extremum, varying it with respect to a gauge transformation must vanish,

therefore

δ||AU ||2 = δ[
1

2

∫
ddxAaµ(x)Aaµ(x)] =

∫
ddx[δAaµ(x)]Aaµ(x)

= −
∫
ddx[Dab

µ α
b(x)]Aaµ(x) =

∫
ddxαa(x)∂µA

a
µ(x) = 0 , (7.95)

which yields ∂µA
a
µ = 0, for an arbitrary gauge parameter αa(x). Secondly, to be

a minimum,

δ2||AU ||2 > 0 , (7.96)

which gives

−
∫
ddx[∂µα

a(x)]δAaµ(x) =

∫
ddxαa(x)(−∂µDab

µ )αb(x) > 0 , (7.97)
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which implies ∂µD
ab
µ > 0 that is exactly the Gribov imposition to eliminate the

infinitesimal copies, proving that the Gribov region, in which the Faddeev-Popov

operator is positive definite, is indeed defined by gauge orbits that minimize A2.

The Gribov region Ω enjoys the following properties: (i) it is convex [163],

i.e., if we would like to go from a field A1
µ to a field A2

µ, being both within the

Gribov region, we would never cross the Gribov horizon. To prove this property,

we must note that Mab(A) is a linear operator in Aµ. Because of that, the gluon

field

Aµ(t) = (1− t)A1
µ + tA2

µ with t ∈ [0, 1] (7.98)

always belongs to the Gribov region, since

Mab(Aµ(t)) = (1− t)Mab(A1
µ) + tMab(A2

µ) > 0 , (7.99)

because Mab(A1
µ) > 0 and Mab(A2

µ) > 0, as we have previously admitted that

A1
µ, A

2
µ ∈ Ω; and t ∈ [0, 1], i.e., (1− t) and t ≥ 0. Thus, varying t = 0 → t = 1,

we go from A1
µ to A2

µ without going out of Ω, in other words, all paths between

gluon fields inside Ω never cross a cavity, which proves that Ω is convex.

(ii) It is bounded in every direction. The task is to prove that, if Aµ ∈ Ω, then

λAµ will cross the Gribov horizon for λ large enough. The proof of this property

is done as follows: firstly, we must note that the operator

M̃ab = fabc∂µA
c
µ (7.100)

is traceless, thus the sum of the eigenvalues of M̃ab is zero, and consequently

at least one of its eigenvalues, ω, have to be negative. Therefore, as Mab =

−∂2δab + M̃ab is linear, Mab(λAµ) = λMab(Aµ) has the same eigenvector of
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Mab(Aµ), denoted by φa(x), and we will find in a given Aµ-direction

∫
dxdyφa(x)Mab(λAµ)(x, y)φb(y) =

∫
dxφa(x)(−∂2)φa(x) + λω , (7.101)

so that, as ω < 0 do exist, for a negative ω, eq. (7.101) will become negative

for very large positive λ, and Mab(λA) will not be positive definite anymore,

proving that Ω is bounded in every direction. Precisely, in [164], the authors

have proved that the Gribov region is contained in an ellipsoid (we will back

to to the geometric interpretation of Ω in the topological case, and its ellipsoid

structure will be discussed in details).

Following these two properties, we are tempted to think that the definition of

the Gribov region being composed of gauge orbits that minimizeA2 is well defined,

and that all gauge copies of Gribov type are avoided inside Ω. Unfortunately this

is not the case. As the Fo operator possesses zero modes: ∃ θa(x) such that

Mabθb = 0, the condition (7.96) is inconclusive to determine that the gauge orbit

minimizes A2 near the boundary of Ω. In this case, to prove that ||A||2 is a

minimum we must consider the extra condition

δ3||A||2 = 0 . (7.102)

However,

δ3||A||2 = gfabc

∫
dx∂µθ

a(x)θb(x)Dcd
µ (x)θd(x) , (7.103)

which is not zero for an arbitrary θa. We conclude that we have extra Gribov

copies for gluon fields on the boundary of Ω ≡ ∂Ω , whose gauge orbits do not

minimize A2.

The fundamental modular region (FMR), usually denoted by Λ, is a region

inside the Gribov region, Λ ⊂ Ω, for field configurations near the origin. In the
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FMR, the gluon field closest to the origin is selected to be the representative of

the gauge orbit. For the domain restricted to Λ, one says that the path integral is

done in the minimal Landau gauge. In [165], a numerical study of the FMR was

performed, indicating the existence of extra copies near ∂Ω. A local formalism

for the implementation of FMR in the Feynman path integral is still lacking. In

any case, it has been argued that the degenerate minima of FMR do not play any

role as they have zero measure, see for instance [60; 141].

We would like to emphasize that the existence of extra gauge copies on the

boundary of the Gribov region, and their possible consequences, does not invali-

date the non-perturbative Gribov effects. The elimination of infinitesimal copies

via introduction of the Gribov horizon preserves the physical content of the Feyn-

man path integral, which is still integrated over all field configurations. From the

beginning, by the way, we are just eliminating infinitesimal copies. It is not

known how to deal with non-infinitesimal ones. Nevertheless, the introduction of

the Gribov horizon, by which only gauge copies are eliminated, reveals an infrared

massive parameter that cannot be written as a BRST-exact term, being therefore

a physical parameter of the theory, and our aim is to analyze the possibility of

generating such a physical parameter in the infrared of topological Yang-Mills

theories, by introducing the Gribov horizon, or its analogous, in self-dual Landau

gauges.
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Chapter 8

Infinitesimal Gribov copies in

gauge-fixed topological

Yang-Mills theories

In this C=chapter we study the Gribov problem in four-dimensional topological

Yang-Mills theories following the off-shell Baulieu-Singer approach in the self-

dual Landau gauges. As standard gauge-fixed Yang-Mills theories suffer from the

gauge copy (Gribov) ambiguity, one might wonder if and how this has repercus-

sions for this analysis. The resolution of the small (infinitesimal) gauge copies,

in general, affects the dynamics of the underlying theory. In particular, treating

the Gribov problem for the standard Landau gauge condition in non-topological

Yang-Mills theories strongly affects the dynamics of the theory in the infrared,

as discussed in the previous chapter. Although the topological BS theory is in-

vestigated with the same gauge condition, the effects of the copies turn out to be

completely different. In other words: in both cases, the copies are there, but the

effects are very different. As suggested by the tree-level exactness of the topolog-

ical model in this gauge choice, as demosntrated in Section 6.3, the Gribov copies
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constructions

are shown to be inoffensive at the quantum level.

To be more precise, following Gribov, we discuss the path integral restriction

to the Gribov horizon. The associated gap equation, which fixes the so-called

Gribov parameter, is however shown to only possess a trivial solution, making

the restriction obsolete. We relate this to the absence of radiative corrections

in both gauge and ghost sectors. We give further evidence by employing the

renormalization group which shows that, for this kind of non-Abelian topological

model, the gap equation indeed forbids the introduction of a massive Gribov

parameter.

8.1 Equivalence between the topological BRST

and Faddeev-Popov constructions

Following the off-shell Baulieu-Singer approach, the three gauge ambiguities

(4.2)-(4.4) of the Pontryagin action S0[A], described in Chapter 4, are fixed in

the (anti-)self-dual Landau gauges (which amounts to considering the gauge con-

straints (5.4)-(5.6)) via BRST quantization by introducing the gauge-fixing action

Sgf [Φ] given by eq. (5.8). For computational convenience, we will consider the

gauge-fixing action Sgf(α, β) given by (6.2), which corresponds to Sgf with two

extra trivial BRST terms, namely,

Sgf (α, β) = Sgf +

∫
d4z

(
α

2
baba +

β

4
Ba
µνB

a
µν

)
; (8.1)

it is understood that, at the end, the limits β → 0, α→ 0 must be taken to recover

the (anti-)self-dual Landau gauges. We relied on the standard BRST quantization

lore here [98; 166], but it can be easily checked that upon integration over the

various multipliers/auxiliary fields, the gauge fixing conditions are retrieved under
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the form of appropriate δ-functions and corresponding Jacobians, representing the

“unities” of the textbook Faddeev-Popov quantization procedure, at least for the

here considered self-dual Landau gauges. The proof of the latter statement may

be conducted as follows.

The starting action is Sgf (α, β) while the corresponding generating functional

reads

Zgf =

∫
DΦe−Sgf (α,β) , (8.2)

where DΦ = DADχ̄DψDc̄DcDφ̄DφDη̄DbDB. Our aim is to show that (8.2) is

equivalent to

ZFP =

∫
DADψ det(D±)δ(∂A)δ(F±)δ(∂ψ) , (8.3)

where F± = F ± F̃ and 1
2
D± ≡ 1

2
(δµαδνβ − δναδµβ ± εµναβ)Dab

α . Integration over

the auxiliary fields b and B leads to

Zgf =

∫
[DΦDbDB] exp{−

∫
d4x

[
− 1

2α
(∂A)2 − 1

4β
F 2
±

]
−
∫
d4x

[
(η̄a − c̄a) ∂µψaµ

+ c̄a∂µD
ab
µ c

b − 1

2
gfabcχ̄aµνc

b
(
F c
µν ± F̃ c

µν

)
− χ̄aµν

(
δµαδνβ ±

1

2
εµναβ

)
Dab
α ψ

b
β

+ φ̄a∂µD
ab
µ φ

b + gfabcφ̄a∂µ
(
cbψcµ

)]
} . (8.4)

Some inconvenient terms can be eliminated by the following shifts:

η̄a 7−→ η̄a + c̄a ,

φb 7−→ φb − gf cde(∂νDbc
ν )−1∂µ

(
cdψeµ

)
,

c̄a 7−→ c̄a − 1

2
gf cdeχ̄dµν(F±)eµν(∂νD

ca
ν )−1 (8.5)

These transformations are valid perturbatively since −∂D > 0 due to the absence

of radiative corrections demonstrated in Section 6.3, cf. [54; 56]. Notice also that
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these shifts generate a trivial Jacobian. Hence,

Zgf =

∫
[DΦDbDB] exp

{
−
∫
d4x

[
− 1

2α
(∂A)2 − 1

4β
F 2
±

]
−
∫
d4x

[
η̄a∂µψ

a
µ + c̄a∂µD

ab
µ c

b

− χ̄aµν

(
δµαδνβ ±

1

2
εµναβ

)
Dab
α ψ

b
β + φ̄a∂µD

ab
µ φ

b

]}
. (8.6)

Integration over the Faddeev-Popov and bosonic ghosts and the corresponding

anti-ghosts leads to cancelling contributions,

Zgf =

∫
DADη̄Dχ̄Dψ exp

{
−
∫
d4x

[
− 1

2α
(∂A)2 − 1

4β
F 2
±

]
−
∫
d4x

[
η̄a∂µψ

a
µ

− χ̄aµν

(
δµαδνβ ±

1

2
εµναβ

)
Dab
α ψ

b
β

]}
. (8.7)

Integration over η̄ and χ̄ (see for instance [167]) subsequently leads to

Zgf =

∫
DADψ exp

{
−
∫
d4x

[
− 1

2α
(∂A)2 − 1

4β
F 2
±

]}
δ(∂ψ)δ(D±ψ) . (8.8)

From the usual manipulations, the α-term reproduces the usual delta for ∂A and

the β-term a delta for F±,

Zgf =

∫
DADψ δ(∂A)δ(F±)δ(∂ψ)δ(D±ψ) . (8.9)

This expression shows that the gauge is fixed as we intended.

An alternative and perhaps more insightful computation can be performed as

follows. The field χ̄ is anti-symmetric and (anti-)self-dual. So we can fully anti-

symmetrize it. Moreover, we can already use the other constraint δ(∂ψ) to replace

ψ with ψT (transverse) in the term χ̄D±ψ
T . The field χ̄, as an (anti-)self-dual

tensor field, contains 3 degrees of freedom, just as the ψT . Let us denote it by χ̄ind.

Hence, we can say we have six Grassmann independent variables, which allows

to schematically rewrite (see [49]) χ̄D±ψ
T ≡ (χ̄ind, ψ

T ) ∗M ∗ (χ̄ind, ψ
T ). This
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matrix operator M is six-dimensional and so is the Grassmann vector (χ̄ind, ψ
T ).

Eventually, integration over the six-dimensional Grassmann vector leads to

Zgf =

∫
DADψ δ(∂A)δ(F±)δ(∂ψ)Pfaff(M) , (8.10)

where Pfaff stands for the Pfaffian. From the general relation Pfaff(M) =

det1/2(M) = detD±, we finally get

Zgf =

∫
DADψ δ(∂A)δ(F±)δ(∂ψ)det(D±) . (8.11)

Of course, it is possible to cross from (8.9) to (8.11) by evaluating the last δ-

constraint, keeping in mind the other constraints and the calculus rules to deal

with Grassmann Jacobians [167]. The BRST method is however more convenient

and more general than the Faddeev-Popov procedure. Indeed, not every gauge

fixing needs to be of the “unity type”, a famous example being the non-linear

gauges of the Baulieu–Thierry-Mieg type [168].

The equivalence between the BRST and FP gauge-fixing procedures serves

to illustrate that the expected degrees of freedom are naturally recovered. From

(8.8), particularly, the extra constraint δ(D±ψ) selects the correct physical spec-

trum, i.e., the instanton modes. It could be different keeping in mind the fact

that the Witten and BS theories share the same global observables. From the

action Sgf (α, β), the χ̄ equation of motion gives

Θab
µνβψ

b
β = 0 , (8.12)

whereby

Θab
µνβ ≡ (δµαδνβ − δναδµβ ± εµναβ)Dab

α , (8.13)
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while the η̄ equation of motion gives

∂µψ
a
µ = 0 . (8.14)

The two last equations are precisely the two equations concerning the infinitesimal

instanton moduli. We obtain here the same situation as present in the Witten

version of the theory, see [102]; the only difference is the gauge choice. If we want

to reproduce exactly the Witten equations, we should use the gauge constraint

Dab
µ ψ

a
µ = 0 for the topological ghost, instead of the Landau one. As this is a

gauge condition anyhow, physics should not depend on it. The reason to prefer

the Landau gauge is the associated larger symmetry content, in particular the

vector supersymmetry, as it was originally noticed in [53]. Anyway, the relation

is the same, that is, n = d(M) the number of solutions at the instanton moduli

space of the equations (8.15)-(8.16). Indeed, for instanton solutions in the vicinity

of Aaµ, that is, Aaµ + δAaµ, we get from (5.6) the condition

Θab
µνβδA

b
β = 0 , (8.15)

while the Landau gauge imposes

∂µδA
a
µ = 0 . (8.16)

Here, d(M) is the dimension of the moduli space M1.

As we shall discuss later, the aforementioned tree-level exactness persists when

the Gribov gauge fixing ambiguity is dealt with à la Gribov-Zwanziger [42; 160;

169], thereby indicating that the Gribov copies are inoffensive for this type of

1For a thorough analysis of d(M) and its relation with the first Pontryagin number of
the bundle E (p1(E)), Euler characteristic (χ(M)) and signature (σ(M)) of the manifold M ,
according to the gauge group, see [114]. For the SU(2) group, for instance, d(M) = 8p1− 3

2 (χ+
σ).
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topological theory. This then also shows that the algebraic setup of [124] remains

valid, even when Gribov copies are taken into account.

8.2 Gauge ambiguities and copy equations

To write down the conditions for the existence of Gribov copies, i.e., the possibility

of having multiple solutions to the gauge fixing constraints, we start with the

gauge field. Let A′aµ differ from Aaµ — which satisfies the Landau gauge condition,

by assumption — by a pure infinitesimal gauge transformation, i.e., A′aµ = Aaµ +

δAaµ; the gauge transformed field will be a copy of Aaµ if the following is satisfied

∂µA
′a
µ = 0 , (8.17)

which amounts to

∂µD
ab
µ ω

b + ∂µα
a
µ = 0 . (8.18)

Notice that, by virtue of the condition (5.5), the second term in the above equation

actually drops out, but we will keep it for now, so that at later stage, it will become

clear why the condition (5.5) is such a convenient one.

Similarly, the gauge condition (5.5) features infinitesimal copies if

∂µD
ab
µ λ

b = 0 . (8.19)

In the current context, there is the possibility for the field strength gauge condi-

tion F a
µν to have copies as well. This is a novelty introduced by the topological

model, insofar as, in the usual Yang-Mills theory, F a
µν is completely defined by

the first constraint on Aaµ (5.4), while in the topological case there is another

independent gauge ambiguity involving Aaµ, which is reflected in the behavior of

the field strength that also transforms as a gauge field (4.4), as we discussed
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above. From the (anti-)self-dual gauge fixing (5.6), the new condition is obtained

as follows

F ′aµν ± F̃ ′aµν = F a
µν ± F̃ a

µν , (8.20)

so that a copy is possible when

Dab
[µα

b
ν] ± εµναβDab

α α
b
β = 0 . (8.21)

In summary, the conditions for the existence of infinitesimal Gribov copies for

the three local gauge parameters of the model are

∂µD
ab
µ ω

b + ∂µα
a
µ = 0 , (8.22)

∂µD
ab
µ λ

b = 0 , (8.23)

Dab
[µα

b
ν] ± εµναβDab

α α
b
β = 0 . (8.24)

We must verify if the system of equations (8.22)-(8.24) allows for (normalizable)

zero modes. If we set αµ = 0, the third equation trivializes, while the first two

reduce to

∂µD
ab
µ ω

b = 0 , (8.25)

∂µD
ab
µ λ

b = 0 , (8.26)

which shows that there is a sector for a particular configuration of the gauge

parameters in which the usual Gribov copies are present. Indeed, these two copies

equations are identical to the one which characterizes the infinitesimal Gribov

problem in Yang-Mills theories in the Landau gauge [42; 143; 144; 160; 164; 169].

Analyzing the third equation separately, we can easily check that this equation

also allows for zero modes. For h(x) ∈ G, we know that h−1∂µh belongs to the Lie
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algebra defined by the gauge group G, i.e., h−1∂µh(x) = [h−1∂µh]a(x)T a where

[h−1∂µh]a is a scalar function for each µ (and a) and T a are the generators of the

Lie algebra. Moreover, it is well-known that for a pure gauge configuration

Fµν(h
−1∂h) = 0 , (8.27)

where Fµν = F a
µνT

a. So if we set αaµ = Dab
µ [h−1∂h]b, by using

[Dµ, Dν ] = Fµν , (8.28)

we will get in both terms of (8.24) the expression (8.27), which shows in a simple

way that (8.24) admits zero modes as well.

In the following, we discuss the relevance of these copies in view of the in-

stanton properties of the moduli space and develop a strategy to eliminate them

from the path integration.

8.3 Elimination of the infinitesimal copies

In order to eliminate the ambiguities related to the infinitesimal Gribov copies,

we can start by eliminating the Gribov copies present in the sector αaµ = 0.

For that, according to equations (8.25) and (8.26), we shall implement the usual

Gribov-Zwanziger restriction to the region Ω defined by eq. (7.30), in which

one imposes that the real eigenvalues of the Hermitian operator −∂µDab
µ ≡ −∂D

are positive. At its boundary, ∂Ω, the FP operator acquires its first vanishing

eigenvalues. This imposition eliminates the infinitesimal copies generated by the

first two equations, viz. (8.22) and (8.23).

In the case with αaµ 6= 0 we can decompose αaµ according to the Helmholtz

decomposition [122]. Since we are working in flat Euclidean space, for αaµ(x)
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fields sufficiently smooth1 that fall off as 1
r

or faster at infinity, we may rely on

a generalization of the Helmholtz theorem by which we can write the four-vector

αaµ(x) as

αaµ(x) = −∂µ

[∫
V ′4

∂′να
a
ν(x
′)

4π2R2(x, x′)
d4x′ −

∮
Σ′

αaν(x
′)n′ν

4π2R2(x, x′)
dΣ′

]

− ∂β

[∫
V ′4

∂′βα
a
µ(x′)− ∂′µαaβ(x′)

4π2R2(x, x′)
d4x′ +

∮
Σ′

αaβ(x′)n′µ − αaµ(x′)n′β
4π2R2(x, x′)

dΣ′

]
,(8.29)

with R2(x, x′) = |x − x′|2, and n′µ is the four-vector outward unit normal of

the three-surface Σ′ which encloses the four-volume V ′4 , Σ′ itself being sufficiently

smooth. Thus, eliminating the surface integrals for vanishing fields on the bound-

ary according to the conditions above, we conclude that we can split αaµ(x) into

its longitudinal and transverse parts in the form

αaµ = ∂µφ
a + ∂βT

a
βµ , (8.30)

where φa is a scalar field, and T aβµ is an antisymmetric tensor given, respectively,

by

φa = −
∫
V ′4

∂′να
a
ν(x
′)

4π2R2(x, x′)
d4x′ , (8.31)

and

T aβµ = −
∫
V ′4

∂′βα
a
µ(x′)− ∂′µαaβ(x′)

4π2R2(x, x′)
d4x′ . (8.32)

The divergence of the second term in (8.30) vanishes. Therefore,

∂µα
a
µ = ∂2φa, where ∂µ∂µ ≡ ∂2. (8.33)

Returning to the copy equation (8.22), in principle if one chooses e.g. φ =

1Here the term “sufficiently smooth” means functions that are at least C2, i.e., twice con-
tinuously differentiable functions on the closure of the four-dimensional volume V4.

177



8.3 Elimination of the infinitesimal copies

−∂µ
∂2Dµω, then this equation (8.22) has a solution. This would imply, in gen-

eral, that all Gribov copies that exist in Yang-Mills theories are removed, but it

is logically possible to generate new ones with a non-vanishing topological shift.

But now comes the fact that so far, we did not use yet the second gauge condi-

tion (5.5). Doing so, the gauge condition for αµ (or ψµ) demands that it must be

transverse, which allows just for trivial φ (i.e., ψµ must be transverse). Thence,

the usual Gribov restriction also eliminates the copies related to the gauge trans-

formation of the topological parameter.

It remains to deal with eq. (8.24), the third copy equation. At a first glance,

the condition −∂D > 0 does not tell anything about the instantons. We could

think about an analogous procedure to eliminate the copies arising from the third

equation (8.24). Rewriting eq. (8.24) as

iΘab
µνβα

b
β = 0 , (8.34)

with Θab
µνβ defined in eq. (8.13), we could employ the extra Gribov-like restriction

iΘab
µνβ ≡ iΘ > 0, i.e., we would impose positive eigenvalues for the Hermitian

operator iΘ. However, let us now motivate why this third restriction is not

necessary.

Firstly, we recall that Witten noted that the partition function Z of his topo-

logical theory is independent of changes of the coupling constant g2 (as long as

g2 6= 0). He used this liberty to compute the observables in the weak coupling

limit, g2 → 0, from which he obtained the Donaldson polynomials. The eval-

uation of Z in the weak coupling limit means that the theory is dominated by

the classical minima. These minima correspond to the (anti-)instanton config-

urations F a
µν = ±F̃ a

µν
1. Once it was proven that the observables of the Witten

1See Sections 2.1.1 and 3.1.2.
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and Baulieu-Singer theories are the same1, we should then consider the instanton

characterization not as a gauge fixing condition, but as a physical requirement in

order to obtain the correct degrees of freedom that correspond to the description

of all global observables. This was also stressed in [40]: condition (5.6) does not

completely fix the gauge, on purpose, to be left with the finite set of degrees of

freedom describing the instantons, the latter being exactly the kernel of (5.6).

In fact, the (bosonic) “zero modes of the 3rd kind” will be exactly cancelled in

computations against fermionic zero modes, related to the χ̄-equation of motion,

see again [40]. Precisely, the Atiyah-Singer index theorem [170] counts the num-

ber of solutions of (8.15) and (8.16), which gives the correct dimension of the

instanton moduli space, in complete harmony with instanton conformal proper-

ties2 [171; 172]. In this sense, the structure of (8.15) and (8.16), and therefore

of (8.34), are protected by the Atiyah-Singer theorem and its direct correspon-

dence with the conformal properties of instanton configurations, indicating that

no extra physical restrictions on the eigenvalues of iΘ need to be introduced.

However, one might question whether the restriction of the gauge fields to the

Gribov region does not hamper the fact that we wish to “preserve” the instantons,

as just motivated. In the case of the simplest SU(2) instanton, we can provide

an affirmative answer to this, inspired by the observations of [173]. Indeed, in

this case the instanton field with winding number 1 is given by the expression

A(i)a

µ =
1

g

2

r2 + λ2
rνζ

a
νµ , (8.35)

1See Section 4.2.1.
2If we take, for instance, the BPST instanton (2.33), it possesses 4 parameters for each

translation Xµ, since the instanton is located in R4; 1 scale size λ, and 3 global parameters
associated to the SU(2) gauge transformation, as the instanton is embedded in the gauge group.
8 parameters in total. As discussed in [171], the parameter λ arises from broken conformal
invariance. The Atiyah-Singer theorem, in Euclidean space, gives the dimension of the moduli
space d(M) = 4kN , where k is the winding number. For the SU(2) BPST instanton, k = 1 and
N = 2, so that d(M) = 8, as it should be.
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see eq. (2.33), where we just call (x −X)ν ≡ rν ; λ denotes the “size” of the in-

stanton, as discussed in Section 2, while the real constant antisymmetric matrices

ζa are the ’t Hooft tensors defined in (2.34), that obey the algebra

[
ζa, ζb

]
= 2fabcζc ,

{ζa, ζb} = −δab . (8.36)

As we can see,

∂µA
a
µ

(i) = 0 , (8.37)

which means that the (regular) instanton field is transverse and in the Landau

gauge. From the latter transversality of the instanton field, the eigenvalue equa-

tion for the FP operator,

Mab(A(i))φa = −ω2φa, (8.38)

takes the form

∂2φa + fabc
2

r2 + λ2
rµζ

a
νµ∂νφ

c = −ω2φa. (8.39)

We immediately notice that this instanton has three trivial constant zero-modes.

The other zero modes (thus giving ω = 0) of eq. (8.39) were explicitly constructed

in [173]. This means that the instanton belongs to the Gribov horizon ∂Ω.

There is no strict proof that all instantons (with higher winding number)

belong to the first Gribov region, but to the best of our knowledge, in the cases

investigated in literature, topological Yang-Mills solutions (instanton, monopole,

vortex) always belong to it — see again [173], or [174]. Let us also refer to [175],

where it was discussed that for instantons a whole family of Gribov copies does

exist.

The consequence of such rich zero-mode spectrum to our problem is imme-
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diate. If we consider the Gribov restriction, −∂D > 0, for a generic gauge field

in order to eliminate the Gribov copies in the first two copies equations, (8.22)

and (8.23), the instantons belongs to the boundary of the first Gribov region, ∂Ω

(where −∂D becomes zero) and are as such not eliminated from the game. One

notes this property by the fact that the instantons are transverse, and the spec-

trum of the FP operator evaluated for an instanton displays zero modes. From

the point of view of gauge copies under −∂D ≥ 0, the gauge fields obeying the

(anti-)self dual condition F = ±F̃ are well-defined. The solutions to F = ±F̃

are elements of ∂Ω.

Summing up, the only requirement to eliminate all (infinitesimal) gauge am-

biguities is then the introduction of the Gribov horizon as it commonly done for

usual Yang-Mills theories1. Then it remains to prove in the following section that

also this restriction to the standard Gribov horizon eventually becomes trivial at

the dynamical level.

8.4 Gribov gap equation and its triviality

We have mentioned that the tree-level exactness of the topological theory in the

(A)SDL gauges, demonstrated in Section 6.3 cf. [56], suggests that the Gribov

copies present in our model should be inoffensive. Due to the absence of radiative

corrections, the tree-level propagator of the FP ghost field in momentum space

obtained from the total action (5.7),

〈c̄acb〉0 (p) = δab
1

p2
, (8.40)

1Although all points discussed here indicate a similar behavior for a generic SU(N) instan-
ton field with an arbitrary winding number, a possible analytical treatment of such instantons
will not be considered in the thesis.
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will be valid to all orders in perturbation theory. From the expression above, one

sees that the FP operator will be positive definite at the quantum level, consistent

with the inverse of the FP propagator being positive, i.e., we are inside the first

Gribov region, in such a way that the Gribov restriction to the path integral

seems to be redundant. The origin of such behavior is the impossibility of closing

loops in Feynman diagrams, as due to the vertex structures, at least one gauge

field propagator is required to close loops, but 〈Aaµ(x)Abν(y)〉 = 0 to all orders for

this gauge choice [55; 56]. We point out that the same argument holds for the

analysis of the third Gribov equation (8.24) and the propagator 〈χ̄aµνψbα〉0(p).

Originally, the no-pole condition was achieved by treating the gauge field as

an external source. Its quantum properties must be computed when the gauge

field is integrated over. If we admit the Gribov copies to play a role in this

case, we should consider that the introduction of the term that implements the

restriction to the Gribov region might allow for radiative corrections, e.g. from

a non-vanishing gauge propagator arising from the extra Gribov term (a metric

dependent term) in the action. This might perturb the original cohomology ar-

guments and, consequently, compromise the global properties of the topological

theory at certain energy scale, this through the elimination of Gribov ambigu-

ities. Taking into account the reasons discussed above, such behavior is highly

unexpected. We will now show this in detail, first at one loop, afterwards we will

generalize to all orders.

8.4.1 No-pole condition at one-loop

As discussed, all infinitesimal Gribov copies in the topological theory in (A)SDL

gauges for the SU(2) instanton are eliminated through the implementation of

the restriction to the well-known Gribov region denoted by Ω (7.30), commonly

performed in usual Yang-Mills theories in Landau gauge. Following the Gribov
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approach, this restriction is achieved via the introduction of a form factor V (Ω)

in the generating function Z[J ], in such a way that the integration domain is

limited by Ω. The original generating functional

Zo[J ] = N

∫
DΦ e−S−

∫
d4xJΦ , (8.41)

is restricted to

Z[J ] = N

∫
Ω

DΦ e−S−
∫
d4xJΦ = N

∫
DΦV (Ω) e−S−

∫
d4xJΦ , (8.42)

where N = Z[0]−1 is the normalization factor, DΦ denotes the integration mea-

sure for all fields, i.e., DΦ = DADψDcDφDc̄DbDφ̄Dη̄Dχ̄DB, while JΦ = JiΦi

denotes the coupling of each field Φi with its respective external source Ji.

In the Yang-Mills theory, the form factor V (Ω) is obtained from the no-pole

condition for the FP propagator, since the imposition Mab > 0 is equivalent to

forbidding the existence of poles in the FP propagator [42]. In the topological

case, see action (5.8), the operator Mab = −∂µDab
µ appears twice: in the FP ghost-

anti-ghost quadratic term (treating Aaµ as an external source), c̄∂Dc, as usual,

but also in the bosonic ghost-anti-ghost term, φ̄∂Dφ. By applying the Gribov

semi-classical method we shall see that, at one-loop order, the no-pole condition

in the topological theory takes the same form as for the standard Yang-Mills case.

For this purpose, we have only to analyze the vertices present in the total

action (5.7), and apply the Feynman rules for the diagrams up to the order g2,

once we are considering the one-loop order. We should then verify which diagrams

could be constructed with an incoming c̄-leg (φ̄-leg), and an outgoing c-leg (φ-

leg), whereby the gauge fields work as external sources. Let us start with the FP

ghost propagator.

(i) FP ghost propagator. Using the following notation for the ghost propagator
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8.4 Gribov gap equation and its triviality

at one-loop with A as an external source, see eq.’s (7.32) and (7.40),

〈c̄a(k)cb(p)〉 = δ(p+ k)Gab(k2, A) = δ(p+ k)δab
1

k2
[1 + σ(k,A)] , (8.43)

our aim is to calculate σ(k,A), which represents the loop correction to the tree-

level part 1/k2. Firstly, we must note that the FP anti-ghost, c̄, only propagates

to c and ψ through the propagators 〈c̄c〉0 and 〈c̄ψ〉0 at the tree-level, respectively.

Therefore, if we start with an incoming c̄, we can propagate it to the vertices (a)

φ̄cψ, (b) χ̄∂Aψ, (c) χ̄cA, (d) χ̄cAA, or (e) c̄Ac. The first one does not produce

external A-legs. If we propagate c̄ to the vertex (b) through 〈c̄ψ〉0, we will get

an external A-leg, and an internal χ̄-leg. Since χ̄ only propagates to ψ through

〈χ̄ψ〉0, we could only connect at one-loop order the vertex (b) to another vertex

χ̄∂Aψ, producing one more time an external A-leg, and an internal χ̄, in such a

way that we cannot generate an outgoing c. For the vertices (c) and (d), we fall

back to the same situation: we generate external A-legs, but always accompanied

by the internal χ̄-leg that never propagates to c in the end. We conclude that

the only possibility to get an outgoing c from c̄ with only external A-legs is to

construct the diagram by using the vertex (e)1. Namely, for

G(k2, A) =
1

N2 − 1
δabG(k2, A)ab , (8.44)

we construct the diagrams displayed in Figure 7.2 in Section 7.3, which proves

that the possible diagrams are reduced to the same ones of the standard Yang-

Mills theory. We conclude that the no-pole condition for the FP ghost propagator

in this topological model gives the same result of the one found for Yang-Mills

theory, i.e., the same volume factor V (Ω) described in (7.48) according to (7.47).

1We remark that the whole argument can be made easier by a redefinition η̄ 7→ η̄+ c̄ in the
action (5.7) in order to eliminate the η̄ψ mixing term.
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8.4 Gribov gap equation and its triviality

We should then introduce this factor into the path integral in order to im-

plement the elimination of the gauge copies. We must do the same procedure to

eliminate possible copies in the bosonic ghost propagator, but as we will see now,

the no-pole condition (7.46) for the bosonic ghost is valid for both, the FP and

bosonic ghosts.

(ii) Bosonic ghost propagator. The proof of the last statement is immediate.

The bosonic anti-ghost field φ̄ only propagates to φ through 〈φ̄φ〉0, thus an in-

coming φ̄, we can only connect to the vertex φ̄Aφ. Aftermath, the construction

of the Feynman diagrams up to g2 order with A fields as external sources takes

the same form of the FP case, see Figure 7.2, only replacing c̄ by φ̄, and c by φ.

The Feynman rules are exactly the same, consequently the no-pole condition for

the bosonic ghost generates the same expression for σ(k,A), and the condition

(7.46) is valid for the FP and bosonic ghost sectors.

In a few words, although the complex structure of the total action (5.7), in

which there are two ghosts sectors to implement the no-pole condition, for the

FP ghost sector and the bosonic one, the elimination of all Gribov copies in the

topological Yang-Mills in the (A)SDL gauges for SU(2) instantons is achieved by

introducing in the path integral a form factor V (Ω) (7.48) which is identical to

the one obtained in the usual Yang-Mills theory in the Landau gauge.

8.4.2 Gap equation at one-loop

From (5.7), (8.42) and (??), the generating functional for the first Gribov region

takes the form

Z = N

∫
DAaµDΦ′

∫
dξ2

2πξ2i
exp{ξ2 − S − ξ2σ(0, A)}. (8.45)
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8.4 Gribov gap equation and its triviality

in which Φ′ denotes all fields except the gauge field. The effective potential, Γ, is

defined as usual by

e−Γ = e−V ε = Z , (8.46)

where ε represents the vacuum energy.

In order to calculate Γ at one-loop order, Γ(1) = V ε(1), we must select only

the quadratic part of the total action S (here σ(0, A) is already quadratic as it

was only calculated up to one-loop order), namely,

e−V ε
(1)

= Zquad , (8.47)

whereby, using (7.47),

e−Γ(1)

=

∫
DAaµDΦ′e−Squad[Φ]. (8.48)

After integrating out the auxiliary fields ba, Ba
µν , and all other fields except Aaµ,

we get the quadratic action for the gauge field

Squad[A] =

∫
d4pAaµ(p)

[
4

β
p2δµν −

(
4

β
− 1

α

)
pµpν

]
Aaν(−p) + rest . (8.49)

Taking into account all quadratic terms,

Zquad = N

∫
DAaµ

∫
dξ2

2πξi
exp

{
ξ2 − ln ξ − 1

2

∫
d4k

(2π)4
Aaµ(k)Qµν(k, ξ)δ

abAbν(−k) + rest

}
,

(8.50)

wherein

Qµν(k, ξ) =

[
4

β
k2 +

ξ2g2N

2V (N2 − 1)k2

]
δµν +

(
1

α
− 4

β

)
kµkν . (8.51)
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Therefore,

Zquad = N

∫
dξ

2πi
e[f(ξ)+rest′] , (8.52)

where,

f(ξ) = ξ2 − 1

V
ln ξ + ln[(detQµνδ

ab)−
1
2 ] = ξ2 − 1

V
ln ξ − 1

2
ln det[Qµνδ

ab] . (8.53)

We also changed the variable ξ2 → ξ2V to pull out explicitly the volume factor

here, to make clear that the action is an extensive quantity (∼ V ).

Calculating the determinant, we find

ln det[Qµνδ
ab] = (N2−1)(d−1)

∑
k

ln

(
βA+ 4k4

βk2

)
+(N2−1)

∑
k

ln

(
k2

α
+
A

k2

)
,

(8.54)

where

A =
ξ2g2N

2(N2 − 1)
, (8.55)

and k refers to momenta in Fourier space. Working out the last term of (8.54),

we get

∑
k

ln

(
k2

α
+
A

k2

)
=
∑
k

ln

(
k4

α
+ A

)
−
∑
k

ln k2 , (8.56)

Taking the thermodynamic limit and employing dimensional regularization,
∫
dk ln k2− →

0, and the last term vanishes. Therefore

∑
k

ln

(
k2

α
+
A

k2

)
= V

∫
ddk

(2π)d
ln

(
k2

√
α

+ i
√
A

)
+ V

∫
ddk

(2π)d
ln

(
k2

√
α
− i
√
A

)
∼ α

d
4 .(8.57)

In the limit α→ 0, this term also vanishes. In the end,

ln det[Qµνδ
ab] = (N2 − 1)(d− 1)

∫
ddk

(2π)d
ln

(
ξ2g2N

2(N2 − 1)k2
+

4k2

β

)
, (8.58)
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which could be rewritten as

ln det[Qµνδ
ab] = (N2−1)(d−1)

[∫
ddk

(2π)d
ln
(
βξ2g2N + 4k2

)
−
∫

ddk

(2π)d
ln
(
2β(N2 − 1)k2

)]
.

(8.59)

In dimensional regularization, not only the last term is zero, but also the first

one, as we should still take the limit β → 0. We conclude that

f(ξ) = ξ2 , (8.60)

as we work in the thermodynamic limit, V → ∞. The gap equation, viz. the

equation for the critical point for a saddle point evaluation, thus gives the trivial

solution

ξ = 0 , (8.61)

to f ′(ξ) = 0. So, up to leading order, the no-pole condition does not change the

partition function at all, see (8.45) in conjunction with (8.61).

8.4.3 Absence of radiative corrections in the presence of

the Gribov-Zwanziger horizon

In order to extend the result (8.61) to all orders, we must prove first that the

topological BS theory in (A)SDL gauges remains tree-level exact in the presence

of the Gribov-Zwanziger horizon function. Along the lines of [56], we need the

tree-level propagators in order to show that all n-point functions are tree-level

exact. The non-vanishing tree-level propagators which are relevant for the present

work are computed from the action Sloc (8.69), which is composed of the BS action

action in (A)SDL gauges (5.7) added to the GZ horizon function h(A) in its local

form,

Sloc = S0 + Sgf + h(A) (8.62)
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where

h(A) = −
∫
d4x

(
ϕ̄acµ M

ab(A)ϕbcµ − ω̄acµ Mab(A)ωbcµ + γ2 gfabcAaµ(ϕ+ ϕ̄)bcµ
)
,

(8.63)

see (7.80). The corresponding non-vanishing tree-level propagators of Sloc are

〈Uab
µ (−k)U cd

ν (k)〉 = − 1

k2
δµνδ

abcd ,

〈V ab
µ (−k)V cd

ν (k)〉 = − 1

k2
δµνδ

abcd ,

〈ba(−k)bb(k)〉 = −2Ng2γ4 1

k4
δab ,

〈Ba
µν(−k)Bb

αβ(k)〉 = −Ng2γ4 1

k4
δµναβδ

ab ,

〈Aaµ(−k)bb(k)〉 = −ikµ
k2
δab ,

〈Aaµ(−k)Bb
αβ(k)〉 = i

1

k2
Σµαβδ

ab ,

〈ba(−k)U bc
µ (k)〉 = i

√
2γ2kµ

k4
fabc ,

〈Ba
µν(−k)U bc

α (k)〉 = i
√

2gγ2 1

k4
Σαµνf

abc , (8.64)

while the vanishing tree-level propagators are

〈Aaµ(−k)Abν(k)〉 = 〈Aaµ(−k)U bc
ν (k)〉 = 〈ba(−k)Bb

µν(k)〉 = 0 ,

〈V ab
µ (−k)Acν(k)〉 = 〈V ab

µ (−k)U cd
ν (k)〉 = 〈V ab

µ (−k)Bc
αβ(k)〉 = 〈V ab

µ (−k)bc(k)〉 = 0 ,(8.65)

with

ϕabµ =

√
2

2
(U + iV )abµ ,

ϕ̄abµ =

√
2

2
(U − iV )abµ , (8.66)
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and U and V being real fields. Moreover,

Σαµν =
1

2
(δαµkν − δανkµ) ,

δabcd =
1

2

(
δacδbd − δadδbc

)
,

δµναβ =
1

2
(δµαδνβ − δµβδνα) , (8.67)

according to the symmetries of Lorentz and color indices. The remaining prop-

agators can be found in Section 5.3.2, cf. [54; 56]. Hence, if we compare the

present situation with the scenario of [56], we have the extra non-vanishing prop-

agators given by (8.64) together with four new vertices (see the local action

(8.69)), namely: (i) ϕ̄Aϕ, (ii) ω̄Aω, (iii) ω̄ϕc, and (iv) ω̄Aϕc. Again, there is no

vertex with b, so we cannot use 〈bb〉 to propagate b to a loop diagram. Using

the propagator 〈BB〉, we can only propagate an external B to the vertex BAA,

increasing the number of A fields. This is the same cascade effect that occurs

with the 〈AB〉 propagator as in [56]. The new vertices (i), (ii) and (iii) have one

A-leg. To not produce an internal A-leg we need to propagate it to an external

field, but again A only propagates through 〈AB〉 and 〈Ab〉, producing only B

and b as external legs, since the propagators with A and the new fields vanish:

〈Aω〉 = 〈Aω̄〉 = 〈Aϕ〉 = 〈Aϕ̄〉 = 0.

The only possible problematic vertex is (iii), which does not possess A-legs,

but we cannot propagate a vertex (iii) to another vertex (iii) because ω̄ only

propagates to the vertex (ii) through 〈ω̄ω〉; c only propagates to the vertex c̄Ac

through 〈c̄c〉; and ϕ only to vertex (i) through 〈ϕ̄ϕ〉, or to external legs B and b

through 〈ϕB〉 and 〈ϕb〉, or to the vertex BAA through 〈ϕB〉. In the end, we can

only propagate the vertex (iii) to vertices with internal A-legs or to external legs B

and b. We conclude that all loop diagrams vanish, because we fall back to the same

situation in which we can only construct a loop diagram with B and b as external
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legs, in order to avoid internal A-legs, but 〈B · · ·Bb · · · b〉 = 〈s(something)〉 = 0,

due to BRST cohomology. Otherwise, it is impossible to close non-vanishing loops

as we need gauge propagators to do it, and 〈AA〉 also vanishes in the presence of

the local Gribov terms (8.76).

8.4.4 Extension to all orders

Let us now extend the result (8.61) and prove that is valid to all orders in pertur-

bation theory. Therefore, we will rely on the local version of the horizon function.

Following the steps of [160; 169], see Section 7.4, the restriction to the region Ω

to all orders is given by considering the following partition function,

Z =

∫
DΦe−S+γ4h(A)−4V γ4(N2−1) , (8.68)

where S = S0[A] + Sgf [Φ] is defined in (5.7) and h(A) is the Gribov-Zwanziger

horizon function described in eq. (7.72). We must remember that h(A) reduces to

g2N
V

∫
ddxA 1

∂2A at lowest order, in fact recovering σ(0, A) of the no-pole condition

at one-loop (7.47). In the all-order Gribov-Zwanziger formalism, the Θ-function

is also replaced by a δ-function in the thermodynamic limit [160; 169], V → ∞,

as we have made explicit before.

The non-local horizon function h(A) can be equivalently written in a local form

through a pair of bosonic auxiliary fields (ϕ̄, ϕ)abµ and a pair of anticommuting

fields (ω̄, ω)abµ [169], see Section 7.4.1. In the current case, it means replacing the

exponent of (8.68) by the local action

Sloc = S −
∫
d4x

(
ϕ̄acµ M

ab(A)ϕbcµ − ω̄acµ Mab(A)ωbcµ + γ2 gfabcAaµ(ϕ+ ϕ̄)bcµ
)
.

(8.69)
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In the local formulation, the gap equation reads, cf. eq. (7.84),

∂ε

∂γ2
= 0 . (8.70)

This relation connects the semi-classical method characterized by the no-pole

ghost condition with the Zwanziger horizon function. Indeed, for the reader’s

belief, let us analyze the leading order limit.

At one-loop order, the geometric interpretation of thermodynamic limit is

very simple: the Gribov no-pole condition (7.46), replacing
Aaµ(k)√
k2

by xaµ−→k ≡ x−→
k

,

could be written as

1

V

∑
−→
k

x−→
k
x−−→k < r2 , (8.71)

where r2 = 4(N2−1)
g2 . The expression above can be interpreted as an hypersphere

in an infinite dimensional space. As it is well-known for hyperspheres, as the

dimension grows, the volume of a hypersphere is getting more and more con-

centrated on the boundary, i.e., on the hypersurface defined, in our case, by the

ellipsoid

1

V

∑
−→
k

x−→
k
x−−→k = r2 , (8.72)

which means that the Θ-function that represents (8.71) could effectively be re-

placed by a δ-function in the thermodynamic limit. The collapse of the Θ-function

into the δ-function is then expressed by

∫ +i∞+ε

−i∞+ε

dξ2

2πiξ2
eξ

2(1−σ(0,A)) →
∫ +i∞+ε

−i∞+ε

dξ2

2πi
eξ

2(1−σ(0,A)) =

∫ +∞

−∞

dξ2

2π
eiξ

2(1−σ(0,A)) ,

(8.73)

after a Wick rotation. In practice we just canceled the ξ2 in the denominator,
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responsible for the second term in (8.53). The behavior of ξ, in turn, is only

determined by the gap equation (8.72). The vacuum energy can be computed

from the ln det originating from the action (8.69), leading to exactly the same

result as in the previous subsection, upon identifying ξ2 and γ4.

We conclude, without inconsistency between the both methods, that the Gri-

bov copies (still at one-loop so far) are inoffensive to the SU(2) topological Yang-

Mills theory in the (A)SDL gauges, since the gap equation forbids the introduction

of a Gribov massive parameter in the thermodynamic limit,

ξσ(0, A) ∼ γ4

∫
d4kA

1

k2
A→ 0 . (8.74)

Finally, let us look to what happens beyond the ln det-level. Then, the vertices

of the theory will start to play role. Based on the vertex structure of Sloc, it is easy

to see that any vacuum diagram beyond one-loop will contain at least one AA-

propagator. However, by inverting the quadratic form in (8.50), this propagator

is given by1

Dab
µν = δab

[
β

4

p2

(p4 + βNg2γ4/2)

(
δµν −

pµpν
p2

)
+ α

p2

(p4 + 2αNg2γ4)

pµpν
p2

]
,

(8.75)

i.e.,

〈AA〉 = 0 (8.76)

if we take α, β → 0, irrespective of γ2. We immediately get that all higher order

terms to the vacuum energy vanish, just as the ln det. As such, by employing

the gap equation (8.70) which is valid to all orders, we can infer that the massive

Gribov parameter vanishes to all orders in the thermodynamic limit. In this

way, the global (topological and cohomological) properties of the original action

1We have listed all propagators in previous section, where we proved that the absence of
radiative corrections [56] remains valid for the inclusion of the GZ horizon function.
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are not violated and we come to the main result of this paper: quantization of

the topological theory remains valid as it is, the resolution of the infinitesimal

(“small”) Gribov copy problem is trivial as the intrinsic topological features of

the theory self-consistently forbid the introduction of the Gribov mass, the crux

of the Gribov-Zwanziger restriction [42; 160; 169] when it comes to changing the

structure of the theory.

One might wonder if it actually makes sense to have computed the above

effective action by expanding around the trivial A = 0 sector, thinking about the

importance of the instanton configurations for topological field theories.

Exactly the topological nature of the theory saves the day here. Let us first

remark that it is possible to write down a BRST invariant version of the Gribov

restriction, that is, if γ were to be nonzero, whilst preserving equivalence with

the above formalism1, see [176; 177] for details. As already reminded before, the

topological partition function does not depend on the coupling g. This can also

be shown using a BRST cohomological argument, as we reiterate in the next

subsection. This means all observables can be computed in the g → 0 limit.

Expanding around a nontrivial instanton background rather than around A = 0

would lead to corrections of the type e−1/g2
into the effective action, but the latter

vanish exponentially fast once g → 0 is considered. As such, we can a priori work

around A = 0.

This is good news, as explicit instanton computations are usually performed

in a background gauge setting, being virtually impossible in other gauges such as

Landau gauge. The above reasoning prevents us that we should resort to another

gauge, such as the background Landau gauge, for which the Gribov problem and

resolution is a bit different and actually far more complicated, in particular when

BRST invariance is to be preserved [178; 179]. In [179], such computation was

1In the sense that all correlation functions will be identical.
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presented for a constant temporal background, already complicated enough. For

an x-dependent instanton background, the methodology of [179] simply looks

technically impossible.

8.4.5 Further evidence

Before ending, we find it instructive to present yet another argument why a null

Gribov parameter is also in full accordance with the possibility of a vanishing

β-function discussed in [55]. Indeed, the variation of the full action with respect

to the coupling constant gives a BRST-exact term (up to boundary terms),

δgS = s
(
∆(−1)

)
, (8.77)

where ∆(−1) is a polynomial in the fields and parameters, with ghost number

equal to minus one. (We point out the strength of (8.77) in the BS theory, as

such a condition is off-shell BRST exact.) This result is independent of the gauge

choice. Since the expectation values of BRST exact terms vanish, (8.77) implies

that

δgZ =
〈
s
(
∆(−1)

)〉
= 0 , (8.78)

without requiring the equations of motion, with Z the generating functional.

It means that the BS theory is insensitive to changes of the coupling constant,

in other words, that the theory has no scale. This can be re-expressed by the

theory not having a β-function, which makes impossible the feature of dimensional

transmutation. Indeed, the Gribov gap equation is nothing but a tool giving

γ2 ∝ Λ2, Λ ∼ µe
− 1
β0g

2(µ) being the fundamental scale of the theory if µ is the

renormalization group scale; a quantity directly related to the β-function [180].

However, in the absence of the latter, it holds that Λ ≡ 0 and a classically
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massless (or better said scale invariant) theory will remain so at the quantum

level. A rather similar situation showed up in the super N = 4 Yang-Mills theory

which possesses a vanishing β-function. The absence of a renormalization group

invariant scale makes it impossible to attach a dynamical meaning to the Gribov

parameter, in such a way that the restriction to the first Gribov region is not

required [181].
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Chapter 9

Conclusions and perspectives

As we known, the Witten’s TQFT is obtained via the twist transformation of the

N = 2 SYM [46], whereas the Baulieu-Singer one, via the BRST gauge fixing of

an action composed of topological invariants [48]. By analyzing the symmetries

of the BS model, we first prove, as a consequence of the rich set of Ward identities

in the (anti-)self-dual Landau gauges, that all two-point functions are tree-level

exact. In particular, as a consequence of the vector supersymmetry present in

Landau gauges [53], we show that the gauge field propagator vanishes to all

orders in perturbation theory, cf. eq. (5.109), which makes it impossible the

construction of non-vanishing loop diagrams, according to the vertex structure of

the BS action in the (A)SDL gauges [54]. Thus we prove the absence of radiative

corrections in the BS model in this particular gauge choice, i.e., that not only the

two-point functions but all n-point Green function are tree-level exact in (A)SDL

gauges.

Hence we prove that the twisted N = 2 SYM and Baulieu-Singer topological

quantum field theory do not possess the same quantum properties. Such a con-

clusion can be inferred from the relation given by eq. (4.57), where we can see

that the difference between the Witten and BS actions does not belong to the

trivial part of cohomology. While the N = 2 SYM β-function receives one-loop
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contributions in the Landau gauge [49], the Baulieu-Singer one vanishes in the

(anti-)self-dual Landau gauges (5.4)-(5.6), since it does not receive any radiative

correction at the quantum level. Such a result is protected by the topological

BRST cohomology [56], see Sec. 6.3. The quantum correspondence occurs in

the weak coupling limit of the twisted N = 2 as in this limit both β-functions

vanishes. This correspondence is in complete agreement with the equivalence be-

tween Witten’s TQFT (constructed in the limit g2 → 0 of the twsited N = 2) and

the BS theory, which share the same observables [50; 51] given by the Donaldson

polynomials [15; 16; 17].

We also demonstrate the existence of a new non-linear bosonic symmetry that

relates the Faddeev-Popov ghost with the topological one based on the transfor-

mation ψaµ → Dab
µ c

b, see the Ward identity described in eq.’s (5.37) and (5.38),

which allows us to reduce the independent renormalization parameters from four

to one, as expressed by the general counterterm (5.66). After applying the quan-

tum stability condition, the resulting Z-factor system (5.70), taking into account

this new symmetry, showed up a kind of renormalization ambiguity [55], that can

be explained in terms of the absence of a gauge field kinetic term out from the

trivial BRST cohomology, and due to the absence of certain discrete symmetries

that commonly appear in ordinary Yang-Mills theories, see Sec. 6.2. We inves-

tigated this renormalization ambiguity for generalized classes of renormalizable

gauges, and the result was the same. We verify that the ambiguity in the renor-

malization of the gauge field is automatically transferred to the renormalization

of the coupling constant, see eq. (6.12), elucidating the non-physical character of

the β-function in the topological gauge theory of BS type, as the coupling con-

stant, together with the metric, only appears in the trivial cohomology sector,

thus behaving as a non-physical gauge parameter.

By using these results, we study the Gribov problem [42] in off-shell topolog-
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ical Yang-Mills theories of BS type. Such a theory has three gauge ambiguities

to be fixed, see (4.2)-(4.4). First we prove the equivalence between the Fadeev-

Popov and topological BRST gauge-fixing procedures, see Sec. 8.1, then, ana-

lyzing the corresponding copy equations in (A)SDL gauges, we conclude that, to

preserve the instantons degrees of freedom that characterizes the dimension of

the moduli space, the usual Gribov restriction is sufficient to eliminate the in-

finitesimal gauge copies, see Sec. 8.3. After computing the no-pole condition for

the Faddeev-Popov and topological ghost sector at one loop order, we show that

the Gribov horizon in the topological BS Yang-Mills theory is identical to the one

obtained in ordinary Yang-Mills theory. Therefore, restricting the Feynman path

integral domain to the Gribov region, i.e., inside the Gribov horizon, we prove

the triviality of the gap equation, in other words, that the gap equation forbids

the introduction of an infrared massive parameter of Gribov type in the gauge

field propagator, as described by eq. (8.61). This result was generalized to all

orders. Such a generalization was achieved by proving the absence of radiative

corrections in the presence of the Gribov-Zwanziger horizon.

In few words, the topological Yang-Mills symmetry structure, together with

the conformal property of the BS theory in (A)SDL gauges, hides a mechanism

that turns out the Gribov restriction inoffensive in this case case, making it

impossible the introduction of a massive parameter that would affect the infrared

dynamics, preserving the original topological properties of the theory, once the

Gribov horizon would have introduced a metric dependent term out from the

trivial BRST cohomology. Such a behavior could eventually shed some light on

the asymptotic behavior of Yang-Mills theories dominated by vacuum topological

configurations in extreme energy scales, indicating the possible existence of a

topological phase.

Perspectives. We can consider the possibility of introducing a pure topologi-
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cal phase in Yang-Mills theories by employing the BS approach. For that we must

study the spontaneous symmetry breaking in off-shell topological gauge theories,

and provide a physical interpretation concerning the liberation of the local de-

grees of freedom. The broken phase would produce new interactions involving the

bosonic and topological ghosts, that could affect the quantum level of the theory,

by giving nontrivial contributions to the loop diagrams. This approach can be

used to study a topological phase of the Lovelock-Cartan gravity [121], start-

ing from the Pontryagin and Gauss-Bonet topological invariants, following [182],

(in [183], for instance, the authors proposed an ultraviolet topological phase of

gravity, in which the Einstein-Hilbert action is recovered from a spontaneous sym-

metry breaking via Higgs mechanism. We emphasize that, in the BS approach,

the Higgs mechanism would be only possible through the introduction of new de-

grees of freedom, i.e., new fields given by “topological BRST partners” that was

never observed in nature, in order to not explicitly break the topological BRST

symmetry. For this reason, the study of other methods for symmetry breaking in

topological BS models seems to be necessary to introduce a topological phase in

Yang-Mills theory.

The geometric interpretation in the extended space M ×A/G of the symme-

try between the FP and topological ghosts was not analyzed as well. It could

reveal new aspects of the global observables in the BS theory, as the operator

corresponding to the Ward identity of this symmetry (T), see (5.38), also defines

a cohomology problem for the most general counterterm Σc, i.e., TΣΣc = 0 with

TΣTΣ = 0, which possesses a bosonic nature.

Besides that, considering the indirect evidence of topological configurations in

strong interactions [26], whose effect helped to explain the QCD spectra, the con-

nection between topological quantum field theory and the AdS/CFT correspon-

dence [103; 104] could be explored to investigate new aspects of topological phases
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of matter. As we know, the AdS/CFT correspondence in strong interactions,

known as AdS/QCD correspondence, has been used to study the quark-gluon

plasma, such as glueball sates [184; 185]. The determination of instanton back-

ground effects by using the Gribov copies, see [179], provides a second method to

investigate topological quantum effects to glueballs. (It is a well-known result in

literature that instantons could provoke quantum forces in glueballs [66; 67], that

can be used to study the strong CP violation.) The comparison between holo-

graphic models and the Gribov copies could uncover correspondences between

the AdS/CFT duality and topological gauge theories.
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Appendix A

Conventions for Green functions
generators

In this section we employ the conventions of Euclidean QFT as in [98]. Let us

write the most relevant relations that we will employ. The Green functional is

defined as

Z[J ] = N

∫
DΦe−Σ−

∫
d4zJAΦA , (A.1)

where N = 1/Z[0] is the usual normalization, ΦA stands for all fields, JA are

Schwinger sources introduced for each field and A is a multiple index ranging

all fields. The functional measure is then DΦ =
∏

A dΦA. The connected Green

functional W [J ] is defined as

e−W [J ] = Z[J ] . (A.2)

Hence, the quantum action (vertex functional) is given by

Γ[Φ] = W [J ]−
∫
d4zJAΦA

∣∣∣∣
ΦA= δW

δJA

, (A.3)

whose inverse reads

W [J ] = Γ[Φ] +

∫
d4zJAΦA

∣∣∣∣
JA=(−1)(gA+1) δΓ

δΦA

, (A.4)
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where gA stands for the statistics of the field ΦA (+1 for fermions and 0 for

bosons). And, as usual,

δW

δJA

∣∣∣∣∣
JA=0

=
δΓ

δΦA

∣∣∣∣∣
ΦA=0

= 0 . (A.5)

The connected two-point functions will be denoted by

〈ΦA(x)ΦB(y)〉 = − δ2W

δJB(y)δJA(x)

∣∣∣∣∣
J=0

. (A.6)

In momentum space, we have,

〈ΦA(x)ΦB(y)〉 =

∫
d4p

(2π)4
eip(x−y)〈ΦAΦB〉(p) . (A.7)

For the amputated two-point functions we define

ΓABΦΦ (x, y) =
δ2Γ

δΦB(y)δΦA(x)

∣∣∣∣∣
Φ=0

, (A.8)

and the corresponding Fourier transform reads

ΓABΦΦ (x, y) =

∫
d4p

(2π)4
eip(x−y)ΓABΦΦ (p) . (A.9)
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Appendix B

Proof of Γab
(AA)µν

(p) = 0

To proof the exact result (5.95), we consider the Slavnov-Taylor identity (C.1)

for the vertex functional Γ,

S(Γ) =

∫
d4z

[(
ψcα(z)− δΓ

δΩc
α(z)

)
δΓ

δAcα(z)
+ . . .

]
. (B.1)

Varying (B.1) w.r.t. ψaµ(x) and Abν(y) we get∫
d4z

[(
δcaδαµδ(z − x)− δ2Γ

ψaµ(x)δΩc
α(z)

)
δ2Γ

δAbν(y)δAcα(z)
+ . . .

]
= 0 , (B.2)

which simplifies to

δ2Γ

δAbν(y)δAaµ(x)
−
∫
d4z

[
δ2Γ

ψaµ(x)δΩc
α(z)

δ2Γ

δAbν(y)δAcα(z)
+ . . .

]
= 0 . (B.3)

At vanishing sources and fields (B.3) yields

Γab(AA)µν(x, y)−
∫
d4z

[
δ2Γ

ψaµ(x)δΩc
α(z)

δ2Γ

δAbν(y)δAcα(z)

]JA=0

ΦA=0

= 0 . (B.4)

Now, to show that the second term in (B.4) vanishes we develop

δ2Γ

ψaµ(x)δΩc
α(z)

=
∑
A

∫
d4w

δ2W

δJA(Φ)(w)δΩc
α(z)

δJA(Φ)(w)

δψaµ(x)

=
∑
A

(−1)gA+1

∫
d4w

δ2W

δJA(Φ)(w)δΩc
α(z)

δ2Γ

δψaµ(x)δΦA(w)
.(B.5)
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Evoking the dFPs, the only fields ΦA that may generate non-vanishing two-point

functions are the fields with ghost number −1. Hence

δ2Γ

ψaµ(x)δΩc
α(z)

=

∫
d4w

[
δ2W

δJd(c̄)(w)δΩc
α(z)

δ2Γ

δψaµ(x)δc̄d(w)
+

δ2W

δJd(η̄)(w)δΩc
α(z)

δ2Γ

δψaµ(x)δη̄d(w)

+
δ2W

δJd(χ̄)σγ(w)δΩc
α(z)

δ2Γ

δψaµ(x)δχ̄dσγ(w)

]
. (B.6)

At vanishing sources and fields, this last expression reads

δ2Γ

ψaµ(x)δΩc
α(z)

=

∫
d4w

[
〈Dce

α c
e(z)c̄d(w)〉Γda(c̄ψ)µ(w, x) + 〈Dce

α c
e(z)η̄d(w)〉Γda(η̄ψ)µ(w, x)+

+ 〈Dce
α c

e(z)χ̄dσγ(w)〉Γda(χ̄ψ)σγµ(w, x)
]
. (B.7)

It is easy to see, from the BRST transformations (4.5) and (4.28), that the above

composite propagators can be written as (omitting the spacetime dependence and

indices)

〈Dcc̄〉 = −〈s(Ac̄)〉+ 〈ψc̄〉+ 〈Ab〉 = 〈ψc̄〉+ 〈Ab〉 ,

〈Dcη̄〉 = −〈s(Aη̄)〉+ 〈ψη̄〉 = 〈ψη̄〉 ,

〈Dcχ̄〉 = −〈s(Aχ̄)〉+ 〈ψχ̄〉+ 〈AB〉 = 〈ψχ̄〉+ 〈AB〉 , (B.8)

where the known fact that the expectation value of BRST exact quantities are

zero was used. Moreover, due to (5.105) and (5.115), we get

〈Dcc̄〉 = 〈Ab〉 ,

〈Dcη̄〉 = −〈s(Aη̄)〉+ 〈ψη̄〉 = 〈ψη̄〉 ,

〈Dcχ̄〉 = 0 , (B.9)
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Hence,

δ2Γ

ψaµ(x)δΩc
α(z)

=

∫
d4w

[
〈Acα(z)bd(w)〉Γda(c̄ψ)µ(w, x) + 〈ψcα(z)η̄d(w)〉Γda(η̄ψ)µ(w, x)

]
=

∫
d4w

[
〈Acα(z)bd(w)〉 − 〈ψcα(z)η̄d(w)〉

]
Γda(c̄ψ)µ(w, x)

= 0 , (B.10)

where, in the second line, we used the fact that Γda(c̄ψ)µ(w, x) = −Γda(η̄ψ)µ(w, x)

(see (5.83) and (5.94)). In the third line, the relations (5.101) and (5.103) were

employed. Therefore, we finally achieve

Γab(AA)µν(x, y) = 0 , (B.11)

as we wanted to show.
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Appendix C

Renormalizability proof of the
α-gauges

The aim of this first appendix is to prove the renormalizability of the action (6.6),

i.e., the renormalizability of the topological Yang-Mills theories at the α-gauges.

The action (6.6) displays a few Ward identities:

(i) Slavnov-Taylor identity due the BRST invariance:

S(Σα) = 0 , (C.1)

where

S(Σα) =

∫
d4z

[(
ψaµ −

δΣα

δΩa
µ

)
δΣα

δAaµ
+
δΣα

δτaµ

δΣα

δψaµ
+

(
φa +

δΣα

δLa

)
δΣα

δca
+
δΣα

δEa

δΣα

δφa

+ ba
δΣα

δc̄a
+ η̄a

δΣα

δφ̄a
+Ba

µν

δΣα

δχ̄aµν
+ Ωa

µ

δΣα

δτaµ
+ La

δΣα

δEa
+Ka

µν

δΣα

δΛa
µν

]
. (C.2)

(ii) Gauge-fixing and anti-ghost equations:

δΣα

δba
= ∂µA

a
µ + αba ;

δΣα

δc̄a
− ∂µ

δΣα

δΩa
µ

= −∂µψaµ . (C.3)

(iii) Second gauge-fixing and anti-ghost equations:

δΣα

δη̄a
= ∂µψ

a
µ ;

δΣα

δφ̄a
− ∂µ

δΣα

δτaµ
= 0 . (C.4)
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(iv) First non-linear bosonic symmetry:

T (1)(Σα) = 0 , (C.5)

where

T (1)(Σα) =

∫
d4z

[
δΣα

δΩa
µ

δΣα

δψaµ
+

(
φa − δΣα

δLa

)
δΣα

δφa
+ ca

δΣα

δca
− φ̄a δΣα

δφ̄a
− η̄a

(
δΣα

δη̄a
+
δΣα

δc̄a

)
− Ωa

µ

δΣα

Ωa
µ

− τaµ
δΣα

τaµ
− 2La

δΣα

δLa
− 2Ea δΣα

δEa
−Ka

µν

δΣα

δKa
µν

− Λa
µν

δΣα

δΛa
µν

]
. (C.6)

(v) Second non-linear bosonic symmetry:

T (2) (Σα) = 0 , (C.7)

where

T (2)(Σα) =

∫
d4z

[
δΣα

δKa
µν

δΣα

δBa
µν

+ ca
δΣα

δca
− c̄a

(
δΣα

δc̄a
+
δΣα

δη̄a

)
+ φa

δΣα

δφa
− φ̄a δΣα

δφ̄a
− Ωa

µ

δΣα

δΩa
µ

− τaµ
δΣα

δτaµ
− 2La

δΣα

δLa
− 2Ea δΣα

δEa
− Λa

µν

δΣα

δΛa
µν

−Ka
µν

δΣα

δKa
µν

]
. (C.8)

(vi) Global ghost supersymmetry:

G3Σα = 0 , (C.9)

where

G3 =

∫
d4z

[
φ̄a
(

δ

δη̄a
+

δ

δc̄a

)
− ca δ

δφa
+ τaµ

δ

δΩa
µ

+ 2Ea δ

δLa
+ Λa

µν

δ

δKa
µν

]
.

(C.10)

We notice that, just like the (A)SDL gauges, the symmetries T (1) and T (2),

in (C.5) and (C.7), respectively, can be combined to compose a more suitable

symmetry operator,

T (Σα) = T (1)(Σα)− T (2)(Σα) = 0 , (C.11)
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such that

T (Σα) =

∫
d4z

[
δΣα

δΩa
µ

δΣα

δψaµ
− δΣα

δLa
δΣα

δφa
− δΣα

δKa
µν

δΣα

δBa
µν

+ (c̄a − η̄a)
(
δΣα

δc̄a
+
δΣα

δη̄a

)]
.

(C.12)

To study the perturbative quantum stability of action (6.6) one adds to the

classical action (6.6) the most general counterterm Σc
α by means of

Γ(1) = Σα + εΣc
α . (C.13)

Following (5.26), the Ward identities of the model implies that the counterterm

Σc
α should satisfy the constraints

SΣαΣc
α = 0 , (C.14)

δΣc
α

δba
= 0 , (C.15)

δΣc
α

δc̄a
− ∂µ

δΣc
α

δΩa
µ

= 0 , (C.16)

δΣc
α

δη̄a
= 0 , (C.17)

δΣc
α

δφ̄a
− ∂µ

δΣc
α

δτaµ
= 0 , (C.18)

TΣαΣc
α = 0 , (C.19)

G3Σc
α = 0 , (C.20)

where the linearized Slavnov-Taylor operator is given by

SΣα =

∫
d4z

[(
ψaµ −

δΣα

δΩa
µ

)
δ

δAaµ
− δΣα

δAaµ

δ

δΩa
µ

+
δΣα

δτaµ

δ

δψaµ
+

(
Ωa
µ +

δΣα

δψaµ

)
δ

δτaµ

+

(
φa +

δΣα

δLa

)
δ

δca
+
δΣα

δca
δ

δLa
+
δΣα

δEa

δ

δφa
+

(
La +

δΣα

δφa

)
δ

δEa
+ ba

δ

δc̄a

+ η̄a
δ

δφ̄a
+Ba

µν

δ

δχ̄aµν
+Ka

µν

δ

δΛa
µν

]
, (C.21)
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and the linearized bosonic symmetry operator is

TΣα =

∫
d4z

[
δΣα

δΩa
µ

δ

δψaµ
+
δΣα

δψaµ

δ

δΩa
µ

− δΣα

δLa
δ

δφa
− δΣα

δφa
δ

δLa
− δΣα

δKa
µν

δ

δBa
µν

− δΣα

δBa
µν

δ

δKa
µν

+ (c̄a − η̄a)
(
δ

δc̄a
+

δ

δη̄a

)]
. (C.22)

Since the operator SΣα is nilpotent, it defines a cohomology problem for Σc
α. The

cohomology is trivial and the Slavnov-Taylor identity is free of anomalies [53; 54].

Hence, the general solution of (C.14) is

Σc = SΣα∆(−1) , (C.23)

where ∆(−1) is an integrated local polynomial in the fields, sources and their

derivatives, and parameters bounded by dimension 4 and ghost number -1. From

(C.23) and the constraints (C.15) — (C.20), it is straightforward to conclude that

the most general counterterm allowed is given by (5.66) — the same counterterm

in the (A)SDL gauges case. To check if the the α-gauges are stable is to check if

the counterterm (5.66) can be reabsorbed by the classical action Σα by means of

the redefinition of the fields, sources and parameters as in (5.67) and (5.68). It is

easy to check that the solution is given by (5.70) and (6.7), which completes the

proof of renormalizability of topological Yang-Mills quantized at the α-gauges.
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Appendix D

Renormalizability proof of the
β-gauges

The renormalizability proof of topological Yang-Mills theories at the β-gauges

follows the same procedures of the α-gauges discussed in the previous appendix.

The starting action is now (6.8) and its symmetries are described by the following

Ward identities:

(i) Slavnov-Taylor identity:

S(Σβ) = 0 , (D.1)

where

S(Σβ) = S(Σα)
∣∣
Σα→Σβ

, (D.2)

where S(Σα) was defined in (C.1).

(ii) Gauge-fixing and anti-ghost equations:

δΣβ

δba
= ∂µA

a
µ ;

δΣβ

δc̄a
− ∂µ

δΣβ

δΩa
µ

= −∂µψaµ . (D.3)

(iii) Second gauge-fixing and anti-ghost equations:

δΣβ

δη̄a
= ∂µψ

a
µ ;

δΣβ

δφ̄a
− ∂µ

δΣβ

δτaµ
= 0 . (D.4)
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(iv) First non-linear bosonic symmetry:

T (1)(Σβ) = 0 , (D.5)

where

T (1)(Σα) = T (1)(Σα)
∣∣
Σα→Σβ

, (D.6)

where T (1)(Σα) was defined in (C.6).

(v) Bosonic ghost equation:

GaφΣβ = ∆a
φ , (D.7)

where

Gaφ =

∫
d4z

(
δ

δφa
− gfabcφ̄b δ

δbc

)
,

∆a
φ = gfabc

∫
d4z
(
τ bµA

c
µ + Ebcc + Λb

µνχ̄
c
µν

)
. (D.8)

(vi) Second Faddeev-Popov ghost equation:

Ga2Σβ = ∆a , (D.9)

where

Ga2 =

∫
d4z

[
δ

δca
− gfabc

(
φ̄b

δ

δc̄c
+ Abµ

δ

δψcµ
+ cb

δ

δφc
− η̄b δ

δbc
+ Eb δ

δLc
+ τ bµ

δ

δΩc
µ

)]
,

∆a = gfabc
∫
d4z
(
Ebφc − Ωb

µA
c
µ − τ bµψcµ − Lbcc + Λb

µνB
c
µν −Kb

µνχ̄
c
µν

)
. (D.10)

(vi) Global ghost supersymmetry:

G3Σβ = 0 , (D.11)
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where

G3 =

∫
d4z

[
φ̄a
(

δ

δη̄a
+

δ

δc̄a

)
− ca δ

δφa
+ τaµ

δ

δΩa
µ

+ 2Ea δ

δLa
+ Λa

µν

δ

δKa
µν

]
.

(D.12)

The perturbative quantum stability of action (6.8) is studied just like the

previous case. We start by adding to the classical action (6.8) the most general

counterterm Σc
β by means of

Γ(1) = Σβ + εΣc
β . (D.13)

Then we impose the validity of all Ward identities valid for the classical action

(6.8) to the quantum action, so that the counterterm Σc
β must satisfy the following

constraints

SΣβΣc
β = 0 , (D.14)

δΣc
β

δba
= 0 , (D.15)

δΣc
β

δc̄a
− ∂µ

δΣc
β

δΩa
µ

= 0 , (D.16)

δΣc
β

δη̄a
= 0 , (D.17)

δΣc
β

δφ̄a
− ∂µ

δΣc
β

δτaµ
= 0 , (D.18)

T
(1)
Σβ

Σc
β = 0 , (D.19)

GaφΣc
β = 0 , (D.20)

Ga2Σc
β = 0 , (D.21)

G3Σc
β = 0 , (D.22)

where the linearized Slavnov-Taylor operator is given by

SΣβ = SΣα

∣∣
Σα→Σβ

, (D.23)
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where SΣα was defined in (C.21), and T
(1)
Σβ

is given by

T
(1)
Σβ

=

∫
d4x

[
δΣβ

δΩa
µ

δ

δψaµ
+

(
φa − δΣβ

δLa

)
δ

δφa
+ ca

δ

δca
− φ̄a δ

δφ̄a
− η̄a

(
δ

δc̄a
+

δ

δη̄a

)
+

(
δΣβ

δψaµ
− Ωa

µ

)
δ

δΩa
µ

− τaµ
δ

τaµ
−
(
δΣβ

δφa
+ 2La

)
δ

δLa
− 2Ea δ

δEa
−Ka

µν

δ

δKa
µν

− Λa
µν

δ

δΛa
µν

]
. (D.24)

The operator SΣβ is also nilpotent. Henceforth, it defines a cohomology prob-

lem for Σc
β. Once again the trivial BRST cohomology implies that the general

solution of (D.14) is

Σc
β = SΣβ∆(−1) , (D.25)

where ∆(−1) is an integrated local polynomial in the fields, sources and their

derivatives, and parameters bounded by dimension 4 and ghost number -1. From

(D.25) and the constraints (D.15) – (D.22), it is straightforward to show that the

most general counterterm allowed is actually given by

Σc
β = SΣ

∫
d4x

(
a1 χ̄

a
µν∂µA

a
ν + a2 gf

abcχ̄aµνA
b
µA

c
ν + a4βχ̄

a
µνB

a
µν

)
=

∫
d4x

{
a1

[
Ba
µν∂µA

a
ν − χ̄aµν∂µ

(
ψaν −

δΣ

δΩa
ν

)]
+

+ a2

[
gfabcBa

µνA
b
µA

c
ν − 2gfabcχ̄aµν

(
ψbµ −

δΣ

δΩb
µ

)
Acν

]
+ a4βB

a
µνB

a
µν

}
.(D.26)

As discussed in Section 6.2.2, the analysis of the quantum stability of the β-

gauges via (5.67) and (5.68) leads to the relation a2 = a1/2, showing that the

theory possesses two independent renormalization parameters. This simplifica-

tion reduces (D.26) to (6.9). The solution for the Z factors are given by (5.70)

and (6.10) and the proof of renormalizability of topological Yang-Mills quantized

at the β-gauges is complete.

For the case in which α, β 6= 0, we have to collect the common symmetries

214



between both cases, i.e., between (C.14)-(C.20) and (D.14)-(D.22). Aftermath

we conclude that the term (6.5) survives at the quantum level, which cannot be

reabsorbed by the classical action Σ(α, β) (6.3), proving that the theory is not

renormalizable for α, β 6= 0.
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