Machine Learning approaches to Classical Many-Body Systems in (Non-)Equilibrium

Data: 10/10/2024 (quinta-feira)
Horário: 11:00 h
Local: sala 201 da torre antiga
Caros estudantes e docentes,

O próximo seminário do grupo de matéria condensada ocorrerá com a apresentação do Prof. Martin Oettel (Eberhard Karls Universitaet Tuebingen-Germany).

publicado: 07/10/2024 13h28,
última modificação: 14/10/2024 18h04

Data:      10/10/2024 (quinta-feira)

Horário:  11:00 h

Local:      sala 201 da torre antiga  

Caros estudantes e docentes,

O próximo seminário do grupo de matéria condensada ocorrerá com a apresentação do

Prof. Martin Oettel (Eberhard Karls Universitaet Tuebingen-Germany). O título e abstract seguem abaixo.

Tarik em nome da comissão organizadora. 

————————————————————————–

TítuloMachine Learning approaches to Classical Many-Body Systems in (Non-)EquilibriumResumo:

Classical many-body systems comprise everyday liquids, colloidal systems or almost everything in the realm of soft matter. In equilibrium, all properties can be deduced from the one-body density profile (the space-dependent probability for finding a particle). This is guaranteed by the therorems of Density Functional Theory (DFT), but one needs the functional of the free energy to put DFT to work. For many systems, even very simple ones, this functional is not known. I discuss recent advances and perspectives on finding these functionals using methods of Machine Learning (ML) and try to build a bridge also to the quantum DFT problem where similar developments are in progress. Also, the general classical nonequilibrium problem can be put in a functional form (power functional theory), and the likewise unknown functional of dissipated power should be learnable by ML
methods.

Pular para o conteúdo