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Abstract

We provide a comparative study between the Witten’s topological
quantum field theory (TQFT), which is based on the twist trans-
formation of the N = 2 super Yang-Mills (SYM) action, with the
Baulieu-Singer (BS) one, which, in turn, is based on the BRST gauge
fixing of a non-Abelian action composed of topological invariants for
four-manifolds. We analyze the on-shell character of Witten theory,
and confront it to the off-shell Baulieu-Singer one in the self-dual
Landau gauges. As it is well known in literature, both theories share

the same observables given by the Donaldson polynomials.

Studying the Ward identities of the Baulieu-Singer theory in the self-
dual Landau gauges, we first show that all two-point Green functions
are tree-level exact in this model. In particular, the gauge field prop-
agator vanishes to all orders as a consequence of the Ward identity
associated to the vector supersymmetry. We then generalize this re-
sult by proving that not only the two-point functions but all n-point
Green functions are tree-level exact, being this property protected
by the topological BRST cohomology. In a few words, we prove the
absence of radiative corrections in self-dual Landau gauges for the off-
shell topological gauge theory of Baulieu-Singer type. Besides that,
we demonstrate the existence of an extra non-linear bosonic symme-

try that relates the Faddeev-Popov ghost with the topological one



derived from the shift symmetry. From the quantum stability con-
dition, taking into account this new symmetry, we identify a kind of
renormalization ambiguity concerning the system of Z-factors in the
BS theory, and explain the origin of such an ambiguity by analyzing
the discrete symmetries of the classical action. We relate this ambi-
guity to the non-physical character of the g-function in the off-shell
model, as the coupling constant only appears in the trivial part of the

BRST cohomology.

The quantum properties of the self-dual Landau gauges were used to
prove that the BS f-function (f,) vanishes to all orders, a different
result from the twisted N = 2 SYM one, which is not zero (propor-
tional to ¢) and receives contributions at one-loop. The Donaldson
polynomials, however, are reproduced by the Witten’s TQFT in the
weak coupling limit (g2 — 0) of the twisted N = 2 SYM, i.e., for
By — 0, which shows that the conformal property of the self-dual
Landau gauges in the BS theory is in agreement with Witten’s TQFT
— an expected result as the BS and Witten theories possess the same

observables in this energy regime.

Finally we study the Gribov problem in topological Yang-Mills theo-
ries of BS type in the self-dual Landau gauges. We show that the in-
troduction of the usual Gribov horizon in ordinary Yang-Mills theory
is sufficient to eliminate the infinitesimal gauge copies in the topolog-
ical case, for the Fadeev-Popov and bosonic ghost sectors, preserving
the global degrees of freedom that characterize the dimension of the
instanton moduli space. After applying the no-pole condition, we
could prove that the gap equation forbids the introduction of an in-

frared massive Gribov parameter in the gauge field propagator. In



other words, the BRST symmetry structure and the conformal prop-
erty of the self-dual Landau gauges hide a mechanism that protects
the original topological properties of the BS model, in such a way that
the elimination of the gauge copies in the Feynman path integral does

not affect the infrared dynamics in the topological Yang-Mills theory.
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Chapter 1

Introduction

The whole extent of topological effects to the quantization of field theories is far
from being completely understood. A general method for the computation of am-
plitudes involving topologically inequivalent configurations, taking into account
nonperturbative aspects, and its quantum implications is, up to now, a great
challenge in Physics and Mathematics. The most famous case in Yang-Mills the-
ories must be undoubtedly the Pontryagin action in Euclidean four-dimensional
spacetime which represents the tunnelling amplitude between topologically in-
equivalent configurations with different winding numbers known as instantons
[1; 2]. These topological field configurations are present in the vacuum of Yang-
Mills theories such as the Quantum Chromodynamics (QCD) — the theory that
describes the strong interactions between quarks and gluons.

Another example, with a much more mathematical bias, is the computation of
topology-changing amplitudes in (2+1)-dimensional gravity [3]. In 241 dimen-
sions, gravity is a topological finite theory, and, in this paper, Witten showed
that it is possible to compute amplitudes associated to the topology of spacetime
itself if the cosmological constant is zero. In the 1980s, many concepts about

quantum field theory and topology were developed, as the concept of worm-



holes (originally, a theory for nontrivial spacetime topology that could explain
monopole-like singularities [4]), and its consequences to describe the behaviour of
the cosmological constant. At the time, some physicists related wormholes to the
vanishing of the cosmological constant [5; 6]. Hawking also speculated that quan-
tum fluctuations in spacetime topology at small scales may shift the cosmological
constant to zero [7; 8]. The presence of wormholes, however, was never detected.
Nowadays we know that the Universe is accelerating with a non-vanishing cos-
mological constant.. In quantum field theories, the topology generally affects the
theory observables at the quantum level, but not the classical equations of mo-
tion. It illustrates the difficulty in investigating topology in gravity as there is no
consistent theory — unitary and renormalizable — of four-dimensional quantum
gravity.

Despite the difficulty of studying topological effects in gravity, the connec-
tion between topology and Physics has become narrower. Today we are able to
say that both theories walk together. Approximately during the same period,
topological Abelian models were used to describe topological phases of electrons,
and to explain the Physics of superconductors. Just to illustrate the success of
topological models, J. M. Kosterlitz and D. J. Thouless, in 1972, identified a new
type of phase transition in two-dimensional systems in the presence of topological
defects [9; 10]. Their theory describes superconducting and superfluid films. In
1982, D. J. Thouless et al applied topology to explain the quantum Hall conduc-
tance of an electron gas in a two-dimensional periodic potential [11]. In 1983, D.
Haldane proposed a model for spin chains taking into account topological effects
based on a nonlinear field theory of large-spin antiferromagnets [12; 13]. All these
models were later observed in experiments?.

The success of topology in describing phases of matter should not seem sur-

In 2016 D. J. Thouless was awarded with the Nobel prize due to his “theoretical discoveries
of topological phase transitions and topological phases of matter”.



prising. We can find physical evidence of topological properties in well-known
experiments, such as the Aharonov-Bohm effect [14]. In this effect, it does not
matter the shape of the electric circuit around the (infinite) solenoid. The circuit
could be circular or square. The phase acquired by the electron that surrounds
the solenoid depends on the number of loops, but not on the path shape. The
magnetic field along the solenoid works as a singularity in the space, in such a way
the paths that could be continuously deformed into the other represent a class of
topologically equivalent configurations, i.e., that describe the same Physics. The
usual Feynman diagrams, for example, are composed of topologically inequiva-
lent one-dimensional paths. In the same way, it is impossible to continuously
deform one diagram into the other. The Feynman diagrams give a perturbative
tool to compute the probabilistic amplitudes of particle scatterings for the four
interactions in the Universe. It is not difficult to find topological properties in
the mathematical structure of physical theories that describes Nature with high
precision, and we must deal naturally with the occurrence of topological effects
in many branches of Physics.

Our aim is to study the quantum properties of non-Abelian topological field
theories. In this kind of theories the instantons play a crucial role. However, many
problems involving instantons remain unsolved. Some topological field theories
whose global observables are defined by instanton configurations are essentially
based on supersymmetry. We would like to investigate four-dimensional topolog-
ical gauge theories capable of producing the same global observables of super-
symmetric models, in particular of the Donaldson-Witten topological quantum
field theory, by employing the machinery of BRST (Becchi-Rouet-Stora-Tyutin)

quantization.



1.1 Motivation

1.1 Motivation

During the early eighties, Donaldson constructed a whole new class of topological
invariants as integrals of differential forms over the moduli space of instantons [15;
16; 17]. The Donaldson polynomials are of utmost importance in the classification
of four-manifolds as they keep track of the topologically inequivalent ways one
may cover a topological space with local charts. This created a new toolbox to
study the so-called “exotic” manifolds [18], a.k.a. manifolds with non-standard
differential structures.

The classification of four-manifolds is not only an abstract topic reserved for
mathematicians. The physics on exotic manifolds has also being investigated with
results ranging from particle physics to cosmology, [19; 20; 21; 22; 23]. In theses
works, topological structures showed to be capable of generating a cosmological
constant from small exotic R*, and introducing fermions into general relativity by
exotic smoothness structures. In the recent paper [21], the authors also applied
a topological approach based on exotic smoothness to predict neutrinos masses,
in very good agreement with experiments. They also used topology to speculate
about the origin of an asymmetry between neutrinos and anti-neutrinos.

Moreover topology-changing processes might play a relevant role in quantum
gravity and QCD, to name only these two examples. For instance, the knowledge
of topologically inequivalent four-manifolds might be fundamental to define the
physically inequivalent states in some quantum gravity models [24; 25|, in which
the classical theory of general relativity is recovered for large scales. On the
other hand, the moduli space of instantons represents a huge degeneracy of the
QCD vacuum. Topology-changing processes among these vacua, a famous non-
perturbative effect, can explain the anomalous U(1) axial symmetry [26] and it is
related to the strong CP problem. Undoubtedly, the most famous solution to the
strong CP problem was proposed by Peccei and Quinn (PQ) in 1977 [27; 28]. The
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PQ model consists of an extended Standard Model with an extra Upg(1) global
symmetry, which is constructed through the introduction of two Higgs doublets
— one that couples to up-type quarks, and the other to down-type ones. When
the electroweak symmetry is broken, together with the Z boson, an axion field
is produced [29], giving rise to a pseudoscalar field in the instanton sector of the
action, that depends on the vacuum expectation values of the Higgs fields. The
PQ mechanism solves the CP problem as parity is not violated anymore. Over
the years, this model has aroused the interest of many researchers, as axions are
appear to be effectively collisionless, i.e., the only significant long-range interac-
tions of axions are gravitational, providing a candidate for (cold) Dark Matter,
the missing mass of the Universe [30; 31; 32; 33; 34; 35; 36; 37].

The challenge of constructing a topological phase in quantum field theory
consists in how to built a mechanism to liberate the local degrees of freedom
from the global ones, and provide a physical interpretation of it. In [38], the
authors have demonstrated that inflation can arise from exotic smoothness. It
is a model for a topological phase transition, in which the geometric observables
are described in terms of topological invariants, calculated via path integral. The
sum over all metrics in the Feynman path integral, together with the background
dependence, represents an obstacle to finding a consistent quantum theory of
gravity, and the topological models appear to be good candidates to solve this
problem, since the observables in these models are constructed independently of
the metric choice, and because the general covariance is built before integrating
over the space of all metrics [39; 40].

All of these issues motivate our study of topological quantum field theories,
where we could analyze, for instance, the topological Yang-Mills symmetries and
their relation to the mass gap problem [41], following the Gribov procedure [42], in

an attempt to shed fome light on the quantum properties of a possible topological
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phase in non-Abelian field theories.

1.2 Overview of the thesis

In the Chapters 2, 3 and 4, we study topological aspects of non-Abelian field
theories based on the well-known literature results. In Chapter 5, we provide
an overview of the Gribov quantization. Our results concerning the quantum
analysis of topological Yang-Mills theories are in the Chapters 5, 6 and 8. The
thesis was organized as follows.

In Chapter 2, we introduce the basic elements of non-Abelian topological field
theory that will be widely used throughout the thesis, namely, the concept of topo-
logical invariants; the (anti-)self-dual field strength configurations — instantons
and anti-instantons configurations — as the classical minima of the Yang-Mills
action; the BPST instanton solution for SU(2) theories; the #-vacuum term de-
scribed by the Pontryagin action, as the result of tunneling between degenerate
vacuum states with different winding numbers; etc. The study of the Pontrya-
gin action is based on the semi-classical approach for transition amplitudes with
imaginary time systems, that can be found in S. Coleman book, The Uses of
Instantons [43], here presented in a direct way. Such an approach is inspired
in the periodic structure of the instanton sector of QCD vacuum [44; 45]. In
the last section of the chapter we qualitatively discuss the solution of the Uj(1)
problem in QCD theory, due to the presence of instantons in the vacuum, and
justify the necessity of further investigation concerning non-Abelian topological
configurations.

The Chapter 3 is dedicated to the study topological quantum field theories

(TQFT), i.e., quantum field theories that possesses a partition function' which

1By abuse of language, throughout the thesis we say partition function instead of partition
functional.
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is independent of the metric choice, therefore having only global observables,
described by topological invariants that characterize the target manifold [40].
We present the definition of Schwarz and Witten type topological models, and
how the observables are formally defined for both theories. Then we study the
relativistic Witten’s TQFT which is obtained through the twist transformation of
the N = 2 super Yang-Mills theory in the Wess-Zumino gauge. We demonstrate
how the observables given by the Donaldson polynomials are obtained in the
weak coupling limit of Witten theory, following the original Witten paper [46].
We largely discuss the on-shell character of Witten’s TQFT, and, qualitatively,
its perturbative exact S-function, which only receives one-loop contributions, as
can be demonstrated via algebraic analysis [47].

In Chapter 4, we start the study of the Baulieu-Singer approach [48], which
consists of an anomaly-free Schwarz type TQFT, built form the BRST gauge-
fixing of an action composed of topological invariants, in particular, the Pon-
tryagin action. Summarizing, we discuss the off-shell character of Baulieu-Singer
theory, described by topological BRST transformations that define a field space
with trivial cohomology; we present a geometric interpretation of such a BRST
quantization (which possesses a different nature of the BRST construction of
Witten’s TQFT, performed by Brooks et al. [49], as we discuss in details in this
chapter) in an “extended” space; and relate its observables with the Witten ones
(both possesses the same classical observables, given by the Donaldson polyno-
mials [50; 51]), in terms of the equivariant cohomology, and the nth Chern class
by which the observables are defined with respect to the universal curvature of
this extended space [52]. Finally, by using arguments from the BRST cohomol-
ogy, we compare the Baulieu-Singer and twisted N = 2 SYM theories, and show
that, despite sharing the same observables (in the weak coupling limit of Witten

theory), the quantum properties of each theory are not necessarily the same (for
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every energy regime).

We start the study of the quantum properties of the off-shell Baulieu-Singer
theory in Chapter 5, where we describe the Ward identities of the model in self-
dual Landau gauges, with the introduction of a new non-linear bosonic symmetry
that relates the Faddeev-Popov ghost, ¢?(x), with the topological one, 7 (z),
derived from the topological shift symmetry. With this new Ward identity, we
prove, by employing BRST algebraic techniques, that the theory is renormalizable
to all orders in perturbation theory with only one independent renormalization
parameter!. We then analyze the consequences of the Ward identities to the two-
point functions, and conclude that the propagators of the theory are tree-level
exact, as a consequence of the vector supersymmetry present in Landau gauges
[53]. In fact, all two-point are tree-level exact, being this result associated to the
fact that, in this gauge choice, the gauge field propagator vanishes to all orders
in perturbation theory — all of theses results were published in [54].

In Chapter 6 we study the renormalizability of the model in generalized classes
of gauges, where we verify the presence of a renormalization ambiguity concern-
ing the system of Z-factors obtained from the quantum stability condition. We
interpret this ambiguity as a consequence of the absence of certain discrete sym-
metries, and due to the non-physical character of the gauge field propagator in
the Baulieu-Singer approach, see [55]. This ambiguity is transferred to the renor-
malization of the coupling constant. In self-dual Landau gauges, by analyzing the
Feynman diagrams and the vertex structure, we prove that the BS theory does
not receive radiative corrections, i.e., that all n-point Green functions are tree-
level exact, due to the BRST cohomology and the impossibility of closing loops

with a vanishing gauge field propagator [56]. From this result, we analyze the

IThe renormalizability of such theories is a well-known result in literature, see for instance
[53]. With the new Ward identity, we were able to reduce the independent renormalization
parameters from four to one.
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non-physical character of the S-function in off-shell topological Yang-Mills theo-
ries, and conclude that the BS theory in the Landau gauges possesses a vanishing
[S-function.

In Chapter 7, we provide an overview of the Gribov problem in Yang-Mills
theories [42]. We discuss the Faddeev-Popov quantization [57]; the semi-classical
method developed by Gribov to eliminate the infinitesimal gauge copies; how
the physical content of the Feynman path integral is preserved inside the Gribov
region; the non-perturbative character of the Gribov procedure, which only affects
the infrared dynamics, by generating an infrared massive parameter in the gluon
propagator; the Zwanziger generalization of Gribov horizon to all orders [58]; and
the physical character of the massive Gribov parameter, that does not belong to
trivial part of the BRST cohomology [59]. We finish the chapter with a discussion
about the Fundamental Modular Region [60]. In this chapter we also argue that
we do not have any physical motivation to introduce condensates, cf. [59], in the
topological Yang-Mills case, as in the presence of such condensates the results of
the next chapter would be the same.

Finally, Chapter 8 is dedicated to the study of Gribov copies in topological
Yang-Mills theories of Baulieu-Singer type, worked out in [61]. We first prove the
equivalence between the Fadeev-Popov gauge-fixing procedure and the topological
BRST quantization in self-dual Landau gauges. Then we obtain the copy equa-
tions in this gauge choice, and we conclude that the infinitesimal Gribov copies
can be eliminated trough the introduction of the usual Gribov horizon. We com-
pute the no-pole condition at one-loop order for the Faddeev-Popov and bosonic
sectors, and prove the triviality of the gap equation, in other words, that the
symmetry structure of the topological Yang-Mills theory forbids the introduction
of an infrared massive parameter of Gribov type in the gauge field propagator.

After obtaining the one-loop result, we extended it to all orders, as a consequence
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of the absence of radiative corrections in the presence of the Gribov-Zwanziger
horizon. We finalize the chapter with a discussion about the preservation of the
original BRST-cohomological properties of the off-shell topological Yang-Mills

theory. Chapter 9 contains our conclusions and perspectives.
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Chapter 2

Non-Abelian field theory and
topology

As mentioned in the overview of the thesis, this chapter will be used to introduce
the basic elements and principles of non-Abelian topological theories that will
appear throughout the thesis. In the the last section, we provide a qualitative
analysis of the solution of the U4 (1) problem in strong interactions, that indicates
the necessity of further investigation concerning topological effects in non-Abelian

theories.

2.1 The Yang-Mills vacuum: Instantons and the
f-vacuum in Quantum Chromodynamics

For a long time, the vacuum was treated in a secondary way as a state of little
importance to the physical phenomenon. Almost unanimously, the physicists be-
lieved that only variations with respect to the vacuum energy (the lowest energy)
could be experimentally observed. Only in 1998, Steve Lamoreaux, at the Uni-

versity of Washington, proved the unexpected [62]. He verified experimentally,

11
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using a system of two plates (a curved plate and a flat plate), the intriguing
Casimir effect, proposed by Hendrik Casimir in 1948 [63]. Essentially he proved
the Casimir force, which depends on the space between the plates in a closed box
without air or source of heat. Following the Casimir explanation, the force is due
to the residual energy of the empty space: the vacuum.

The Casimir force equals the electrical attraction holding an electron in a
hydrogen atom. It’s a tiny force, but it could directly affect the particle world.
In Quantum Electrodynamics, the source of such a residual energy is interpreted
as a soup of virtual photons®. In agreement with the Heisenberg’s uncertainty
principle, these vacuum fluctuations must prevent a particle from reaching the
absolute rest. There is no perfect analogue to the Casimir experiment in QCD,
but the Casimir effect has elucidated that the vacuum, which could have peculiar
symmetry properties, represents a state of great physical significance in quantum
field theory, that could explain the existence (or absence) of certain particles in
Nature. In Yang-Mills theories, the vacuum, beyond other possible fluctuations,
is filled by nontrivial topological field configurations called instantons, that can

directly affect the quantum behaviour of the theory.

2.1.1 Classical minima of the Yang-Mills action

In this section, we would like to discuss the physical condition in which the Yang-
Mills action must be finite over all space, and how this condition naturally leads
to topological nontrivial vacuum solutions. Differently of Abelian theories like
QED, which possesses U(1) symmetry — being the gauge fields numbers —, in

non-Abelian theories the G-valued gauge fields are matrices given by

Ay = AST®, (2.1)

'Photons that are created and subsequently annihilated at the quantum level.

12
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where Af are the components of the gauge field, and the matrices T are the

generators of the Lie algebra of the group G, which obey
[Ta, Tb] — fabcTc’ (22)

where f% are the structure constants characteristic of the group. (If all f®¢ are
zero, the group is Abelian. Otherwise, non-Abelian.) For a theory with SU(N)
symmetry, a = {1,--- ,N? — 1}, and f%¢ is completely antisymmetric, defined
by

STS=1 and detS=1, (2.3)

where S = ¢“"T" being w® the G-valued parameters. The covariant derivative,
Dy =0, — igA, (2.4

must obey

(D, V) = SD, . (2.5)

where VU is a field in the fundamental representation of the group, which trans-
forms as W' = SV, such that S € G. The equations (2.4) and (2.5) define the

gauge transformation of the gauge field as!
Al = ST'AS 4+ 5719,8 , (2.6)

(we are using the redefinition A, — éAm where ¢ is the coupling constant). The

curvature Fy, = [D,, D,], also known as field strength, takes the form

Fo = 0,4, — 0,A, + [A,, A, (2.7)

In Abelian theories like QED, G is the U(1) group, S'S = 1, where S are only phases
(numbers) given by e!®, and we naturally get A, = A, - 0.

13
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From (2.5), its is easy to see that D), = SD,S™", consequently, the gauge trans-
formation of the field strength is F,, = [D},, D;] = SF,,S~'. In four dimensions,
the Lagrangian must have mass dimension equal to four. Hence the respective
non-Abelian action, invariant under Lorentz and gauge transformations, takes

the form

Sp(A) = # / d*ztr (FuFL) . (2.8)

The trace appears to compensate the gauge transformation of Fj,,, such that
tr (F),F),) = tr (SFuFuS™) = tr (Fu,F.), using the cyclic property of the
trace. The action Sg is the well-known Yang-Mills action in four-dimensional
Euclidean spacetime, which could be thought as a theory in imaginary time,
in other words, in Minkowski space after the Wick rotation xy — ixg. (Most
calculations of scattering amplitudes in quantum field theory are calculated after
a Wick rotation.)

The physical requirement is that the action must vanish at infinity, in such a

way that Sp must be finite. This boundary condition reads

lim F,, =0, (2.9)

|x|—00

in other words, that the field strength must vanishes at infinity. Normally we
take this to mean A,(z) = 0 at infinity, but this is too much restrictive. The
condition (2.9) only requires that

lim A,(z)=5""9,5, (2.10)

|x|—o00

which means that the gauge field is a pure gauge in the boundary (one can easily
prove that F),,(S719,S) = 0, using (2.3) and (2.7)). In the SU(2) theory, eq.

(2.10) represents a S® — S® mapping: a mapping from the three-sphere of space-

14
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time at infinity into the SU(2) space which is also a three-sphere. To understand
the latter statement, we must recall that the SU(2) manifold is topologically
equivalent to a three-sphere S®. For S € SU(2), we have S = €™"?", being o¢,
for a = {1,2,3}, the three Pauli matrices. We can rewrite .S, using the Pauli
matrices identities, as

S =z + xi0" (2.11)

where z; and the vector components x; are real. As S satisfies STS = 1, we
obtain x3 + x? = 1, which is exactly the equation of a sphere with radius one in
four-dimensional Euclidean space. The S3 — S% mapping consists of a mapping
between the points of the S® in the boundary of spacetime into the elements of
the SU(2) group, since if S € SU(2), S7'9,.S also belongs to the algebra su(2)*.
This kind of mappings characterizes the winding number. Before studying the
four-dimensional S® — S3 mapping, let us analyze the one-dimensional case.
The S!' — S mapping. We call an homotopy between two maps, fo(z) and
fi(z), a continuous function F(z,t), ¢ € [0, 1], which continuously deforms f
into fi, i.e., F(x,0) = fo(x) and F(z,1) = fi(z). (In one dimension, the maps
are paths.) If such F(x,t) exists, we say that fy and f; are homotopic, in other
words, fo and f; belong to the same homotopic class, which means that they are
topologically equivalent. In the S' — S' mapping, we start with a unit circle
labelled by an angle 6, where the angles 6 and 6 + 27 are identified. This circle
could be expressed by the complex number z = €'*. We can read this mapping

as {0} — {e"}. The continuous functions

£(0) = exp [i(nf + w;)] (2.12)

!These interpretation can be generalized to others non-Abelian groups. The SU(2) group
is only simpler and illustrative. Non-trivial configurations in SU(N) are constructed through
maps embedded into a suitable SU(2) subgroup, that retains their winding numbers in higher
rank gauge groups. For the SU(N) generalization, see for instance [64; 65].
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naturally form a homotopic class for different values of w;, being n integer numbers
accordingly to the identification between 6 and 0+2m, i.e., f(0) = f(0+27) which

2mn

yields e = 1. As we can see, there is a homotopy described by

F(0,t) = exp{i[nd + (1 — hw; + tw;]}, te[0,1], (2.13)

which continuously deforms fi(") into f]("). The integers n, also known as the
winding number or Pontryagin indez, denotes the number of times we walk around
a unit circle, which maps fi(n) into the same point of f;n). The first group of
homotopy' (I1;) of a S' sphere is then the integers: II; (S') = Z, characterized
by n = {0,£1,42,-- -}, where the “+” sign” means clockwise loops, and the “—”

sign, counterclockwise loops. The winding number n can be written as

= s ] @2

For the winding number n = 1, we have

FO@) = . (2.15)

The mappings [fV(6)]* will have winding number k. In Cartesian coordinates

we can write an unit circle as
flz,y) =z +iy with 2> +y*=1. (2.16)

Considering the identification between the end-points —oo and 400, i.e, f(z =

—o0) = f(x = +00), we can generalize the domain from an unit circle to the

In topology, a mapping (or map) is a continuous function. A homotopy is a continuous path
between maps. In one dimension, the II; maps are closed paths. The first group of homotopy
counts the topologically inequivalent closed paths which can be mapped into a S* sphere (or a
circle).
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whole real line —oco < & < +00. The both are topologically equivalent. Thus, in

Cartesian coordinates the winding number is expressed by

- [ )

The corresponding winding number n = 1 in one dimension, for example, could
be expressed by
1T
r)=expl——5=1} 2.18
fl( ) p{($2+>\2>2} ( )
where )\ is an arbitrary parameter called instanton size.
In the four-dimensional case, the domain is the three-dimensional S sphere

with all points identified at infinity. The natural generalization of (2.12) and
(2.16) in ST — St to S® — 5% mappings is

f(zo,z;) = 20 + iz - 0" with zl+a27=1. (2.19)

It can be shown that the generalization of the winding number as a volume

integral takes the form

=T /dzf’f tr{e i [f (2)0if (2)][f (@) 0; f(@)][f " ()0 f ()]} . (2.20)

Looking at equation (2.17), the expression above reveals three components with
a similar form, embed in a general topological structure. It counts the times
the group wraps itself around the three-sphere S3, such that the third group
of homotopy' (II3) of S? is also the integers: I13(S%) = Z. The sign of n is
determined by the sense we twisted it around S3, like a plastic bag around a

four-dimensional ball (that cannot be visualized). The winding number n = 1 for

"'While the mapps of II; are closed paths, for II3 the mapps are closed four-dimensional
surfaces.
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(2.20) is obtained with
— ). (2.21)

Looking at (2.16), (2.18) and (2.18), this expression is the natural 4D generaliza-
tion. (For a detailed study about the winding number generalization in 4D, see
43).

Equations (2.19) and (2.20) contain exactly the same structure of the Yang-
Mills vacuum, taking into account the physical condition of the gauge field as a
pure gauge at infinity (2.10). To see that, we must first determine the classical
minima of the Yang-Mills action. To this aim we must remember that the winding

number can be expressed in terms of the gauge field. The volume integral
Sinst = Tr / d'zF,,F,, (2.22)

where F = %%uaﬁFaﬂ is the dual of the field strength, can be written as a total

derivative of the Chern-Simons (unobservable) gauge dependent current,
2
KM = 4€uuaﬁTr [Al,aaA/g + §A,,AQA5] 5 (223)
expressly,

-1 1
Tr / d'z F,,F,, = 3 / d'rv9,K, = 3 /5 S, K, , (2.24)

3
oo

where we applied the Stokes theorem, being the surface integral over S® at infinity.

In this region the gauge field is given by the pure gauge (2.10), hence, using
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STS = 1, we obtain at S3,
K, - gawagTr[(S18VS)(518QS)(51855)] | (2.25)

The eq. (2.24) reveals that the Pontryagin action, Tr Fw,ﬁ vy 1s @ Chern-Simons
(CS) surface term in the 4D boundary. The Chern-Simons current K, establishes

3D (8
4D Pontryagin

3D (8

Figure 2.1: 4D Pontryagin is a 3D Chern-Simons in the boundary.

the conservation of a topological charge. This conservation law (different of the
Noether’s theorem concept) means that there is a conserved quantity whose char-
acterization is the impossibility of classical transitions between field configuration
with different winding numbers. These configurations are topologically inequiv-
alent, and cannot be continuously deformed between each other. The proof is
achieved by taking an infinitesimal transformation of the Lie group S = e**7",
i.e.,

05 = S6wT* = SoT . (2.26)

Under this transformation, 5(5(%5‘1) = —S@ugTS_l, therefore, using 9,515 =
—5719,S, we find
0Simst = 0, (2.27)

due to the antisymmetric property of the Levi-Civita tensor, which shows that the

Pontryagin action represents topological invariants, i.e., invariant quantities under
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continuous deformations, thus defining a conserved topological charge accordingly
to each winding number. For the winding number in S* — S% mappings (2.20),

identifying f(xg, x;) with S(xg, x;), and replacing (2.25) into (2.24), we get
/ d*z TrF,, F,, = 161°n . (2.28)

This is the well-known relation which make it possible to write the topological
winding number in terms of the non-Abelian gauge fields. The positivity condition

in Euclidean space yields
Tr / d'z (F, +F,)?>0. (2.29)

By using (F,, = ﬁw)2 =2(FF. £ qu,,fw), and eq. (2.28), we automatically

obtain the inequality
Tr / d*zF,,F,, > |Tr / d'zF,,F,,| = 167°|n|, (2.30)
The equation above shows that the four-dimensional Yang-Mills action in a topo-

logical sector with winding number n is bounded by

872 |n

Sp(4) > =5

(2.31)

The minimization of Sk occurs when this equation reaches the equality. From

(2.29) we conclude that the instanton configurations

py — j:FMV (232)

represent the classical minima of Sg. As we know the Feynman path integral

is dominated by the classical configuration. The Yang-Mills path integral can
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be seen as quantum perturbations around instantons. For the “+” sign, the
field which obeys (2.32) is called instanton, for the “—” sign, anti-instanton. The
Bogomoln’yi argument states that the (anti-)self-dual configuration must solve the
full equations of motion since it minimizes the action in some topological sector.
In the case of instantons this is immediately satisfied, as D, F},, = Du(j:ﬁ ww) =0
via Bianchi identity. In practice nontrivial topological instanton solutions define
a lowest level,